JPH0669300B2 - Ultrasonic motor device - Google Patents
Ultrasonic motor deviceInfo
- Publication number
- JPH0669300B2 JPH0669300B2 JP60139440A JP13944085A JPH0669300B2 JP H0669300 B2 JPH0669300 B2 JP H0669300B2 JP 60139440 A JP60139440 A JP 60139440A JP 13944085 A JP13944085 A JP 13944085A JP H0669300 B2 JPH0669300 B2 JP H0669300B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic motor
- piezoelectric
- frequency
- driving body
- normal operation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010355 oscillation Effects 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000005452 bending Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/14—Drive circuits; Control arrangements or methods
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/14—Drive circuits; Control arrangements or methods
- H02N2/142—Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor device that uses piezoelectric material to generate a driving force.
従来の技術 近年圧電セラミック等の圧電体を用いて超音波振動を励
振することにより、回転あるいは直線又は曲線運動をす
る超音波モータが発表され、構造が簡単、小型・軽量な
どの特徴から注目されている。2. Description of the Related Art In recent years, an ultrasonic motor that rotates, moves linearly or curvedly by exciting ultrasonic vibration using a piezoelectric body such as a piezoelectric ceramic has been announced, and has attracted attention because of its features such as simple structure, small size and light weight. ing.
以下、図面を参照しながら超音波モータの従来の技術に
ついて説明を行う。Hereinafter, a conventional technique of an ultrasonic motor will be described with reference to the drawings.
第3図は超音波モータの一例であり、円環形の弾性体1
の円環面の一方に圧電体として円環形圧電セラミック2
を貼合せて圧電駆動体3を構成している。4は耐磨耗性
材料のスライダで、5は弾性体であり、互いに貼合せら
れて動体6を構成している。動体6はスライダ4を介し
て駆動体3と接触している。圧電体2に電界を印加する
と駆動体3の周方向に曲げ振動が励起され、これが進行
波となることにより、動体6が回転する。FIG. 3 shows an example of an ultrasonic motor, which is an annular elastic body 1.
Piezoelectric ceramic 2 as a piezoelectric body on one of the toric surfaces of
Are bonded together to form the piezoelectric driving body 3. Reference numeral 4 is a slider made of a wear resistant material, and 5 is an elastic body, which are bonded to each other to form a moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4. When an electric field is applied to the piezoelectric body 2, bending vibration is excited in the circumferential direction of the driving body 3 and becomes a traveling wave, whereby the moving body 6 rotates.
第4図は第3図の超音波モータに使用した圧電セラミッ
ク2の電極構造の一例を示している。同図では円周方向
に曲げ振動が9波長のるようにしてある。同図におい
て、A、Bはそれぞれ2分の1波長相当の小領域から成
る電極群で、Cは4分の3波長、Dは4分の1波長の長
さの電極である。従って、Aの電極群とBの電極群とは
位置的に4分の1波長(=90度)の位相ずれがある。電
極群A、B内の隣合う小電極部は互いに反対に厚み方向
に分極されている。圧電セラミック2の弾性体1との接
着面は第4図に示された面と反対の面であり、電極はベ
タ電極である。使用時には電極群A、Bは第4図に斜線
で示されたように、それぞれ短絡して用いられる。FIG. 4 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, the bending vibration has 9 wavelengths in the circumferential direction. In the figure, A and B are electrode groups each consisting of a small region corresponding to a half wavelength, C is a quarter wavelength, and D is a quarter wavelength electrode. Therefore, the A electrode group and the B electrode group have a phase shift of a quarter wavelength (= 90 degrees). Adjacent small electrode portions in the electrode groups A and B are polarized in the thickness direction opposite to each other. The surface of the piezoelectric ceramic 2 bonded to the elastic body 1 is the surface opposite to the surface shown in FIG. 4, and the electrode is a solid electrode. In use, the electrode groups A and B are short-circuited and used as indicated by the hatched lines in FIG.
以上のように構成された超音波モータについて、その動
作を以下に説明する。前記圧電体2の電極群AにV0・si
n(ωt)で表される電圧を印加すると(ただしV0は電
圧の瞬時値、ωは角周波数、tは時間)、駆動体3は円
周方向に曲げ振動をする。The operation of the ultrasonic motor configured as described above will be described below. V 0 · si is applied to the electrode group A of the piezoelectric body 2.
When a voltage represented by n (ωt) is applied (where V 0 is an instantaneous value of voltage, ω is an angular frequency, and t is time), the driving body 3 causes bending vibration in the circumferential direction.
第5図は第3図の超音波モータの一部分の斜視図であ
り、同図(a)は圧電体2に電圧を印加していない時で
あり、同図(b)は圧電体2に電圧を印加した時の様子
を示す。FIG. 5 is a perspective view of a part of the ultrasonic motor of FIG. 3, in which FIG. 5A is when no voltage is applied to the piezoelectric body 2, and FIG. A state when a voltage is applied is shown.
第6図は動体6と駆動体3の接触状況を拡大して描いた
ものである。前記圧電体2の電極群AにV0・sin(ω
t)、電極群BにV0・cos(ωt)の互いに位相がπ/
2だけずれた電圧を印加すれば、駆動体3の円周方向に
曲げ振動の進行波を作ることができる。一般に進行波は
振幅をξとすれば ξ=ξ0・cos(ωt−kx) ……(1) ただし ξ0:波の大きさの瞬時値 k:波数(=2π/λ) λ:波長 x:位置 で表せる。(1)式は ξ=ξ0・(cos(ωt)・cos(kx)+sin(ωt)・s
in(kx)) ……(2) と書き直せ、(2)式は進行波が時間的にπ/2だけ位
相のずれた波cos(ωt)とsin(ωt)、および位置的
にπ/2だけ位相のずれたcos(kx)とsin(kx)とのそ
れぞれの積の和で得られることを示している。前述の説
明より、圧電体2は互いに位置的にπ/2(=λ/4)
だけ位相のずれた電極群A、Bを持っているので、駆動
体3の共振周波数に等しい周波数出力を持つ発振器の出
力から、それぞれに時間的に位相のπ/2だけずれた交
流電圧を作り、前記電極群に印加すれば駆動体3に曲げ
振動の進行波を作れる。FIG. 6 is an enlarged view of the contact state between the moving body 6 and the driving body 3. In the electrode group A of the piezoelectric body 2, V 0 · sin (ω
t), the phase of V 0 · cos (ωt) in the electrode group B is π /
If a voltage deviated by 2 is applied, a traveling wave of bending vibration can be generated in the circumferential direction of the driving body 3. Generally, if the amplitude of a traveling wave is ξ, then ξ = ξ 0 · cos (ωt−kx) (1) where ξ 0 : instantaneous value of wave size k: wave number (= 2π / λ) λ: wavelength x : Can be expressed by position. Equation (1) is ξ = ξ 0 · (cos (ωt) · cos (kx) + sin (ωt) · s
in (kx)) ・ ・ ・ (2) can be rewritten. Equation (2) shows that the traveling wave is cos (ωt) and sin (ωt) with phase shifted by π / 2 in time, and π / 2 in position. It is shown that it can be obtained by the sum of the products of cos (kx) and sin (kx) that are out of phase with each other. From the above description, the piezoelectric bodies 2 are positioned π / 2 (= λ / 4) relative to each other.
Since it has the electrode groups A and B that are out of phase with each other, an AC voltage that is temporally out of phase with π / 2 is generated from the output of the oscillator having a frequency output equal to the resonance frequency of the driving body 3. By applying to the electrode group, a progressive wave of bending vibration can be generated in the driving body 3.
また同図は駆動体のA点が進行波によって、長軸2w、短
軸2uの楕円運動をしている様子を示し駆動体3上に置か
れた動体6が楕円の頂点で接触することにより、波の進
行方向とは逆方向にv=ωuの速度で運動する様子を示
している。即ち動体6は任意の静圧で駆動体3に押し付
けられて、駆動体3の表面に接触し、動体6と駆動体3
との摩擦力で波の進行方向と逆方向に速度vで駆動され
る。両者の間にすべりがある時は、速度が上記のvより
も小さくなる。上記に示した超音波モータの速度vは、 v=ωt∝ωξ0 ……(3) で表せ、駆動体3の曲げ振動の振幅瞬時値ξ0に比例す
る。そのため超音波モータの駆動は小さな電圧で大きな
電流が流れる駆動体3の共振周波数で駆動する。In addition, the figure shows that the point A of the driving body makes an elliptical motion of the long axis 2w and the short axis 2u by the traveling wave, and the moving body 6 placed on the driving body 3 contacts at the apex of the ellipse. , Shows a state of moving at a velocity of v = ωu in the direction opposite to the traveling direction of the wave. That is, the moving body 6 is pressed against the driving body 3 by an arbitrary static pressure and comes into contact with the surface of the driving body 3, and the moving body 6 and the driving body 3
It is driven at a speed v in the direction opposite to the traveling direction of the wave by the frictional force between and. When there is a slip between the two, the speed becomes smaller than v above. The speed v of the ultrasonic motor shown above can be represented by v = ωt∝ωξ 0 (3) and is proportional to the instantaneous amplitude value ξ 0 of the bending vibration of the driving body 3. Therefore, the ultrasonic motor is driven at the resonance frequency of the driver 3 in which a large current flows with a small voltage.
発明が解決しようとする問題点 しかし、超音波モータの始動時と動作中では、第7図に
示すように駆動体3のアドミッタンスの周波数特性が異
なる。これは始動時では駆動体3は動体6と面と面で接
触しているが、動作中には第6図に示したように線状に
接触しているからである。第7図において、aは静止
時、および始動時の、そしてbは動作中の駆動体3のア
ドミッタンスの周波数特性である。また同図において、
fr1は動作時での共振周波数であり、fr2は始動時での
共振周波数である。つまり、始動時と動作時では最適駆
動周波数である共振周波数が変動する。故に従来のよう
に、始動時と動作中で同周波数で超音波モータを駆動し
たのでは、常に安定で効率の良い駆動はできない。Problems to be Solved by the Invention However, the frequency characteristics of the admittance of the driving body 3 are different during start-up and during operation of the ultrasonic motor, as shown in FIG. This is because the driving body 3 is in surface-to-surface contact with the moving body 6 at the time of start-up, but is in linear contact during operation as shown in FIG. In FIG. 7, a is the frequency characteristic of the admittance of the driving body 3 at rest and at start-up, and b is in operation. Also in the figure,
f r1 is a resonance frequency at the time of operation, and f r2 is a resonance frequency at the time of starting. In other words, the resonance frequency, which is the optimum drive frequency, varies during startup and operation. Therefore, if the ultrasonic motor is driven at the same frequency during start-up and operation as in the conventional case, stable and efficient driving cannot always be performed.
本発明はかかる点に鑑みてなされたもので、常に効率の
良い、しかも安定な動作が可能な超音波モータ装置を提
筑供することを目的としている。The present invention has been made in view of the above points, and an object thereof is to provide an ultrasonic motor device that is always efficient and capable of stable operation.
問題点を解決するための手段 本発明は上記問題点を解決するものであり、他励方式の
駆動回路では発振周波数が始動時と動作中とで変えられ
る発振器と、利得の変えられる増幅器のうちの、前記発
振器のみが、又は、双方とも有する。また、自励方式で
はその中心周波数が可変な周波数選択回路と利得が可変
な増幅器のうちの前記周波数選択回路のみが、双方とも
を有するものである。Means for Solving the Problems The present invention is to solve the above problems, and in a separately-excited drive circuit, an oscillator whose oscillation frequency can be changed between start-up and operation and an amplifier whose gain can be changed are provided. , Only the oscillator, or both. Further, in the self-excited system, only the frequency selection circuit whose center frequency is variable and the frequency selection circuit of the amplifier whose gain is variable have both.
作 用 他励方式,自励方式ともに、超音波モータの駆動周波数
を始動時および動作時の駆動体の共振周波数に一致させ
て、始動時と動作時のインピーダンスの変化を増幅器の
利得を変えて吸収する。また前記駆動周波数のみを常に
駆動周波数に一致させて、常に効率の良い、安定な動作
が行なえるようにしている。For both the separately-excited method and the self-excited method, the drive frequency of the ultrasonic motor is made to match the resonant frequency of the driver at startup and operation, and the impedance change at startup and operation is changed by changing the gain of the amplifier. Absorb. Further, only the drive frequency is always matched with the drive frequency so that efficient and stable operation can always be performed.
実施例 以下図面を参照しながら本発明の一実施例について説明
する。第1図は本発明の超音波モータ装置の一実施例を
示すブロック図である。同図において、7は発振器で8
は増幅器である。発振器7の発振周波数は抵抗R1,R2お
よびコンデンサC1によって決まり、増幅器8の利得は抵
抗R3,R4,R5によって決まる。電源電圧Vccが印加される
と、バッファ9の入力に抵抗R6とコンデンサC2で決まる
充電電圧が印加され、電源電圧Vccが印加された直後は
バッファ9の出力はロジックレベルの“L"になり、充電
電圧がバッファ9のスレッシホールド電圧を越えると、
バッファ9の出力はロジックレベルの“H"になる。つま
り、超音波モータの始動時には発振器7の発振周波数f
rは ただしKは定数 で決まり、発振周波数frを第7図のfr2に等しくして
おく。また増幅器8の利得Gは G=−R4/R3 ……(5) で決まる。発振器7の出力は増幅器8で超音波モータを
起動するに充分なレベルにまで増幅される。増幅後の信
号は一方は90゜移相器11に入力されて電力増幅器12に入
力される。また他方は直接電力増幅器13に入力される。
これら2つの90゜位相の異なる駆動信号は超音波モータ
の駆動体3の圧電セラミック2に印加され、安定に超音
波モータが起動される。Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the ultrasonic motor device of the present invention. In the figure, 7 is an oscillator and 8
Is an amplifier. The oscillation frequency of the oscillator 7 is determined by the resistors R 1 , R 2 and the capacitor C 1 , and the gain of the amplifier 8 is determined by the resistors R 3 , R 4 , R 5 . When the power supply voltage V cc is applied, the charging voltage determined by the resistor R 6 and the capacitor C 2 is applied to the input of the buffer 9, and immediately after the power supply voltage V cc is applied, the output of the buffer 9 is at the logic level “L”. When the charging voltage exceeds the threshold voltage of the buffer 9,
The output of the buffer 9 becomes a logic level "H". That is, when the ultrasonic motor is started, the oscillation frequency f of the oscillator 7
r is Where K is determined by a constant, it keeps equal the oscillation frequency f r to f r2 of Figure 7. The gain G of the amplifier 8 is determined by G = -R 4 / R 3 ...... (5). The output of the oscillator 7 is amplified by the amplifier 8 to a level sufficient to start the ultrasonic motor. One of the amplified signals is input to the 90 ° phase shifter 11 and then to the power amplifier 12. The other is directly input to the power amplifier 13.
These two drive signals having different 90 ° phases are applied to the piezoelectric ceramic 2 of the driving body 3 of the ultrasonic motor, and the ultrasonic motor is stably activated.
起動直後、バッファ9の出力は“H"になり、アナログス
イッチ10は両方とも閉じる。これにより発振器7の発振
周波数frは 2に印加される駆動信号をトランス16で抜き出し、バッ
ファ15を通した後に所定の周波数範囲のみを通過させる
ことにより、発振周波数を駆動体3の共振周波数に一致
させる役目を果たす。このバンドパスフィルタがないと
すると、発振条件さえ満たせば、どの周波数でも発振す
るので、注目のモード以外でも発振してしまう。Immediately after starting, the output of the buffer 9 becomes "H", and both the analog switches 10 are closed. Thus the oscillation frequency f r of the oscillator 7 extracts a drive signal applied to the 2 transformer 16, by passing only a predetermined frequency range after passing through the buffer 15, the oscillation frequency to the resonant frequency of the driver 3 Serves as a match. Without this bandpass filter, it oscillates at any frequency as long as the oscillating conditions are met, so it oscillates in modes other than the mode of interest.
起動時には、インバータ18の入力はそのスレッシホール
ド電圧まで達していないので、その出力は“H"となりア
ナログスイッチ17は双方とも閉じられる。この時のバン
ドパスフィルタの特性は ただしArは増幅率,frは中心周波数,Qはフィルタの選
択度 で表わされる。上記の中心周波数frを第7図のfr2に
等しくして、抵抗R7,R8,R10,R11を(9)式より増幅器
の利得を決めて、(8),(9)式よりfr=fr2とな
るようにQを決める。At startup, the input of the inverter 18 has not reached its threshold voltage, so its output becomes "H" and both analog switches 17 are closed. The characteristics of the bandpass filter at this time are However A r is the amplification factor, f r is the center frequency, Q is represented by the selectivity of the filter. The center frequency f r of the set to be equal to f r2 of FIG. 7, a resistor R 7, R 8, R 10 , R 11 (9) to decide the gain of the amplifier from equation (8), (9) determine the Q so that f r = f r2 from the equation.
次にインバータ18の入力は抵抗R12を介じてコンデンサC
4が電源電圧Vccから充電されているのでスレッシホー
ルド電圧を越える。その時より出力は“L"となり、アナ
ログスイッチ17は双方ともに開き、バンドパスフィルタ
の特性は により決まる。前述と同様に中心周波数frを第7図の
fr1に等しくし、利得Ar,選択度Qを抵抗R7,R10によ
り決める。Then the input of the inverter 18 is Ji through a resistor R 12 capacitor C
4 exceeds the threshold hold voltage because it is charged from the supply voltage V cc. From that time, the output becomes "L", both analog switches 17 open, and the characteristics of the bandpass filter are Determined by The center frequency f r in the same manner as described above and equal to f r1 of FIG. 7 determines the gain A r, the selectivity Q by resistor R 7, R 10.
バンドパスフィルタを通過した信号は増幅器19により一
定量だけ増幅されて、90゜移相器9,電力増幅器10,11に
より、超音波モータの駆動信号になる。The signal that has passed through the bandpass filter is amplified by the amplifier 19 by a certain amount, and becomes a drive signal for the ultrasonic motor by the 90 ° phase shifter 9 and the power amplifiers 10 and 11.
上記に述べたように、起動時にも動作中にも第2図の実
施例は駆動体3の共振周波数で超音波モータを駆動し、
インピーダンスの変化を利得を調節することにより吸収
しているので安定な自励駆動装置となる。As described above, the embodiment of FIG. 2 drives the ultrasonic motor at the resonance frequency of the driving body 3 at the time of startup and during operation,
Since a change in impedance is absorbed by adjusting the gain, a stable self-excited drive device is obtained.
本実施例では始動時と動作中で駆動周波数と駆動電圧の
両方とも変えたが、駆動周波数を変えるだけでも十分な
効果がある。In this embodiment, both the driving frequency and the driving voltage are changed at the time of starting and during operation, but changing the driving frequency alone has a sufficient effect.
発明の効果 以上述べてきたように、本発明によれば超音波モータの
始動時にも動作中にも、常に効率の良い、そして安定し
た駆動ができる。EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to always perform efficient and stable driving at the time of starting and operating the ultrasonic motor.
第1図は本発明の一実施例の超音波モータ装置のブロッ
ク図、第2図は本発明の別の実施例の超音波モータ装置
のブロック図、第3図は超音波モータの断面図、第4図
は超音波モータに用いられている圧電体の形状と電極構
造を示す平面図、第5図超音波モータの駆動体部の振動
状態を示すモデル図、第6図は超音波モータの原理の説
明図、第7図は超音波モータの駆動体のインピーダンス
の周波数特性図である。 7……発振器、8……演算増幅器、9……バッファ、10
……アナログスイッチ、11……90度移相器、12,13……
電力増幅器、14……演算増幅器、15……バッファ、16…
…トランス、17……アナログスイッチ、18……インバー
タ、19……増幅器。FIG. 1 is a block diagram of an ultrasonic motor device according to an embodiment of the present invention, FIG. 2 is a block diagram of an ultrasonic motor device according to another embodiment of the present invention, and FIG. 3 is a sectional view of the ultrasonic motor. FIG. 4 is a plan view showing the shape and electrode structure of the piezoelectric body used in the ultrasonic motor, FIG. 5 is a model diagram showing the vibration state of the driving body portion of the ultrasonic motor, and FIG. 6 is the ultrasonic motor. FIG. 7 is an explanatory diagram of the principle, and FIG. 7 is a frequency characteristic diagram of impedance of a driving body of the ultrasonic motor. 7 ... Oscillator, 8 ... Operational amplifier, 9 ... Buffer, 10
…… Analog switch, 11 …… 90 degree phase shifter, 12,13 ……
Power amplifier, 14 ... Operational amplifier, 15 ... Buffer, 16 ...
… Transformer, 17 …… Analog switch, 18 …… Inverter, 19 …… Amplifier.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 宏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭60−22480(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Ouchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-60-22480 (JP, A)
Claims (4)
成し、上記圧電駆動体の上記圧電に交流電圧を印加する
ことにより、上記圧電駆動体に弾性振動を励振し、上記
弾性体に接触して設置された動体を移動させる超音波モ
ータであって、 始動時と通常動作時で発振周波数が変わる発振器と、始
動時と通常動作時を判別し上記発振器の周波数を変える
制御を行う制御器からなる他励駆動回路を有することを
特徴とする超音波モータ装置。1. An elastic body and a piezoelectric body are combined to form a piezoelectric driving body, and by applying an AC voltage to the piezoelectric of the piezoelectric driving body, elastic vibration is excited in the piezoelectric driving body, and the elasticity is generated. An ultrasonic motor that moves a moving body that comes in contact with the body and that has an oscillator that changes the oscillation frequency during startup and normal operation, and a control that changes the frequency of the oscillator by distinguishing between startup and normal operation. An ultrasonic motor device having a separately-excited drive circuit including a controller for performing the operation.
れる増幅器を具備した特許請求の範囲第1項に記載の超
音波モータ装置。2. The ultrasonic motor device according to claim 1, further comprising an amplifier whose gain can be changed during starting and during normal operation.
成し、上記圧電駆動体の上記圧電体に交流電圧を印加す
ることにより、上記圧電駆動体に弾性振動を励振し、上
記弾性体に接触して設置された動体を移動させる超音波
モータであって、 始動時と通常動作時で中心周波数が変わる周波数選択回
路と、始動時と通常動作時を判別し上記周波数選択回路
の中心周波数を変える制御を行う制御器からなる自励駆
動回路を有することを特徴とする超音波モータ装置。3. A piezoelectric driving body is formed by coupling an elastic body and a piezoelectric body, and an AC voltage is applied to the piezoelectric body of the piezoelectric driving body to excite elastic vibrations in the piezoelectric driving body. An ultrasonic motor that moves a moving body that comes in contact with an elastic body, and uses a frequency selection circuit that changes the center frequency between startup and normal operation, and a frequency selection circuit that distinguishes between startup and normal operation. An ultrasonic motor device having a self-excited drive circuit including a controller that performs control for changing a center frequency.
れる増幅器を具備した特許請求の範囲第3項に記載の超
音波モータ装置。4. The ultrasonic motor device according to claim 3, further comprising an amplifier whose gain can be changed during starting and during normal operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60139440A JPH0669300B2 (en) | 1985-06-26 | 1985-06-26 | Ultrasonic motor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60139440A JPH0669300B2 (en) | 1985-06-26 | 1985-06-26 | Ultrasonic motor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS622868A JPS622868A (en) | 1987-01-08 |
JPH0669300B2 true JPH0669300B2 (en) | 1994-08-31 |
Family
ID=15245245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60139440A Expired - Lifetime JPH0669300B2 (en) | 1985-06-26 | 1985-06-26 | Ultrasonic motor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0669300B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59156168A (en) * | 1983-02-23 | 1984-09-05 | Canon Inc | Controller for vibration wave motor |
JPS59156169A (en) * | 1983-02-23 | 1984-09-05 | Canon Inc | Controller for vibration wave motor |
JPS59204477A (en) * | 1983-05-04 | 1984-11-19 | Nippon Kogaku Kk <Nikon> | Surface wave motor utilizing supersonic wave vibration |
JPS6022480A (en) * | 1983-07-18 | 1985-02-04 | Shinsei Kogyo:Kk | Piezoelectric element of surface wave motor |
-
1985
- 1985-06-26 JP JP60139440A patent/JPH0669300B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS622868A (en) | 1987-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900007413B1 (en) | Drive method for ultrasonic motor | |
JPS6356178A (en) | Driving of ultrasonic motor | |
JP2663380B2 (en) | Piezoelectric ultrasonic linear motor | |
JPH0815398B2 (en) | Ultrasonic motor drive | |
JPS631379A (en) | Driving circuit for ultrasonic motor | |
JPH0669300B2 (en) | Ultrasonic motor device | |
JP2636280B2 (en) | Driving method of ultrasonic motor | |
JP2583904B2 (en) | Ultrasonic motor driving method | |
JP2558709B2 (en) | Ultrasonic motor drive | |
JP2574293B2 (en) | Ultrasonic motor driving method | |
JPH072022B2 (en) | Ultrasonic motor driving method | |
JPS63299788A (en) | Ultrasonic motor driving device | |
JPS6292782A (en) | Ultrasonic motor device | |
JPH07108103B2 (en) | Ultrasonic motor device | |
JPS6292781A (en) | Ultrasonic motor device | |
JPS6356179A (en) | Driving of ultrasonic motor | |
JP2604731B2 (en) | Ultrasonic motor drive | |
JPH0833366A (en) | Method for driving ultrasonic motor and its drive circuit | |
JPH0632569B2 (en) | Ultrasonic motor driving method | |
JP2577485B2 (en) | Driving method of ultrasonic motor | |
JPH01136575A (en) | Supersonic motor driving device | |
JPS61224885A (en) | Vibration wave motor | |
JPH07131987A (en) | Drive control circuit for ultrasonic motor | |
JP2538088B2 (en) | Driving method for ultrasonic motor | |
JPH04322179A (en) | Method of driving ultrasonic motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |