JPH0815398B2 - Ultrasonic motor drive - Google Patents

Ultrasonic motor drive

Info

Publication number
JPH0815398B2
JPH0815398B2 JP60139446A JP13944685A JPH0815398B2 JP H0815398 B2 JPH0815398 B2 JP H0815398B2 JP 60139446 A JP60139446 A JP 60139446A JP 13944685 A JP13944685 A JP 13944685A JP H0815398 B2 JPH0815398 B2 JP H0815398B2
Authority
JP
Japan
Prior art keywords
circuit
current
piezoelectric
ultrasonic motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60139446A
Other languages
Japanese (ja)
Other versions
JPS622869A (en
Inventor
修 川崎
律夫 稲葉
晃 徳島
宏 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60139446A priority Critical patent/JPH0815398B2/en
Publication of JPS622869A publication Critical patent/JPS622869A/en
Publication of JPH0815398B2 publication Critical patent/JPH0815398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モー
タの駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving device for an ultrasonic motor that uses piezoelectric material to generate a driving force.

従来の技術 近年圧電セラミック等の圧電体を用いて超音波振動を
励振することにより、回転あるいは直線又は曲線運動を
する超音波モータが発表され、構造が簡単、小型・軽量
などの特徴から注目されている。
2. Description of the Related Art In recent years, an ultrasonic motor that rotates, moves linearly or curvedly by exciting ultrasonic vibration using a piezoelectric body such as a piezoelectric ceramic has been announced, and has attracted attention because of its features such as simple structure, small size and light weight. ing.

以下、図面を参照しながら超音波モータの従来技術に
ついて説明を行う。
Hereinafter, a conventional technique of an ultrasonic motor will be described with reference to the drawings.

第5図は超音波モータの一例であり、円環形の弾性体
1の円環面の一方に圧電体として円環形圧電セラミック
2を貼合せて圧電駆動体3を構成している。4は耐磨耗
性材料のスライダで、5は弾性体であり、互いに貼合せ
られて動体6を構成している。動体6はスライダ4を介
して駆動体3と接触している。圧電体2に電界を印加す
ると駆動体3の周方向に曲げ振動が励起され、これが進
行波となることにより、動体6が回転する。
FIG. 5 shows an example of an ultrasonic motor, in which a ring-shaped piezoelectric ceramic 2 is bonded to one of the ring-shaped surfaces of a ring-shaped elastic body 1 as a piezoelectric body to form a piezoelectric drive body 3. Reference numeral 4 is a slider made of a wear resistant material, and 5 is an elastic body, which are bonded to each other to form a moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4. When an electric field is applied to the piezoelectric body 2, bending vibration is excited in the circumferential direction of the driving body 3 and becomes a traveling wave, whereby the moving body 6 rotates.

第6図は第5図の超音波モータに使用した圧電セラミ
ック2の電極構造の一例を示している。同図では円周方
向に曲げ振動が9波長のるようにしてある。同図におい
て、A、Bはそれぞれ2分の1波長相当の小領域から成
る電極群で、Cは4分の3波長、Dは4分の1波長の長
さの電極である。従って、Aの電極群とBの電極群とは
位置的に4分の1波長(=90度)の位相ずれがある。電
極群A、B内の隣合う小電極部は互いに反対に厚み方向
に分極されている。圧電セラミック2の弾性体1との接
着面は第6図にしめされた面と反対の面であり、電極は
ベタ電極である。使用時には電極群A、Bは第6図に斜
線で示されたように、それぞれ短絡して用いられる。
FIG. 6 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, the bending vibration has 9 wavelengths in the circumferential direction. In the figure, A and B are electrode groups each consisting of a small region corresponding to a half wavelength, C is a quarter wavelength, and D is a quarter wavelength electrode. Therefore, the A electrode group and the B electrode group have a phase shift of a quarter wavelength (= 90 degrees). Adjacent small electrode portions in the electrode groups A and B are polarized in the thickness direction opposite to each other. The bonding surface of the piezoelectric ceramic 2 with the elastic body 1 is the surface opposite to the surface shown in FIG. 6, and the electrode is a solid electrode. In use, the electrode groups A and B are short-circuited and used as indicated by the diagonal lines in FIG.

以上のように構成された超音波モータについて、その
動作を以下に説明する。前記圧電体2の電極群AにV0
sin(ωt)で表される電圧を印加すると(ただしV0
電圧の瞬時値、ωは角周波数、tは時間)、駆動体3は
円周方向に曲げ振動をする。
The operation of the ultrasonic motor configured as described above will be described below. In the electrode group A of the piezoelectric body 2, V 0
When a voltage represented by sin (ωt) is applied (where V 0 is an instantaneous voltage value, ω is an angular frequency, and t is time), the driving body 3 vibrates in the circumferential direction.

第7図は第5図の超音波モータの一部分の斜視図であ
り、同図(a)は圧電体2に電圧を印加していない時で
あり、同図は圧電体2に電圧を印加した時の様子を示
す。
FIG. 7 is a perspective view of a part of the ultrasonic motor of FIG. 5, and FIG. 7A shows the state when no voltage is applied to the piezoelectric body 2, and FIG. 7 shows that a voltage is applied to the piezoelectric body 2. The situation of time is shown.

第8図は動体6と駆動体3の接触状況を拡大して描い
たものである。前記圧電体2の電極群AにV0・sin(ω
t)、他の電極群BにV0・cos(ωt)の互いに位相が
π/2だけずれた電圧を印加すれば、駆動体3の円周方向
に曲げ振動の進行波を作ることができる。一般に進行波
は振をξとすれば ξ=ξ・cos(ωt−kx) ……(1) ただし ξ0:波の大きさの瞬時値 k:波数(=2π/λ) λ:波長 x:位置 で表せる。(1)式は ξ=ξ・(cos(ωt)・cos(kx) +sin(ωt)・sin(kx)) ……(2) と書き直せ、(2)式は進行波が時間的にπ/2だけ位相
のずれた波cos(ωt)とsin(ωt)、および位置的に
π/2だけ位相のずれたcos(kx)とsin(kx)とのそれぞ
れの積の和で得られることを示している。前述の説明よ
り、圧電体2は互いに位置的にπ/2(=λ/4)だけ位相
のずれた電極群A、Bを持っているので、駆動体3の共
振周波数に等しい周波数出力を持つ発振器の出力から、
それぞれに時間的に位相のπ/2だけずれに交流電圧を作
り、前記電極群に印加すれば駆動体3に曲げ振動の進行
波を作れる。
FIG. 8 is an enlarged view of the contact state between the moving body 6 and the driving body 3. In the electrode group A of the piezoelectric body 2, V 0 · sin (ω
t), if a voltage of V 0 · cos (ωt) with a phase difference of π / 2 is applied to the other electrode group B, a traveling wave of bending vibration can be generated in the circumferential direction of the driving body 3. . In general, if the vibration of a traveling wave is ξ, then ξ = ξ 0 · cos (ωt−kx) (1) where ξ 0 : instantaneous value of wave size k: wave number (= 2π / λ) λ: wavelength x : Can be expressed by position. Equation (1) can be rewritten as ξ = ξ 0 · (cos (ωt) · cos (kx) + sin (ωt) · sin (kx)) …… (2), and equation (2) shows that the traveling wave is π temporally. Obtained as the sum of the products of cos (ωt) and sin (ωt), which are out of phase by / 2, and cos (kx) and sin (kx), which are in phase out of phase by π / 2 Is shown. From the above description, since the piezoelectric body 2 has the electrode groups A and B which are phase-shifted from each other by π / 2 (= λ / 4), the piezoelectric body 2 has a frequency output equal to the resonance frequency of the driving body 3. From the output of the oscillator,
If an alternating voltage is generated with a phase shift of π / 2 in each of them and applied to the electrode group, a progressive wave of bending vibration can be generated in the driving body 3.

第8図は駆動体のA点が進行波によって、長軸2w、短
軸2uの楕円運動をしている様子を示し駆動体3上に置か
れた動体6が楕円の頂点で接触することにより、波の進
行方向とは逆方向にv=ωuの速度で運動する様子を示
している。即ち動体6は任意の静圧で駆動体3に押し付
けられて、駆動体3の表面に接触し、動体6と駆動体3
との摩擦力で波の進行方向と逆方向に速度vで駆動され
る。両者の間にすべりがある時は、速度が上記のvより
も小さくなる。
FIG. 8 shows that the point A of the driving body makes an elliptical motion of the long axis 2w and the short axis 2u by the traveling wave, and the moving body 6 placed on the driving body 3 comes into contact with the apex of the ellipse. , Shows a state of moving at a velocity of v = ωu in the direction opposite to the traveling direction of the wave. That is, the moving body 6 is pressed against the driving body 3 by an arbitrary static pressure and comes into contact with the surface of the driving body 3, and the moving body 6 and the driving body 3
It is driven at a speed v in the direction opposite to the traveling direction of the wave by the frictional force between and. When there is a slip between the two, the speed becomes smaller than v above.

上記に示した超音波モータの速度vは、 v=ωt∝ωξ ……(3) で表せ、駆動体3の曲げ振動の振幅最大値ξに比例す
る。曲げ振動の振幅の大きさは、印加電圧が同じでも駆
動周波数が異なれば違ってくる。第9図は駆動体3のイ
ンピーダンスおよび感度(振幅/印加電圧、つまり単位
印加電圧での振幅値で定義)の周波数特性である。同図
より、第6図の電極構造の圧電体を用いたとき、駆動体
3の共振は本来の共振周波数f0の下と上にそれぞれ一つ
比較的大きな共振が現れ、感度はそれぞれの共振周波数
で極大となり、本来の共振周波数f0で最大となる。
The speed v of the ultrasonic motor shown above can be represented by v = ωt∝ωξ 0 (3) and is proportional to the maximum amplitude ξ 0 of the bending vibration of the driving body 3. The magnitude of the bending vibration amplitude is different if the driving frequency is different even if the applied voltage is the same. FIG. 9 shows frequency characteristics of impedance and sensitivity (amplitude / applied voltage, that is, an amplitude value at a unit applied voltage) of the driving body 3. From the figure, when the piezoelectric body having the electrode structure of FIG. 6 is used, the resonance of the driving body 3 has one relatively large resonance below the original resonance frequency f 0 and one resonance above the original resonance frequency f 0 , and the sensitivity is the resonance of each resonance. It has a maximum at the frequency and a maximum at the original resonance frequency f 0 .

故に超音波モータを効率良く駆動するためには、駆動
体3の共振周波数で駆動するのが良い。
Therefore, in order to drive the ultrasonic motor efficiently, it is preferable to drive the ultrasonic motor at the resonance frequency of the driving body 3.

発明が解決しようとする問題点 ところが、駆動体3の共振周波数は第4図に示すよう
に、駆動体3と動体6を押し付けるための静荷重および
負荷によって変化し、駆動体3の温度によっても変化す
る。一般に駆動体の温度が高くなると共振周波数は低く
なる。駆動体3は駆動中に機械損失によって発熱するの
で、共振周波数は負荷変動と発熱により刻々変化する。
つまり駆動体3を上記のように一定周波数の発振回路を
用いて駆動する場合、常に効率の良い最適駆動は出来な
い。
However, as shown in FIG. 4, the resonance frequency of the driving body 3 changes depending on the static load and the load for pressing the driving body 3 and the moving body 6, and also depends on the temperature of the driving body 3. Change. Generally, the higher the temperature of the driver, the lower the resonance frequency. Since the driving body 3 generates heat due to mechanical loss during driving, the resonance frequency changes momentarily due to load fluctuation and heat generation.
That is, when the driver 3 is driven by using the oscillation circuit having a constant frequency as described above, efficient and optimum driving cannot always be performed.

本発明はかかる点に鑑みてなされたもので、駆動体の
共振周波数が変化しても常に効率の良い最適駆動が可能
な超音波モータ受同装置を提供することを目的としてい
る。
The present invention has been made in view of the above points, and an object of the present invention is to provide an ultrasonic motor receiving device that can always perform efficient and optimal driving even if the resonance frequency of the driving body changes.

問題点を解決するための手段 電圧制御発振回路の出力で圧電体を含む駆動体を駆動
し、圧電体への流入電流のうち機械腕電流成分を検出回
路で検出し、上記検出値を設定時間毎のタイミングで記
憶回路に記憶し、一つ前のタイミングにおける記憶回路
の記憶結果と現在の記憶結果とを比較回路で比較し、そ
の比較結果により、前記検出値が大となる側に前記発振
回路の制御端子の電圧値を変化させて、前記電圧制御発
振回路の発振周波数を設定する。
Means for solving the problem A driver including a piezoelectric body is driven by the output of a voltage controlled oscillator circuit, the mechanical arm current component of the current flowing into the piezoelectric body is detected by a detection circuit, and the above detection value is set for a set time. It is stored in the storage circuit at every timing, and the comparison result is compared with the storage result of the storage circuit at the previous timing and the current storage result, and the oscillation is performed on the side where the detected value becomes large according to the comparison result. The oscillation frequency of the voltage controlled oscillation circuit is set by changing the voltage value of the control terminal of the circuit.

作用 一つ前の機械腕電流の検出値の記憶結果が、現在の機
械腕電流の検出値の記憶結果より大きい場合であって、
発振回路の一つ前の記憶時の制御端子の制御電圧より、
現在の記憶時の制御電圧を大きくしている時には、発振
回路の制御端子の制制御電圧を小さくし、反対に一つ前
の記憶時の制御電圧より現在の記憶時の制御電圧を小さ
くしている時には、発振回路の制御端子の制御電圧を大
きくする。
When the stored result of the detected value of the previous mechanical arm current is larger than the stored result of the detected value of the current mechanical arm current,
From the control voltage of the control terminal at the time of storage just before the oscillation circuit,
When the control voltage for the current memory is being increased, the control voltage for the control terminal of the oscillation circuit is made smaller, and conversely, the control voltage for the current memory is made smaller than the control voltage for the previous memory. When it is on, the control voltage of the control terminal of the oscillation circuit is increased.

また、一つ前の機械腕電流の検出値の記憶結果が、現
在の機械腕電流の検出値の記憶結果より小さい場合であ
って、発振回路の一つ前の記憶時の制御端子の制御電圧
より、現在の記憶時の制御電圧を大きくしている時に
は、発振回路の制御端子の制制御電圧をさらに大きく
し、反対に一つ前の記憶時の制御電圧より現在の記憶時
の制御電圧を小さくしている時には、発振回路の制御端
子の制御電圧をさらに小さくする。このような機械腕電
流の制御を行うことにより、機械腕伝流を最大値近傍に
制御することができる。
When the storage result of the detected value of the previous mechanical arm current is smaller than the storage result of the detected value of the current mechanical arm current, and the control voltage of the control terminal at the time of the previous storage of the oscillation circuit is Therefore, when the control voltage for the current memory is increased, the control voltage for the control terminal of the oscillation circuit is further increased, and conversely, the control voltage for the current memory is set to be higher than the control voltage for the previous memory. When the voltage is reduced, the control voltage at the control terminal of the oscillator circuit is further reduced. By controlling the machine arm current in this way, it is possible to control the machine arm current in the vicinity of the maximum value.

故に負荷や温度によって駆動体の共振周波数が変化し
ても、常に発振回路の出力周波数を上記共振周波数にあ
わせる。つまり、同印加電圧に対して同相電流が一番大
きくなる共振周波数で圧電駆動体を駆動することができ
る。
Therefore, even if the resonance frequency of the driver changes due to the load or the temperature, the output frequency of the oscillation circuit is always adjusted to the resonance frequency. That is, the piezoelectric driver can be driven at the resonance frequency at which the in-phase current becomes the largest for the same applied voltage.

実施例 以下図に従って本発明の実施例について説明を行な
う。第1図は本発明の1実施例を示すブロック図であ
る。第2図は、第5図及び第6図に示した圧電駆動体3
における圧電体2の電極群AまたはBから見た共振周波
数付近での等価回路で、第2図の(a)は共振周波数付
近での等価回路、(b)は共振周波数での等価回路を示
す。同図において、C0は電気的容量を表わし、C1は機械
的弾性、L1は質量、R1は機械的損失を表わし、前記C0
電気腕、C1,L1およびR1の直列回路を機械腕と言う。共
振周波数ではC1とL1が共振する。またieは電気的電流、
imは機械的電流(つまり速度)を表わす。故に駆動体3
を共振周波数で駆動すれば、同電圧でimが最大に流れ
る。つまり最大の変位を得られることになり、(3)式
より最大の動体6の速度が得られることになる。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 2 shows the piezoelectric driver 3 shown in FIGS. 5 and 6.
2 is an equivalent circuit near the resonance frequency viewed from the electrode group A or B of the piezoelectric body 2 in FIG. 2, (a) of FIG. 2 shows an equivalent circuit near the resonance frequency, and (b) of FIG. 2 shows an equivalent circuit at the resonance frequency. . In the figure, C 0 represents the electric capacity, C 1 is the mechanical elasticity, L 1 is the mass, R 1 is the mechanical loss, the C 0 of the electric arm, C 1 , L 1 and R 1 of The series circuit is called a mechanical arm. At the resonance frequency, C 1 and L 1 resonate. And ie is the electrical current,
im represents a mechanical current (that is, speed). Therefore, the driver 3
If is driven at the resonance frequency, im will flow to the maximum at the same voltage. That is, the maximum displacement can be obtained, and the maximum velocity of the moving body 6 can be obtained from the equation (3).

第1図において、R1は圧電駆動体3の圧電セラミック
2に接続された圧電セラミック2への流入電流の検出用
抵抗、C1,C2は圧電セラミック2の電極群A,Bと裏面の電
極間の電気的容量と同じ値のコンデンサ、R2は抵抗R1
同じ値の抵抗である。故に抵抗R1と抵抗R2の端子電圧の
差を差動増幅器10でとれば、電気的電流ieは相殺されて
機械的電流imだけが出力として取り出され、このimを最
大になるように制御すれば同一印加電圧で振幅ξが最
大にでき最適駆動ができる。
In FIG. 1, R 1 is a resistor for detecting an inflow current to the piezoelectric ceramic 2 connected to the piezoelectric ceramic 2 of the piezoelectric driving body 3, and C 1 and C 2 are the electrode groups A and B of the piezoelectric ceramic 2 and the back surface thereof. A capacitor having the same value as the electric capacitance between the electrodes, and R 2 is a resistor having the same value as the resistor R 1 . Therefore, if the difference between the terminal voltages of the resistors R 1 and R 2 is taken by the differential amplifier 10, the electric current ie is canceled and only the mechanical current im is taken out as an output, and this im is controlled to be maximum. By doing so, the amplitude ξ 0 can be maximized with the same applied voltage, and optimum driving can be performed.

7は電圧制御発振回路で、発振周波数制御端子7aの電
圧値によって、第3図に示すように発振周波数が変えら
れる。8は90゜移相器で発振回路7の出力を90゜だけ移
相する。発振器7の出力と90゜移相された信号は、それ
ぞれ電力増幅器9a,9bで増幅されて、位置的に90゜位相
の異なる2つの電極群A,Bに入力される。12aと12bは記
憶回路であり、差動増幅器10の出力を整流回路11により
直流に変換した値を記憶する。13はタイミング回路で記
憶回路12aおよび12bに記憶する時間を制御する。
Reference numeral 7 is a voltage controlled oscillation circuit, and the oscillation frequency can be changed by the voltage value of the oscillation frequency control terminal 7a as shown in FIG. 8 is a 90 ° phase shifter for shifting the output of the oscillation circuit 7 by 90 °. The output of the oscillator 7 and the signal phase-shifted by 90 ° are amplified by the power amplifiers 9a and 9b, respectively, and input to the two electrode groups A and B which are different in phase by 90 °. Reference numerals 12a and 12b denote storage circuits, which store the value obtained by converting the output of the differential amplifier 10 into a direct current by the rectifying circuit 11. A timing circuit 13 controls the time to be stored in the storage circuits 12a and 12b.

今、ある時間に制御回路14により、制御端子7aに制御
電圧が印加されていると、発振器7は第3の発振器の発
振周波数の制御特性によって決まる周波数で発振する。
例えば制御端子の電圧をV1とすれば、発振周波数はf1
なる。この発振出力は90゜移相器8に入力されて90゜移
相されて後、あるいは直接に電力増幅器9a,9bにそれぞ
れ入力されて、動体6を所定の速度で回転するために必
要なレベルにまで増幅される。増幅された信号は電極群
A,Bに入力され、前述したように駆動体3に曲げ振動の
進行波を作る。この時に流入する機械的電流imを差動増
幅器10により得て、整流回路11で交流値を直流に変換し
て、タイミング回路13の作るタイミングで記憶回路12a
に記憶する。
If the control circuit 14 applies a control voltage to the control terminal 7a at a certain time, the oscillator 7 oscillates at a frequency determined by the control characteristic of the oscillation frequency of the third oscillator.
For example, if the voltage at the control terminal is V 1 , then the oscillation frequency is f 1 . This oscillation output is input to the 90 ° phase shifter 8 and phase-shifted by 90 °, or directly to the power amplifiers 9a and 9b, respectively, to obtain the level required for rotating the moving body 6 at a predetermined speed. Is amplified to. Amplified signal is electrode group
It is input to A and B, and as described above, a traveling wave of bending vibration is generated in the driving body 3. The mechanical current im flowing at this time is obtained by the differential amplifier 10, the AC value is converted to DC by the rectifier circuit 11, and the storage circuit 12a is generated at the timing created by the timing circuit 13.
To memorize.

次に制御回路15は端子7aに印加する制御電圧を設定値
だけ増加して第3図のV3にする。すると発振器7の発振
周波数はf3となる。このf3による駆動的での機械的電流
imをタイミング回路13により記憶回路12bに記憶し、一
つ前の記憶回路12aの記憶結果と比較器14で比較して、
機械的電流imが小さくなった時には、制御電圧をV3より
V1にもどし、大きくなった時にはV2を再び設定値だけ増
加して、その時の機械的電流imを記憶回路12aに記憶し
て比較器14で比較する。
Next, the control circuit 15 to V 3 of FIG. 3 by increasing the control voltage applied to the terminal 7a by the set value. Then, the oscillation frequency of the oscillator 7 becomes f 3 . Drive-like mechanical current due to this f 3
Im is stored in the memory circuit 12b by the timing circuit 13, and compared with the memory result of the immediately previous memory circuit 12a by the comparator 14,
When mechanical current im becomes smaller than the control voltage V 3
When returning to V 1 and increasing, V 2 is again increased by the set value, and the mechanical current im at that time is stored in the memory circuit 12a and compared by the comparator 14.

このように、制御電圧を増加させて、その時の機械的
電流imが増加した時には再び制御電圧を設定値だけ増加
し、同様に制御電圧を増加させて、機械的電流imが減少
した時には制御電圧を設定値だけ減少させる。また、制
御電圧を減少させて、機械的電流imが増加した時には制
御電圧をさらに設定値だけ減少させ、同様に制御電圧を
減少させて、機械的電流imが減少した時には制御電圧を
設定値だけ増加する。この結果、制御電圧の可変範囲を
駆動体3の共振周波数の変化する範囲に一致させておけ
ば、制御回路15は常に駆動体3の駆動周波数を共振周波
数に一致させるように発振器7の出力周波数を制御す
る。故に、常に同一印加電圧に対して最大の機械的電流
imが得られる効率の良い駆動ができる。
In this way, when the control voltage is increased and the mechanical current im at that time increases, the control voltage increases again by the set value, and similarly, the control voltage increases, and when the mechanical current im decreases, the control voltage increases. Is decreased by the set value. Also, when the control voltage is decreased and the mechanical current im increases, the control voltage is further decreased by the set value, and similarly, the control voltage is decreased and the control voltage is decreased by the set value when the mechanical current im decreases. To increase. As a result, if the variable range of the control voltage is matched with the range in which the resonance frequency of the driving body 3 changes, the control circuit 15 always outputs the output frequency of the oscillator 7 so that the driving frequency of the driving body 3 matches the resonance frequency. To control. Therefore, the maximum mechanical current is always the same for the same applied voltage.
It can drive im with good efficiency.

発明の効果 本発明によれば、温度や静荷重および負荷の変動など
により、圧電駆動体のインピーダンス特性や共振周波数
が変化しても、常に安定に最適駆動ができる。
EFFECTS OF THE INVENTION According to the present invention, even if the impedance characteristics and the resonance frequency of the piezoelectric driver change due to temperature, static load, load fluctuation, etc., optimum driving can always be performed stably.

また、機械腕電流値が大きくなる方向に超音波モータ
の駆動周波数を変化させるにあたり、これは一定時間毎
に行われており、したがって、その処理アルゴリズムを
大変簡単にすることができ処理システムを簡単にするこ
とができる。
Also, when changing the drive frequency of the ultrasonic motor in the direction in which the machine arm current value increases, this is done at regular intervals, so the processing algorithm can be greatly simplified and the processing system can be simplified. Can be

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の超音波モータ駆動装置のブ
ロック図、第2図は圧電体の一つの電極群から見た共振
周波数近傍での等価回路図、第3図は第1図の実施例に
用いた電圧制御発振回路の制御特性図、第4図は駆動体
のインピーダンス特性の負荷による変化を示す特性図、
第5図は従来の超音波モータの断面図、第6図は第1図
に用いられている圧電体の形状と電極構造を示す平面
図、第7図は超音波モータの駆動体部の振動状態を示す
モデル図、第8図は超音波モータの原理の説明図、第9
図は駆動体のインピーダンスと感度の周波数特性図であ
る。 7……電圧制御発振器、8……90度移相器、9a,9b……
電力増幅器、10……差動増幅器、11……整流回路、12a,
12b……記憶回路、13……タイミング回路、14……比較
器、15……制御回路。
FIG. 1 is a block diagram of an ultrasonic motor drive device according to an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram in the vicinity of a resonance frequency seen from one electrode group of a piezoelectric body, and FIG. 3 is FIG. FIG. 4 is a control characteristic diagram of the voltage controlled oscillator circuit used in the embodiment of FIG. 4, FIG. 4 is a characteristic diagram showing a change in impedance characteristic of the driver with a load,
FIG. 5 is a cross-sectional view of a conventional ultrasonic motor, FIG. 6 is a plan view showing the shape and electrode structure of the piezoelectric body used in FIG. 1, and FIG. 7 is vibration of the drive body portion of the ultrasonic motor. FIG. 8 is a model diagram showing the state, FIG. 8 is an explanatory diagram of the principle of the ultrasonic motor, and FIG.
The figure is a frequency characteristic diagram of the impedance and sensitivity of the driver. 7 ... Voltage controlled oscillator, 8 ... 90 degree phase shifter, 9a, 9b ...
Power amplifier, 10 ... Differential amplifier, 11 ... Rectifier circuit, 12a,
12b ... memory circuit, 13 ... timing circuit, 14 ... comparator, 15 ... control circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳島 晃 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 大内 宏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭60−22480(JP,A) 特開 昭58−36684(JP,A) 実開 昭57−148472(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Tokushima 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Hiroshi Ouchi, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-60-22480 (JP, A) JP-A-58-36684 (JP, A) Actual development 57-148472 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】弾性体と圧電体とを貼合わせて圧電駆動体
を構成し、前記圧電体に交流電圧を印加することによ
り、前記圧電駆動体に弾性波をつくり、前記圧電駆動体
に加圧接触して設置された動体を移動させる超音波モー
タにおいて、 前記超音波モータの動作中には、一定の設定時間おき
に、前記交流電圧の駆動周波数となる出力周波数が必ず
可変される可変発振回路と、 前記設定時間に同期して、前記圧電体に流れる電流値と
前記圧電体の電気容量値に等しい容量素子に流れる電流
値を減算することにより、前記圧電体の機械腕に流れる
電流の振幅を検出する機械腕電流検出回路と、 前記設定時間に同期して、前記機械腕に流れる電流の振
幅を記憶する記憶回路と、 前記記憶回路の前記機械腕電流の振幅と1つ前の記憶結
果である機械腕電流の振幅とを比較する比較回路と、 前記可変発振回路の出力周波数の前記可変の方向と、前
記比較回路の比較結果により、前記可変発振回路の出力
周波数の次のステップの可変方向を制御する発振制御回
路を有することを特徴とする超音波モータ駆動装置。
1. An elastic body and a piezoelectric body are bonded together to form a piezoelectric drive body, and by applying an AC voltage to the piezoelectric body, an elastic wave is generated in the piezoelectric drive body and applied to the piezoelectric drive body. In an ultrasonic motor that moves a moving body that is brought into pressure contact with the moving body, a variable oscillation in which the output frequency that is the drive frequency of the AC voltage is always changed during operation of the ultrasonic motor at fixed intervals. Circuit, in synchronization with the set time, by subtracting the current value flowing in the piezoelectric body and the current value flowing in the capacitive element equal to the electric capacitance value of the piezoelectric body, the current flowing in the mechanical arm of the piezoelectric body A mechanical arm current detection circuit that detects an amplitude, a storage circuit that stores the amplitude of a current that flows in the mechanical arm in synchronization with the set time, an amplitude of the mechanical arm current of the storage circuit, and a previous storage. The resulting mechanical arm A comparison circuit that compares the amplitude of the current, the variable direction of the output frequency of the variable oscillation circuit, and the comparison direction of the comparison circuit controls the variable direction of the next step of the output frequency of the variable oscillation circuit. An ultrasonic motor drive device having an oscillation control circuit.
JP60139446A 1985-06-26 1985-06-26 Ultrasonic motor drive Expired - Lifetime JPH0815398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60139446A JPH0815398B2 (en) 1985-06-26 1985-06-26 Ultrasonic motor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60139446A JPH0815398B2 (en) 1985-06-26 1985-06-26 Ultrasonic motor drive

Publications (2)

Publication Number Publication Date
JPS622869A JPS622869A (en) 1987-01-08
JPH0815398B2 true JPH0815398B2 (en) 1996-02-14

Family

ID=15245392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60139446A Expired - Lifetime JPH0815398B2 (en) 1985-06-26 1985-06-26 Ultrasonic motor drive

Country Status (1)

Country Link
JP (1) JPH0815398B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522286B2 (en) * 1987-02-19 1996-08-07 株式会社ニコン Ultrasonic motor drive circuit
JPS63249477A (en) * 1987-04-02 1988-10-17 Matsushita Electric Ind Co Ltd Ultrasonic motor driver
JP2637467B2 (en) * 1988-05-06 1997-08-06 キヤノン株式会社 Vibration type actuator device
JPH0710189B2 (en) * 1988-05-30 1995-02-01 キヤノン株式会社 Vibration wave motor drive circuit
JPH02119586A (en) * 1988-10-27 1990-05-07 Seiko Instr Inc Ultrasonic motor unit
JPH02214481A (en) * 1989-02-10 1990-08-27 Matsushita Electric Ind Co Ltd Apparatus for driving ultrasonic motor
DE4134781A1 (en) * 1991-10-22 1993-04-29 Bosch Gmbh Robert METHOD FOR REGULATING THE FREQUENCY OF A RANDOM SHAFT MOTOR AND CONTROL DEVICE THEREFOR
JPH09163767A (en) * 1995-12-07 1997-06-20 Nikon Corp Driver of vibration actuator
JP4781558B2 (en) * 2001-05-31 2011-09-28 日本電産コパル株式会社 Ultrasonic motor control circuit
JP4328600B2 (en) 2003-11-14 2009-09-09 キヤノン株式会社 Current detection circuit and current detection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133017A (en) * 1972-11-17 1974-12-20
JPS5836684A (en) * 1981-08-28 1983-03-03 有限会社大岳製作所 Ultrasonic oscillation method and micro-computer built-in ultrasonic oscillator

Also Published As

Publication number Publication date
JPS622869A (en) 1987-01-08

Similar Documents

Publication Publication Date Title
KR900007413B1 (en) Drive method for ultrasonic motor
US4888514A (en) Driving apparatus for ultrasonic motor
JPH0815398B2 (en) Ultrasonic motor drive
JPS6356178A (en) Driving of ultrasonic motor
JP2663380B2 (en) Piezoelectric ultrasonic linear motor
JP2558709B2 (en) Ultrasonic motor drive
JP2583904B2 (en) Ultrasonic motor driving method
JP2604731B2 (en) Ultrasonic motor drive
JPH072022B2 (en) Ultrasonic motor driving method
JP2636280B2 (en) Driving method of ultrasonic motor
JPH07108103B2 (en) Ultrasonic motor device
JPH0710187B2 (en) Ultrasonic motor driving method
JP2574293B2 (en) Ultrasonic motor driving method
JP2577485B2 (en) Driving method of ultrasonic motor
JP3141525B2 (en) Ultrasonic motor drive control method
JPS6292781A (en) Ultrasonic motor device
JP2543106B2 (en) Ultrasonic motor drive
JP2563351B2 (en) Ultrasonic motor driving method
JP2538088B2 (en) Driving method for ultrasonic motor
JPH0833366A (en) Method for driving ultrasonic motor and its drive circuit
JPS6292782A (en) Ultrasonic motor device
JPH0632569B2 (en) Ultrasonic motor driving method
JP2506896B2 (en) Ultrasonic motor drive
JPH05212354A (en) Drive circuit of piezoelectric vibrator
JP2616953B2 (en) Drive control method for traveling waveform ultrasonic motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term