JPH0668432B2 - Low molecular gas compression method - Google Patents

Low molecular gas compression method

Info

Publication number
JPH0668432B2
JPH0668432B2 JP63225737A JP22573788A JPH0668432B2 JP H0668432 B2 JPH0668432 B2 JP H0668432B2 JP 63225737 A JP63225737 A JP 63225737A JP 22573788 A JP22573788 A JP 22573788A JP H0668432 B2 JPH0668432 B2 JP H0668432B2
Authority
JP
Japan
Prior art keywords
gas
freon
helium
low
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63225737A
Other languages
Japanese (ja)
Other versions
JPH0275882A (en
Inventor
隆義 浅海
秀樹 戎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63225737A priority Critical patent/JPH0668432B2/en
Publication of JPH0275882A publication Critical patent/JPH0275882A/en
Publication of JPH0668432B2 publication Critical patent/JPH0668432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/02Compressor intake arrangement, e.g. filtering or cooling

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素、ヘリウム等の低分子気体を圧縮するた
めの方法に関するものである。
The present invention relates to a method for compressing a low molecular gas such as hydrogen or helium.

〔従来の技術〕[Conventional technology]

従来、液化等を目的とする気体の圧縮は、ねじ圧縮機や
往復圧縮機のような容積型圧縮機、または遠心圧縮機の
ようなターボ型圧縮機等により行われている。このう
ち、上記容積型圧縮機は、その構造上容量が限られ、大
量の気体を処理するには多数の圧縮機を並列に配する等
の手段でしか対処できないため、コスト面で不利となり
易い。従って、大量の気体を処理するには一般に遠心圧
縮機が好ましいとされている。
Conventionally, gas compression for the purpose of liquefaction and the like has been performed by a positive displacement compressor such as a screw compressor or a reciprocating compressor, or a turbo compressor such as a centrifugal compressor. Of these, the positive displacement compressor has a limited capacity due to its structure, and can only be dealt with by means such as arranging a large number of compressors in parallel in order to process a large amount of gas, which is likely to be disadvantageous in terms of cost. . Therefore, centrifugal compressors are generally considered to be preferable for treating a large amount of gas.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記遠心圧縮機は、回転する羽根車に対し、その径方向
に気体を通して遠心力を与え、圧縮するものであるが、
被加圧ガスが水素やヘリウム等の低分子気体である場合
には、その気体密度が小さいために充分な遠心力が得ら
れにくく、高圧圧縮は困難である。従って従来、このよ
うな低分子気体を圧縮するには圧縮機を多段構造としな
ければならず、これによってコストが増大するととも
に、圧縮機の高速回転が必要になるためにベアリングの
損耗が促進される等の強度的な不都合が生じていた。
The centrifugal compressor is a compressor that applies a centrifugal force to the rotating impeller in the radial direction of the gas to compress it.
When the gas to be pressurized is a low-molecular gas such as hydrogen or helium, it is difficult to obtain a sufficient centrifugal force because of its low gas density, and high-pressure compression is difficult. Therefore, conventionally, in order to compress such low-molecular-weight gas, the compressor has to have a multi-stage structure, which increases the cost and requires high-speed rotation of the compressor, which accelerates wear of the bearing. Intensity inconveniences such as rubbing occurred.

本発明は、このような事情に鑑み、水素、ヘリウム等の
低分子気体を、他の気体と同様に不都合なく遠心圧縮す
ることができる方法を提供することを目的とする。
In view of such circumstances, it is an object of the present invention to provide a method capable of centrifugally compressing a low molecular gas such as hydrogen or helium without inconvenience, like other gases.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、低分子気体に該低分子気体よりも沸点の高い
高分子気体を添加混合して両者を遠心圧縮し、次いでこ
の混合気体を冷却して上記高分子気体を凝縮分離するも
のである。
In the present invention, a polymer gas having a boiling point higher than that of the low molecular gas is added and mixed, the both are centrifugally compressed, and then the mixed gas is cooled to condense and separate the polymer gas. .

〔作 用〕[Work]

上記構成において、低分子気体に高分子気体が添加され
ることにより、平均気体密度が高まって遠心圧縮が容易
に行われる。そして、この遠心圧縮後に混合気体を冷却
することにより、両気体の飽和温度差によって上記高分
子気体が凝縮分離され、圧縮された高純度の低分子気体
が得られる。
In the above structure, the high-molecular gas is added to the low-molecular gas to increase the average gas density and facilitate centrifugal compression. Then, by cooling the mixed gas after the centrifugal compression, the polymer gas is condensed and separated due to the saturation temperature difference between the two gases, and a compressed high-purity low-molecular gas is obtained.

〔実施例〕〔Example〕

第1図および第2図(a)(b)は、本発明方法を実施
するための装置の一例として、ヘリウムの液化装置を示
したものである。この装置は、混合器1、遠心圧縮機
2、水冷却器3、保冷箱B等を備え、保冷箱B内には、
切換式熱交換器4a,4b、熱交換器5,8、膨脹タービン6、
ヘリウム液分離器、膨脹弁9、フレオン液分離器10、切
換装置11等が収納されている。
1 and 2 (a) and (b) show a helium liquefying device as an example of a device for carrying out the method of the present invention. This apparatus includes a mixer 1, a centrifugal compressor 2, a water cooler 3, a cold insulation box B, and the like.
Switchable heat exchangers 4a, 4b, heat exchangers 5, 8, expansion turbine 6,
A helium liquid separator, an expansion valve 9, a Freon liquid separator 10, a switching device 11 and the like are housed.

上記混合器1は、シャワー1aでヘリウムガス中にフレオ
ン液を散布し、両者を混合するとともに、下部に溜るフ
レオン液をヒータ1bで加熱することにより、フレオンガ
スの分圧を一定に保つように構成されている。
The mixer 1 is configured such that the freon liquid is sprayed in the helium gas in the shower 1a to mix the two, and the freon liquid accumulated in the lower part is heated by the heater 1b to keep the partial pressure of the freon gas constant. Has been done.

上記切換式熱交換器4a,4bには、切換弁12a,12bを介して
交互に液体窒素が給送されるようになっている。これに
対して切換装置11は、第2図(a)(b)に示されるよ
うな4つの切換弁11a〜11bを備え、これらの弁が上記切
換弁12a,12bの開閉と連係して開閉切換されることによ
り、上記切換式熱交換器4a,4bにおいて混合気体のリバ
ーシング熱交換(再生式熱交換)が行われるようになっ
ている(詳細後述)。
Liquid nitrogen is alternately supplied to the switching heat exchangers 4a and 4b via the switching valves 12a and 12b. On the other hand, the switching device 11 is provided with four switching valves 11a to 11b as shown in FIGS. 2 (a) and 2 (b), and these valves are opened / closed in cooperation with the opening / closing of the switching valves 12a, 12b. By switching, reversing heat exchange (regenerative heat exchange) of the mixed gas is performed in the switching heat exchangers 4a and 4b (details will be described later).

また、上記水冷却器3と混合器1の間、およびフレオン
液分離器10と混合器1の間には、それぞれ分離液の液面
レベルを一定に保つための流量調節弁13,14が設けられ
ている。
Flow control valves 13 and 14 are provided between the water cooler 3 and the mixer 1 and between the Freon liquid separator 10 and the mixer 1 to keep the liquid level of the separated liquid constant. Has been.

次に、この装置によるヘリウムガスの圧縮液化の工程
を、第3図の流れ図を参照しながら説明する。
Next, the process of compressing and liquefying helium gas by this apparatus will be described with reference to the flowchart of FIG.

まず、混合器1において、ヘリウムガスに対し高分子気
体(ここではフレオン;商品名)が一定の比率で添加混
合される(プロセスP1)。このような添加高分子ガスと
しては、被加圧ガス(ここではヘリウムガス)よりも高
密度で、かつ沸点の高いことが条件であり、上記フレオ
ン(フレオン113)等は好適である。
First, in the mixer 1, a polymer gas (here, Freon; trade name) is added and mixed at a constant ratio to helium gas (process P 1 ). Such an added polymer gas is required to have a higher density and a higher boiling point than the gas to be pressurized (here, helium gas), and the above Freon (Freon 113) and the like are preferable.

このようにヘリウムとフレオンが混合された気体は、遠
心圧縮機2に給送され、そのまま遠心圧縮される(ステ
ップS2)。このとき、上記混合気体はフレオンの添加で
高密度となっているため、容易に高圧圧縮が行われる。
The gas in which helium and freon are mixed is fed to the centrifugal compressor 2 and is centrifugally compressed as it is (step S 2 ). At this time, since the mixed gas has a high density due to the addition of Freon, high pressure compression is easily performed.

圧縮された混合気体は、水冷却器3で予備冷却され、こ
れによって大部分のフレオンが液化分離される(プロセ
スP3)。この液化されたフレオンは流量調節弁13を介し
て上記混合器1に逆送される。
The compressed mixed gas is pre-cooled by the water cooler 3, whereby most of the freon is liquefied and separated (process P 3 ). The liquefied freon is fed back to the mixer 1 via the flow rate control valve 13.

予備冷却された残りの高圧気体は、保冷箱Bに収納され
た熱交換器5に給送され、この熱交換器5で戻りの低圧
ヘリウムガス(後述)と熱交換した後、切換装置11に送
られる。この切換装置11は、切換弁11a,11cのみが開く
状態(第2図(a))と、切換弁11b,11dのみが開く状
態(同図(b))とに切換えられるようになっている。
The remaining pre-cooled high-pressure gas is fed to the heat exchanger 5 housed in the cold insulation box B, and after exchanging heat with the low-pressure helium gas (described later) returned by the heat exchanger 5, it is transferred to the switching device 11. Sent. The switching device 11 can be switched between a state where only the switching valves 11a and 11c are opened (FIG. 2 (a)) and a state where only the switching valves 11b and 11d are opened (FIG. 2 (b)). .

まず、同図(a)の状態について説明すると、同図実線
21aに示されるように、混合気体は熱交換器5から切換
弁11aを通って切換式熱交換器4aに入り、その中で凝固
しているフレオンと熱交換される。これによって、混合
気体中のフレオンガスが液化分離されるとともに、上記
フレオンが融解してフレオン液となる。この液はフレオ
ン液分離器10に回収され、流量調整弁14を介して上記混
合器1に逆送される。
First, the state shown in FIG. 9A will be described.
As shown at 21a, the mixed gas enters the switching heat exchanger 4a from the heat exchanger 5 through the switching valve 11a and exchanges heat with the Freon solidified therein. As a result, the Freon gas in the mixed gas is liquefied and separated, and the Freon is melted to become Freon liquid. This liquid is collected in the Freon liquid separator 10 and sent back to the mixer 1 via the flow rate adjusting valve 14.

一方、この状態では切換弁12bが開かれ、切換式熱交換
器4bにのみ液体窒素が給送されるようになっており(一
点鎖線22a参照)、上記混合気体はこの切換式熱交換器4
b内で上記液体窒素および戻りの低温ヘリウムガスと熱
交換し、さらに温度降下してその中のフレオンガスが切
換式熱交換器4b内の伝熱面上に凍結する。
On the other hand, in this state, the switching valve 12b is opened so that the liquid nitrogen is fed only to the switching heat exchanger 4b (see the alternate long and short dash line 22a).
The liquid nitrogen and the returned low temperature helium gas are heat-exchanged in b, and the temperature is further lowered, so that the Freon gas therein is frozen on the heat transfer surface in the switchable heat exchanger 4b.

上記工程により、添加されたフレオンガスはほぼ完全に
凝固分離除去され、混合気体は高純度の被加圧ヘリウム
ガスとなる(プロセスP4)。このガスは膨脹タービン6
および膨脹弁9を通ってさらに低温となり、一部がヘリ
ウム液分離器7で液化される(プロセスP5)。残りのヘ
リウムガスは、熱交換器8を通って切換式熱交換器4bに
給送され、この切換式熱交換器4bに給送される上記混合
気体と熱交換し、さらに熱交換器5内で熱交換され温度
上昇した状態で上記混合器1に逆送される(破線23a参
照)。
Through the above steps, the added Freon gas is almost completely solidified, separated and removed, and the mixed gas becomes high-purity pressurized helium gas (process P 4 ). This gas is the expansion turbine 6
Further, the temperature is further lowered through the expansion valve 9 and a part thereof is liquefied in the helium liquid separator 7 (process P 5 ). The remaining helium gas is fed to the switching heat exchanger 4b through the heat exchanger 8 and exchanges heat with the mixed gas fed to the switching heat exchanger 4b. In the state where the heat is exchanged and the temperature has risen, it is sent back to the mixer 1 (see the broken line 23a).

一方、この第2図(a)の状態から同図(b)の状態に
切換えられると、同図実線21bに示されるように、混合
気体は熱交換器5から切換弁11bを通って切換式熱交換
器4bに給送され、この切換式熱交換器4b内において上記
第2図(a)の状態で凝固したフレオンと熱交換してフ
レオンを融解させる。さらに、この混合気体は切換式熱
交換器4aに給送され、切換弁12aから供給される液体窒
素(一点鎖線22b)および戻りのヘリウムガスとの熱交
換によりフレオンガスが凍結分離される。そして、上記
と同様の工程で一部のヘリウムが液化された後、切換式
熱交換器4aおよび熱交換器5を通って混合器1に逆送さ
れる(破線23b)。
On the other hand, when the state of FIG. 2 (a) is switched to the state of FIG. 2 (b), the mixed gas is switched from the heat exchanger 5 through the switching valve 11b as shown by the solid line 21b in the figure. The freon is fed to the heat exchanger 4b and exchanges heat with the freon solidified in the state of FIG. 2 (a) in the switching heat exchanger 4b to melt the freon. Further, this mixed gas is fed to the switching heat exchanger 4a, and the Freon gas is frozen and separated by heat exchange with the liquid nitrogen (dotted line 22b) supplied from the switching valve 12a and the returning helium gas. Then, after a part of the helium is liquefied in the same process as above, it is sent back to the mixer 1 through the switchable heat exchanger 4a and the heat exchanger 5 (broken line 23b).

以上のように、この圧縮方法は、低分子のヘリウムガス
に高分子のフレオンガスを添加することにより、全体の
平均密度を上げて遠心分離を容易にし、かつ、その後に
両気体の飽和温度差を利用してフレオンガスを液化分離
するものであり、これによって高圧、高純度のヘリウム
ガスを得ることができる。また、上記のような再生式熱
交換を行うことにより、導入ガスによってフレオンの寒
冷を効率良く除去できるとともに、同混合気体を有効に
冷却することができ、高い熱効率によって純度の高いヘ
リウムガスを生成することができる。
As described above, this compression method increases the average density of the whole to facilitate centrifugation by adding a high molecular weight Freon gas to a low molecular weight helium gas, and after that, a saturation temperature difference between both gases is reduced. This is used to liquefy and separate the Freon gas, and thereby high-pressure, high-purity helium gas can be obtained. Further, by performing the regenerative heat exchange as described above, it is possible to efficiently remove the cold of Freon by the introduced gas, and it is possible to effectively cool the mixed gas, and to generate highly pure helium gas with high thermal efficiency. can do.

第1表は、上記第2図(a)のA〜D地点における気体
の温度、圧力、およびヘリウム純度を示したものである
が、この表から分かるように、切換式熱交換器4a,4bを
通過した地点(B地点)では、極めて高い純度(フレオ
ン1ppm以下)のヘリウムガスが得られている。
Table 1 shows the temperature, pressure, and helium purity of gas at points A to D in FIG. 2 (a). As can be seen from this table, the switchable heat exchangers 4a, 4b are shown. At the point (point B) after passing through, helium gas with extremely high purity (freon less than 1 ppm) was obtained.

なお、本発明方法は、上記ヘリウムの他例えば水素等、
低分子および低密度の気体の圧縮に優れた効果を発揮す
る。また、本発明方法では冷却手段を問わず、例えば上
記装置では水冷却器3によって混合気体の予備冷却を行
っているが、直接熱交換器によって混合気体を本冷却し
てもよい。
Incidentally, the method of the present invention, other than the above helium, such as hydrogen,
It has an excellent effect on compression of low-molecular and low-density gas. Further, in the method of the present invention, the mixed gas is pre-cooled by the water cooler 3 in the above apparatus regardless of the cooling means, but the mixed gas may be directly cooled by the direct heat exchanger.

〔発明の効果〕 以上のように本発明は、低分子気体に高沸点の高分子気
体を添加して遠心圧縮し、この混合気体を冷却して上記
高分子気体を凝縮分離するようにしたものであるので、
大量の低分子気体を遠心圧縮機を用いて容易に高圧圧縮
することができるとともに、その添加後は両気体の飽和
温度差を利用した高分子気体の冷却分離により高純度の
被加圧低分子気体を得ることができる効果がある。
EFFECTS OF THE INVENTION As described above, according to the present invention, a high-boiling-point polymer gas is added to a low-molecular gas, centrifugal compression is performed, and the mixed gas is cooled to condense and separate the polymer gas. Therefore,
A large amount of low-molecular-weight gas can be easily compressed to high pressure using a centrifugal compressor, and after addition, high-purity pressurized low-molecular-weight molecules with high purity can be obtained by cooling separation of polymer gas using the saturation temperature difference between both gases. There is an effect that gas can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明方法を実施するためのヘリウム液化装
置の全体図、第2図(a)(b)は同装置において再生
式熱交換が行われる部分の構成図、第3図は本発明方法
によるヘリウム液化の工程を示す流れ図である。 1……混合器、2……遠心圧縮機、3……水冷却器、4
a,4b……切換式熱交換器。
FIG. 1 is an overall view of a helium liquefaction apparatus for carrying out the method of the present invention, FIGS. 2 (a) and 2 (b) are configuration diagrams of a portion where regenerative heat exchange is performed in the apparatus, and FIG. 3 is a flow chart showing the steps of liquefying helium according to the inventive method. 1 ... Mixer, 2 ... Centrifugal compressor, 3 ... Water cooler, 4
a, 4b ... Switchable heat exchanger.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】低分子気体に該低分子気体よりも沸点の高
い高分子気体を添加混合して両者を遠心圧縮し、次いで
この混合気体を冷却して上記高分子気体を凝縮分離する
ことを特徴とする低分子気体の圧縮方法。
1. A low-molecular gas is mixed with a high-molecular gas having a boiling point higher than that of the low-molecular gas, centrifugally compressed, and then the mixed gas is cooled to condense and separate the high-molecular gas. Characterizing method for compressing low-molecular gas.
JP63225737A 1988-09-08 1988-09-08 Low molecular gas compression method Expired - Lifetime JPH0668432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225737A JPH0668432B2 (en) 1988-09-08 1988-09-08 Low molecular gas compression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225737A JPH0668432B2 (en) 1988-09-08 1988-09-08 Low molecular gas compression method

Publications (2)

Publication Number Publication Date
JPH0275882A JPH0275882A (en) 1990-03-15
JPH0668432B2 true JPH0668432B2 (en) 1994-08-31

Family

ID=16834043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225737A Expired - Lifetime JPH0668432B2 (en) 1988-09-08 1988-09-08 Low molecular gas compression method

Country Status (1)

Country Link
JP (1) JPH0668432B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099151B1 (en) * 2019-07-24 2021-06-18 Air Liquide COMPRESSION AND SEPARATION APPARATUS AND COMPRESSION METHOD
FR3108390B1 (en) * 2020-03-23 2022-11-25 Air Liquide Hydrogen refrigeration plant and process
US11773873B2 (en) 2021-03-15 2023-10-03 Air Products And Chemicals, Inc. Process and apparatus for compressing hydrogen gas in a centrifugal compressor
US11453950B1 (en) 2021-03-15 2022-09-27 Air Products And Chemicals, Inc. Method and apparatus for dosing hydrogen in a centrifugal compression system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992167A (en) * 1975-04-02 1976-11-16 Union Carbide Corporation Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
JPS5825954A (en) * 1981-08-10 1983-02-16 出光興産株式会社 Three-layer laminated structure

Also Published As

Publication number Publication date
JPH0275882A (en) 1990-03-15

Similar Documents

Publication Publication Date Title
EP3368630B1 (en) Low-temperature mixed--refrigerant for hydrogen precooling in large scale
EP3368631B1 (en) Method using hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
RU2315921C1 (en) Compression plant with great number of incoming flows
EP3163236A1 (en) Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
CA2512921A1 (en) A refrigeration process and the production of liquefied natural gas
JP2004532295A (en) Production of LNG using an independent dual expander refrigeration cycle
US3144316A (en) Process and apparatus for liquefying low-boiling gases
JPH0319471B2 (en)
JPH0212349B2 (en)
JP2022543296A (en) Method and system for cooling and/or liquefying
CN210773044U (en) System for liquefying a natural gas feed stream to produce an LNG product
EP3163235A1 (en) Novel cascade process for cooling and liquefying hydrogen in large-scale
JPH0668432B2 (en) Low molecular gas compression method
CN110411146A (en) The improved method and system of hydrocarbon stream is cooled down using vapor phase refrigerant
KR20220042401A (en) Refrigeration units and systems
AU2020325953A1 (en) Refrigeration device and system
JPH079346B2 (en) Helium liquefier
Lu et al. Thermodynamic cycle design of a 700W@ 3K sub-cooled helium refrigerator test facility
JPH06241647A (en) Hydrogen liquefying equipment and slush hydrogen producing equipment
Terbot A New Helium Refrigerator for Superconducting Cable Systems
US20230296294A1 (en) Simplified cryogenic refrigeration system
Wanner et al. Concept and operation of a 4.4 ton/d liquid hydrogen facility
Gistau et al. A 6 kW at 4.5 K helium refrigerator for CERN’s cryogenic test station
JP2513711B2 (en) Neon refrigeration cycle
JPH0627619B2 (en) Liquefaction method of natural gas