JPH0319471B2 - - Google Patents

Info

Publication number
JPH0319471B2
JPH0319471B2 JP62331858A JP33185887A JPH0319471B2 JP H0319471 B2 JPH0319471 B2 JP H0319471B2 JP 62331858 A JP62331858 A JP 62331858A JP 33185887 A JP33185887 A JP 33185887A JP H0319471 B2 JPH0319471 B2 JP H0319471B2
Authority
JP
Japan
Prior art keywords
hydrogen
stream
cooling
neon
closed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62331858A
Other languages
Japanese (ja)
Other versions
JPS63169468A (en
Inventor
Sutorooru Gaumaa Junia Rii
Rarufu Uintaasu Junia Aasaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of JPS63169468A publication Critical patent/JPS63169468A/en
Publication of JPH0319471B2 publication Critical patent/JPH0319471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/931Recovery of hydrogen

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、水素の液化方法に関する。 〔従来の技術とその問題点〕 低分子量ガスを工業的に液化するいくつかの方
法が提案されている。 Zeitschrift fiir Die Gesamte−Industrie39、
No.6、14〜7(1933)のK.Clusiusによる“中間作
用物質としてのネオンによる液体水素製造用プラ
ント”の項には、予備冷却剤として液体空気又は
液体窒素を、また中間作用液体として高圧ネオン
を用い、高圧リンデサイクルを利用して窒素を液
化する方法が記載されている。その記事は、クラ
ウデサイクル又はブレイトンサイクルに用いられ
るような膨張エンジンサイクルを用いることを教
えていない。米国特許第3180709号明細書は、エ
クスパンダーとパラレルに組み合わせて複合的な
等エンタルピー膨張(J−Tバルブ)を行わせ、
例えば水素、ヘリウム及びネオンの如きガスの液
化方法を開示している。 米国特許第3473342号は、液体窒素で圧縮ガス
状ネオンを冷却することによつて、特に、大量の
ネオンを液化する方法を記載している。その方法
では、冷却された圧縮ネオンの一部をターボ−エ
クスパンダーに膨張させて中間冷却を与え、残部
のネオンをジユール−トムソン(J−T)エクス
パンジヨンにより膨張させて液化ネオンを製造し
ている。本来、そのサイクルは単純なエンジンク
ラウデ冷却器である。 米国特許第3609984号は、水素、ヘリウム及び
ネオンのようなガスの液化方法を記載している。
根本的には、その方法はガスの圧縮によつて液化
を達成するが、その圧力は、圧縮ガスを等エント
ロピー的に膨張させて、大気圧で実質的に単一液
相を形成することができるガスの臨界温度以上の
温度に等圧的に冷却し、次いで、そのガスは等圧
的に冷却され、続いてその冷却ガスをワークエン
ジンによつて等エントロピー的に膨張させ、それ
により実質的に液相をつくるものである。 米国特許第3992167号及びHydrogen Energy
Progress IV、Vol3、Pargamon Press(1982)
のシー・エフ・ベーカーによる“遠心圧縮を用い
る水素液化”の項には、遠心圧縮を利用するため
に水素と混合する第二成分を用いる水素の液化方
法を開示している。両文献は、遠心圧縮を利用す
るためには高分子量のガスが必要であることを教
えている。 米国特許第4498313号は、ヘリウムガスを予備
冷却し、タービンタイプコンプレツサーを用いる
ネオンガス−冷却及び液化回路を含むヘリウム冷
却法及び装置を記載している。その方法はまた、
付加的冷却の総効率のために液体窒素を利用して
いる。 〔問題点を解決するための手段〕 本発明は、水素流を圧縮し、冷却し、そして大
部分がオルソ型の水素を大部分がパラ型の水素に
触媒的に変換する水素液化法の改善法を提供す
る。この圧縮され、冷却され、変換された水素流
を次いでエクスパンダーに膨張させ、それによつ
て上記変換された水素流を部分凝縮させる。次
に、部分凝縮した水素流を液相とガス相に分離
し;ガス相は冷却を回復させるために暖められ、
圧縮され、変換に先だつて上記圧縮された水素流
と組み合わされ;液相は液体水素生成物として取
り出す。水素液化方法の改善は、変換された水素
流を膨張させるための濃密流体エクスパンダーを
利用すること及び液化方法のための中間冷却を提
供する閉回路(closed loop)ネオン冷却サイク
ルを利用することからなつている。 選択的であるが、圧縮された水素流を冷却する
ため又は閉回路冷却サイクルにおけるネオンを予
備冷却するための付加的冷却は、液体窒素で行わ
れる。 二寒剤、すなわち水素とヘリウムのための大規
模液化及び冷却プラントは大型圧縮系が必要であ
る。これらの系は、両寒剤が低分子量、すなわち
2と4であるため、それぞれ容積置換型
(positive displacement type)コンプレツサー
及びエクスパンダーを用いなければならない。 液体水素、殊に推進燃料用にもくろまれた要求
の増大と共に水素の大量生産が必要になつて来
た。この大規模水素の生産を達成するユニツト
は、現存する実施タイプのものよりも2〜3倍大
きいかも知れない。これらのふくらむ要求を効果
的に増大させるためには、最小の改築である場所
から他の場所へ容易に移すことのできる方式であ
ることが望ましい。移送の規模と容易さについて
のそれらの望ましい特性は、遠心コンプレツサー
とエクスパンダーを用いる水素液化システムを発
展させる。 現存する水素液化装置は、容積置換コンプレツ
サーを用いている。大規模の水素とヘリウム系に
用いられ、提案されているコンプレツサーに三つ
の主要なタイプがある。それらは、(a)Roots−タ
イプのローブ・ブロワー、(b)Lysholm−タイプア
クシヤルスクリユーコンプレツサー、及び(c)往復
式(reciprocating)ピストンコンプレツサーで
ある。主として、圧縮されるガスは液体、通常、
潤滑剤として又は潤滑剤と冷却剤の組合せとして
機能する油と直接接触するか、しないかのいずれ
かの数種のタイプがある。 Roots−タイプのコンプレツサーは、ヘリウム
の大気圧以下の吸引圧のみの適用に主として用い
られている。これらのタイプのコンプレツサー類
は、ステージあたりの控え目な圧縮割合では、
1.4〜2.0に、また、相対的に低い最大のキヤステ
イング圧では約200psigに限定される。 ヘリウム系に広く用いられるLysholm油充満ス
クリユーコンプレツサー類は、本来300psigの範
囲の圧力に制限される。それらのコンプレツサー
は、機械を循環し、水の冷却に交換される大量の
油の効果的冷却のゆえに、ステージ当たりの高い
圧縮割合、すなわち、6までの圧縮率を有すると
いう利点がある。そのコンプレツサーは、より小
さなエネルギー効率であるが、ガス漏れし難い。 往復式コンプレツサーは、主として、水素液化
の高い操業圧が、例えば1200psigであるから、多
くのヘリウム系や、殊に多くの水素系に用いられ
る。最近の進歩に伴なつて、往復式コンプレツサ
ーのエネルギー効率は改善されている。あいに
く、往復運動力が等しくないので、これらのコン
プレツサー類は大きな基礎の上に取り付けられね
ばならない。 大型スクリユータイプ又は往復式コンプレツサ
ーはいずれもコンパクトではない。スクリユーコ
ンプレツサーは、通常、スキツドマウント(skid
mounted)されるが、他方、それらは一機当たり
約2250hpに制限される。大装置は、ステージ毎
に複合的多重並行型機が必要であろう。 大きさの上記問題の解決は、遠心型コンプレツ
サーの使用にあるが、しかし遠心型コンプレツサ
ーは、水素又はヘリウムのような低分子量ガスに
は不適切である。 本発明は、一部、予備冷却剤としてネオンを用
いる水素液化方法に関する。ネオンは、例えば
16psigの大気圧近傍の吸引圧から適当な遠心又は
軸流コンプレツサーに循環される。その圧力は、
ネオンのトリプルポイントでの6.27psiaの蒸気圧
より低くはないが、良好な全体にわたる熱力学的
効率とネオン保護とに両立するより高い圧力であ
る。ネオンは、一又はそれ以上のラジアル−流入
ターボ−エクスパンダーによる膨張により冷却さ
れる。ネオンは、効率を高めるために、他の寒
剤、例えば、沸とうする液体窒素、窒素二酸化炭
素で選択的に予備冷却される。 最も冷たいエクスパンダーを出るネオンは、冷
ガス又は二相混合物である。それはまた、最も冷
たいターボ−エクスパンダーの出口と膨張バルブ
との間の回復力のある熱交換で、あるいはそれな
しでジユール−トムソンバルブを横切つて膨張さ
せることによつて二相混合物を形成させることが
できる。往復式エクスパンダーの使用が妨げられ
ず、また、容量、確実性及びコンパクトさがター
ボ−エクスパンダーを好ましいものにすることは
注目さるべきである。 本発明の方法の他の事項に関しては、純化され
た水素は、臨界圧188psia以上の圧力に圧縮され、
主として低圧循環ネオンガスや、また低圧循環水
素ガスによつてマルチプルーパス熱交換器で予備
冷却される。更に、水素ガスは、液体水素により
又はネオン用予備冷却剤として用いられる他の液
化ガスによつて予冷却される。 その手段は、水素の型をオルソ75%とパラ25%
の通常の組成から、液化で95%以上のパラ型組成
に触媒的に変換するためのものである。大部分が
オルソ型の水素から大部分がパラ型の水素へのこ
の変換には、液化水素を貯蔵時に液体として保持
することが必要である。 冷却の最終ステージは、85〜90モル%の液体水
素生成物を得るような入口条件と膨張効率で操作
する濃密流体エクスパンダーを利用する。この二
相混合物は、相分離器に入り、分離された液体留
分は貯蔵され、一方、飽和蒸気留分は再圧縮用の
周囲温度にするために熱回収性熱交換器に循環さ
れる。更に、供給物は液相変換器によつてパラ−
水素濃度が一層増大する。変換された液体(オル
ソからパラに)は、次にJ−Tバルブを横切つて
フラツシングすることにより一部液相に冷却さ
れ、生成物予備冷却器の冷却剤として提供され
る。 上の記載から理解されるように、本発明は、二
つの補足的要素、すなわち中間冷却剤としてのネ
オンの使用と水素用の濃密流体エクスパンダーの
使用の二要素をもつている。 中間冷却剤としてのネオンの使用は、ネオンの
熱力学的性質からして実用に適している。ネオン
は原子量20、正規の沸点−410.4〓(27.2K、−
248.9℃)及び395psia(2723kPa)の臨界圧におい
ての臨界温度−379.7〓(44.1K、−229℃)を有す
る。ネオンは各種の水素アイソトープと酸素〔−
361.8〓(54.0K、−219.1℃)〕、ふつ素〔−363.3〓
(53.2K、−219.9℃)〕又はCF2〔−370〓(49.4K、
−223.7℃)〕の三重点の間で液相で存在し得る唯
一の物質である。酸素、ふつ素はOF2の三重点蒸
気圧は0.01psia(68.9Pa)のオーダーであるから、
それらは実用的温度限界を表わすものとは考えら
れない。また、これらの物質は、化学的には残念
なことに水素と反応的である。ネオンは分子量18
をもつ水蒸気に匹適するので、適当数のステージ
で適切な圧縮比に圧縮することが事実上可能であ
る。ネオンは貴ガスの一種であり、不活性、不燃
性且つ無毒性である。 本発明の方法に用いられる濃密流体エクスパン
ダーは、その中に入つている濃密流体を排出して
減圧膨張させ、その間に仕事をする機械である。
この機械は、往復運動するピストンエンジン又は
遠心回転車を有するターボエクスパンダーのいず
れかであつて、このタイプのエクスパンダーはイ
ソトロピツクスパンダーとして知られている。他
方、弁による膨張はジユール−トムソン又はイソ
エンタルピー膨張として知られ、このタイプの膨
張では仕事はなされないのである。これらの2つ
の膨張手段の差は、次表により充分に示されてい
る。
[Industrial Field of Application] The present invention relates to a method for liquefying hydrogen. [Prior art and its problems] Several methods have been proposed for industrially liquefying low molecular weight gases. Zeitschrift fiir Die Gesamte−Industrie39,
No. 6, 14-7 (1933), K.Clusius, “Plant for the production of liquid hydrogen with neon as an intermediate acting substance” describes the use of liquid air or liquid nitrogen as a precoolant and as an intermediate acting liquid. A method of liquefying nitrogen using high pressure neon and utilizing a high pressure Linde cycle is described. The article does not teach the use of expansion engine cycles such as those used in the Claude or Brayton cycles. U.S. Pat. No. 3,180,709 discloses a method for performing complex isenthalpic expansion (J-T valve) in combination with an expander in parallel,
A method of liquefying gases such as hydrogen, helium and neon is disclosed. US Pat. No. 3,473,342 describes, among other things, a method for liquefying large quantities of neon by cooling the compressed gaseous neon with liquid nitrogen. In that method, a portion of the cooled compressed neon is expanded in a turbo-expander to provide intercooling, and the remaining neon is expanded in a Juul-Thomson (J-T) expansion to produce liquefied neon. ing. Essentially, the cycle is a simple engine cloud cooler. US Pat. No. 3,609,984 describes a method for liquefying gases such as hydrogen, helium and neon.
Fundamentally, the method achieves liquefaction by compression of the gas, but the pressure is such that the compressed gas is expanded isentropically to form essentially a single liquid phase at atmospheric pressure. isobarically cooled to a temperature above the critical temperature of the gas that can be It creates a liquid phase. U.S. Patent No. 3992167 and Hydrogen Energy
Progress IV, Vol3, Pargamon Press (1982)
The section "Hydrogen Liquefaction Using Centrifugal Compression" by C.F. Baker discloses a method for liquefying hydrogen using a second component mixed with the hydrogen to utilize centrifugal compression. Both documents teach that high molecular weight gases are required to utilize centrifugal compression. U.S. Pat. No. 4,498,313 describes a helium cooling method and apparatus that precools helium gas and includes a neon gas cooling and liquefaction circuit using a turbine type compressor. The method is also
Utilizes liquid nitrogen for additional cooling overall efficiency. SUMMARY OF THE INVENTION The present invention provides an improved hydrogen liquefaction process that compresses and cools a hydrogen stream and catalytically converts predominantly ortho hydrogen to predominantly para hydrogen. provide law. This compressed, cooled, converted hydrogen stream is then expanded into an expander, thereby partially condensing the converted hydrogen stream. The partially condensed hydrogen stream is then separated into liquid and gas phases; the gas phase is warmed to restore cooling;
It is compressed and combined with the compressed hydrogen stream prior to conversion; the liquid phase is removed as a liquid hydrogen product. Improvements in the hydrogen liquefaction process include the use of dense fluid expanders to expand the converted hydrogen stream and the use of closed loop neon refrigeration cycles to provide intercooling for the liquefaction process. It's summery. Optionally, additional cooling is provided with liquid nitrogen to cool the compressed hydrogen stream or to pre-cool the neon in a closed circuit cooling cycle. Large scale liquefaction and refrigeration plants for the two cryogens, hydrogen and helium, require large compression systems. These systems must use positive displacement type compressors and expanders, respectively, due to the low molecular weight of both cryogens, ie 2 and 4. With the increasing demand for liquid hydrogen, especially for propellant fuels, the need for large scale production of hydrogen has become necessary. Units that achieve this large scale hydrogen production may be two to three times larger than existing implementation types. In order to effectively increase these growing demands, it is desirable to have a system that can be easily moved from one location to another with minimal modification. Their desirable characteristics of scale and ease of transfer have led to the development of hydrogen liquefaction systems using centrifugal compressors and expanders. Existing hydrogen liquefiers use volumetric displacement compressors. There are three main types of compressors that have been proposed for use in large scale hydrogen and helium systems. These are (a) Roots-type lobe blowers, (b) Lysholm-type axial screw compressors, and (c) reciprocating piston compressors. Primarily, the gas being compressed is a liquid, usually
There are several types, either with or without direct contact with oil, which functions as a lubricant or a combination of lubricant and coolant. Roots-type compressors are primarily used for subatmospheric suction applications of helium. These types of compressors provide modest compression rates per stage.
1.4-2.0 and limited to about 200 psig at relatively low maximum casting pressures. Lysholm oil-filled screw compressors, commonly used in helium systems, are inherently limited to pressures in the 300 psig range. These compressors have the advantage of having a high compression ratio per stage, ie up to 6, due to the effective cooling of the large amount of oil that circulates through the machine and is exchanged for water cooling. Its compressor is less energy efficient but less prone to gas leaks. Reciprocating compressors are used primarily for many helium systems, and especially for many hydrogen systems, because the high operating pressures for hydrogen liquefaction are, for example, 1200 psig. With recent advances, the energy efficiency of reciprocating compressors has improved. Unfortunately, because the reciprocating forces are not equal, these compressors must be mounted on a large foundation. Neither large screw type nor reciprocating compressors are compact. Screw compressors are usually skid mounted.
mounted), but on the other hand, they are limited to approximately 2250hp per aircraft. Large equipment may require a complex multi-parallel machine for each stage. A solution to the above problem of size lies in the use of centrifugal compressors, but centrifugal compressors are unsuitable for low molecular weight gases such as hydrogen or helium. The present invention relates, in part, to a hydrogen liquefaction process using neon as a precoolant. For example, neon
It is circulated from a near atmospheric suction pressure of 16 psig to a suitable centrifugal or axial compressor. That pressure is
Although not lower than the 6.27 psia vapor pressure at the neon triple point, it is a higher pressure compatible with good overall thermodynamic efficiency and neon protection. The neon is cooled by expansion through one or more radial-inlet turbo-expanders. Neon is selectively precooled with other cryogens, such as boiling liquid nitrogen, nitrogen carbon dioxide, to increase efficiency. The neon exiting the coldest expander is a cold gas or a two-phase mixture. It also forms a two-phase mixture by expanding across a Juul-Thompson valve with or without resilient heat exchange between the outlet of the coldest turbo-expander and the expansion valve. be able to. It should be noted that the use of reciprocating expanders is not precluded and that capacity, reliability and compactness make turbo-expanders preferred. As for other aspects of the process of the invention, the purified hydrogen is compressed to a pressure above 188 psia critical pressure;
It is pre-cooled mainly by low-pressure circulating neon gas and also by low-pressure circulating hydrogen gas in a multi-pass heat exchanger. Additionally, the hydrogen gas is pre-cooled with liquid hydrogen or other liquefied gases used as precoolants for neon. The means is to change the hydrogen type to 75% ortho and 25% para
The purpose is to catalytically convert the normal composition of the compound into a para-type composition of more than 95% by liquefaction. This conversion from predominantly ortho hydrogen to predominantly para hydrogen requires that the liquefied hydrogen be maintained as a liquid during storage. The final stage of cooling utilizes a dense fluid expander operating at inlet conditions and expansion efficiency to obtain 85-90 mole percent liquid hydrogen product. This two-phase mixture enters a phase separator and the separated liquid fraction is stored while the saturated vapor fraction is recycled to a heat recovery heat exchanger to bring it to ambient temperature for recompression. In addition, the feed is converted to a
Hydrogen concentration increases further. The converted liquid (ortho to para) is then partially cooled to the liquid phase by flashing across a J-T valve and provided as a coolant for the product precooler. As can be seen from the above description, the present invention has two complementary elements: the use of neon as an intercoolant and the use of a dense fluid expander for hydrogen. The use of neon as an intercoolant is practical due to neon's thermodynamic properties. Neon has an atomic weight of 20 and a normal boiling point of -410.4〓 (27.2K, -
248.9°C) and a critical temperature of -379.7〓 (44.1 K, -229°C) at a critical pressure of 395 psia (2723 kPa). Neon is composed of various hydrogen isotopes and oxygen [-
361.8〓(54.0K, -219.1℃)〕, fluorine〓〓〓-363.3〓
(53.2K, −219.9℃)] or CF 2 [−370〓(49.4K,
-223.7°C)] is the only substance that can exist in a liquid phase between the triple points. For oxygen and fluorine, the triple point vapor pressure of OF 2 is on the order of 0.01 psia (68.9 Pa), so
They are not considered to represent practical temperature limits. Also, these substances are unfortunately chemically reactive with hydrogen. Neon has a molecular weight of 18
It is practically possible to compress it to an appropriate compression ratio in an appropriate number of stages. Neon is a noble gas and is inert, non-flammable and non-toxic. The dense fluid expander used in the method of the present invention is a machine that discharges the dense fluid contained therein, expands it under reduced pressure, and performs work during this time.
This machine is either a reciprocating piston engine or a turbo expander with a centrifugal rotating wheel; this type of expander is known as an isotropic expander. Valve expansion, on the other hand, is known as Joel-Thomson or isoenthalpic expansion, as no work is done in this type of expansion. The differences between these two expansion means are fully illustrated by the following table.

〔実施例〕〔Example〕

本発明の利点を示すため、また近似の従来技術
と対比するために、以下の具体例により説明す
る。 実施例 1 唯一の添付図面に描かれているような本発明方
法について、25モル%がパラ型アイソトープで75
%がオルソ型アイソトープであるガス状水素を管
10により供給し、往復式コンプレツサー12中
で650psia(4480kPa)に圧縮した。管14中の圧
縮された水素供給流は、管50において圧縮され
た循環水素流と混合され、循環水素15容量%を含
む混合水素流が管16中に形成される。管16中
のこの混合水素流は、次いで熱交換器18におい
て−290〓(−179℃)に冷却され、管20におい
て冷やされた混合水素流となり、更に熱交換器2
2において−310〓(−190℃)まで冷却される。
その更に冷やされた管24中の混合水素流は、第
一のオルソ−パラ触媒(接触)的変換器26に供
給され、そこで水素のオルソ型の一部をパラ型に
変換させる。変換器26はまた、熱交換器として
作用し、混合水素流を更に冷却させる。第一のオ
ルソ−パラ変換器からの管28中の得られた生成
物は、第二のオルソ−パラ触媒的変換器30に供
給され、更にオルソ型からパラ型に変換されると
共に更に冷却される。オルソ−パラ変換器26と
28は、全体として混合窒素流をオルソ/パラ約
64/36モル%の組成から、オルソ/パラ約5/95
モル%に変換し、その温度を−404〓(−242℃)
に低下させる。管32の変換された水素流は、次
いで濃密流体エクスパンダー中に膨張され、その
結果、90重量%以上が液体の二相水素流が形成さ
れる。管36中のこの二相水素流は分離器38に
供給される。液は、液体水素生成物として管40
から取り出される。濃密流体エクスパンダーから
90重量%の液体が得られるが、液の一部は他の理
由によつて蒸発し、最終液体収率が約85重量%に
なるように、オルソ型水素と熱のエネルギーの漏
洩に注意することは重要である。流36のガス部
分は、管42を経て変換器30及び26に循環さ
れ、いくらかでも冷却価が回収される。管46中
の暖まつた循環流は往復式コンプレツサー48で
650psia(4480kPa)に圧縮され、圧縮循環水素流
50となる。水素液化サイクルのための熱交換
は、循環水素流42、ネオン冷却閉回路及び暖め
られた液体窒素から冷却価を回収することによつ
て提供される。 ネオン冷却閉回路は、熱交換器18と22及び
変換器26と30において水素液化工程と相互作
用する。その閉回路においては、管68中の
150psia(1034kPa)の圧に圧縮されたネオン流
は、熱交換器18と22において、−310〓(−
190℃)に冷却される。管70中のこの冷却され
圧縮されたネオン流は、次に第一と第二の部分に
分割される。管72中の全ネオン流の約58容量%
の第一の部分は、変換器26において、更に−
366.5〓(−221℃)に冷却される。管74中の冷
却された第一の部分は、次いでタービン76内に
膨張され、更に冷却された−403〓(−245℃)の
温度の第一の部分が管78中に得られる。管78
のこの更に冷却された第一の部分は、変換器30
において−376.5〓(−227℃)に暖ためられ、そ
れによりその工程に冷却を提供する。管82中の
全ネオン流の約42容量%の第二の部分はタービン
84に膨張され、−376.5〓(−227℃)の温度の
冷却された第二の部分が管86に得られる。管8
6中のこの冷却された第二の部分と管80中の暖
まつた第一の部分は、管88において循環ネオン
流に混合され、変換器26で−320〓(−196℃)
に暖められて、工程に冷却が提供される。循環ネ
オン流は、熱交換器18において、更に100〓
(38℃)に暖められて、残留する冷却価が回収さ
れ、管92を通つてネオン冷却回路のコンプレツ
サー94に供給される。 付加的冷却源総効率として、液体窒素及び/又
は冷たいガス状窒素が液化工程で熱交換される。
その実施においては、管52中の液体窒素は、熱
交換器22に供給されて暖められ、その結果、少
なくとも一部気化した窒素流が管54に生ずる。
この管54中の少なくとも一部気化した窒素流
は、管56において冷たい飽和窒素ガスと混合さ
れ、管58を通つて熱交換器18に供給される。
管58の窒素流は、残存冷却価を回収するために
熱交換器18で暖められ、次いで管60を経て大
気中に排出される。 本発明の方法を用いて36トン/日の液体水素を
製造するのに必要なパワーは、液化された窒素と
ガス状窒素とを与えるのに必なパワーを算入しな
いならば12974KWである。選択された流れに着
目する工程の物質バランスを第1表に示す。
In order to illustrate the advantages of the present invention and to contrast it with similar prior art techniques, the following specific examples are provided. Example 1 For the method of the invention as depicted in the only accompanying drawing, 25 mol % of the para-isotope is 75
Gaseous hydrogen, % ortho isotope, was supplied via line 10 and compressed to 650 psia (4480 kPa) in a reciprocating compressor 12. The compressed hydrogen feed stream in tube 14 is mixed with the compressed recycled hydrogen stream in tube 50 to form a mixed hydrogen stream in tube 16 containing 15% by volume of recycled hydrogen. This mixed hydrogen stream in tube 16 is then cooled to −290° C. (−179° C.) in heat exchanger 18, resulting in a cooled mixed hydrogen stream in tube 20, and further in heat exchanger 2.
2, it is cooled to -310〓 (-190°C).
The further cooled mixed hydrogen stream in tube 24 is fed to a first ortho-para catalytic converter 26 which converts a portion of the ortho form of the hydrogen to the para form. Converter 26 also acts as a heat exchanger to further cool the mixed hydrogen stream. The resulting product in tube 28 from the first ortho-para converter is fed to a second ortho-para catalytic converter 30 where it is further converted from ortho to para and further cooled. Ru. Ortho-para converters 26 and 28 collectively convert the mixed nitrogen stream to approximately
From a composition of 64/36 mol%, ortho/para approximately 5/95
Convert to mol% and change the temperature to −404〓(−242℃)
decrease to. The converted hydrogen stream in tube 32 is then expanded into a dense fluid expander, resulting in a two-phase hydrogen stream that is greater than 90% liquid by weight. This two-phase hydrogen stream in tube 36 is fed to separator 38. The liquid is passed through tube 40 as a liquid hydrogen product.
taken from. From dense fluid expander
Pay attention to the leakage of ortho-hydrogen and thermal energy, so that 90 wt% liquid is obtained, but some of the liquid evaporates due to other reasons, and the final liquid yield is about 85 wt%. That is important. The gaseous portion of stream 36 is recycled to converters 30 and 26 via tube 42 to recover any cooling value. The warm circulating flow in the pipe 46 is circulated by a reciprocating compressor 48.
Compressed to 650 psia (4480 kPa) resulting in compressed circulating hydrogen stream 50. Heat exchange for the hydrogen liquefaction cycle is provided by recovering cooling value from the circulating hydrogen stream 42, a neon cooling closed circuit, and warmed liquid nitrogen. The neon refrigeration closed circuit interacts with the hydrogen liquefaction process in heat exchangers 18 and 22 and converters 26 and 30. In the closed circuit, the
The neon stream compressed to a pressure of 150 psia (1034 kPa) is heated to −310〓(−
190℃). This cooled, compressed neon stream in tube 70 is then split into first and second portions. Approximately 58% by volume of the total neon flow in tube 72
In the converter 26, the first portion of is further -
It is cooled to 366.5〓 (-221℃). The cooled first portion in tube 74 is then expanded into turbine 76 to obtain a further cooled first portion in tube 78 at a temperature of -403° (-245 DEG C.). tube 78
This further cooled first portion of the converter 30
at -376.5〓 (-227°C), thereby providing cooling for the process. A second portion of approximately 42% by volume of the total neon flow in tube 82 is expanded into turbine 84 and a cooled second portion at a temperature of -227 DEG C. is obtained in tube 86. tube 8
This cooled second portion in tube 6 and the warm first portion in tube 80 are mixed into the circulating neon stream in tube 88 and at -320° (-196°C) in converter 26.
to provide cooling to the process. In the heat exchanger 18, the circulating neon flow is further increased by 100
(38° C.), the remaining refrigeration value is recovered and fed through tube 92 to compressor 94 of the neon refrigeration circuit. As an additional cooling source, liquid nitrogen and/or cold gaseous nitrogen is heat exchanged in the liquefaction process.
In that implementation, liquid nitrogen in tube 52 is supplied to heat exchanger 22 and warmed, resulting in an at least partially vaporized nitrogen stream in tube 54.
The at least partially vaporized nitrogen stream in tube 54 is mixed with cold saturated nitrogen gas in tube 56 and fed to heat exchanger 18 through tube 58 .
The nitrogen stream in tube 58 is warmed in heat exchanger 18 to recover residual cooling value and then exhausted to the atmosphere via tube 60. The power required to produce 36 tons/day of liquid hydrogen using the method of the invention is 12974 KW, not including the power required to provide liquefied nitrogen and gaseous nitrogen. Table 1 shows the material balance of the process focusing on selected streams.

【表】 実施例 2 添付図面の唯一の図に描かれるような方法にお
いて、濃密流体エクスパンダーをジユール−トム
ソンバルブでおきかえて行い、その結果、ほそや
まの米国特許第4498313号明細書に記載されてい
るような結果が得られた。濃密流体エクスパンダ
ーにかえてJ−Tバルブを含んだ方法では、約76
重量%の液体生成がJ−Tバルブから得られた。
液体水素を36トン/日製造するのに必要なエネル
ギーは、14674KWである。実施例2についての
選択流に着目した物質バランスを第2表に示す。
EXAMPLE 2 In a method as depicted in the only figure of the accompanying drawings, the dense fluid expander was replaced with a Juul-Thompson valve, resulting in the process described in Hosoyama U.S. Pat. No. 4,498,313. I got a result that looks like this. In the method that includes a J-T valve instead of a dense fluid expander, approximately 76
Weight percent liquid production was obtained from the J-T valve.
The energy required to produce 36 tons/day of liquid hydrogen is 14,674KW. Table 2 shows the material balance for Example 2, focusing on the selective flow.

〔発明の効果〕〔Effect of the invention〕

本発明の実施例1と最も近い従来技術の実施例
2の結果を比較すれば、両方法は36トン/日の水
素を製造できるが、両方法の間に顕著な要求パワ
ーの差がある。本発明の方法は、実施例2に記載
の方法より約13%エネルギーが節約されることを
示している。寒剤の液化に必要なパワーの2〜3
%の減少は大きいと思われる。更に、本発明にお
ける濃密流体エクスパンダーの使用は、実施例2
の方法に必要なネオン量の10.8%の低減が得られ
る。 本発明は、好ましい具体例について記載した
が、本発明の範囲はこの具体例に限定されない。
Comparing the results of Example 1 of the present invention and Example 2 of the closest prior art, both methods can produce 36 tons/day of hydrogen, but there is a significant difference in the required power between the two methods. The method of the invention shows approximately 13% energy savings over the method described in Example 2. 2-3 of the power required to liquefy cryogen
% decrease seems to be large. Furthermore, the use of a dense fluid expander in the present invention is demonstrated in Example 2.
A 10.8% reduction in the amount of neon required for the method is obtained. Although the invention has been described in terms of preferred embodiments, the scope of the invention is not limited to these embodiments.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、本発明の方法を実施するための概
要図である。
The accompanying drawings are schematic diagrams for implementing the method of the invention.

Claims (1)

【特許請求の範囲】 1 水素流を圧縮し、冷却し、大部分がオルソ型
の水素を大部分がパラ型の水素に触媒的に変換
し、その変換され、冷却され、圧縮された水素流
のエクスパンダーに膨張させ、それにより上記変
換された水素流を部分的に凝縮させ、その部分的
凝縮水素流を液相とガス相に分離し、該ガス相を
冷却回収のために暖め、再圧縮し、冷却にさきだ
つて上記の圧縮された水素流と混合し、上記液相
を液体水素生成物として取り出す水素を液化する
方法において、上記変換され、冷却され、圧縮さ
れた水素流を膨張させるために濃密流体エクスパ
ンダーを利用すること及び該工程に少なくとも中
間冷却を与える閉回路ネオン冷却サイクルを利用
することを特徴とする改善された上記方法。 2 上記圧縮水素流を冷却するため、又は閉回路
ネオン冷却サイクルにおけるネオンもしくは液体
と冷たいガス状の窒素を予備冷却するために、更
に付加的冷却を与えることから成る特許請求の範
囲第1項記載の方法。 3 (a) ガス状水素供給流を圧縮し、冷却するこ
と; (b) 上記圧縮された水素供給流を、工程(g)からの
圧縮された循環水素流と合流させて、合一水素
供給流を形成させること; (c) 上記合一水素供給流を、暖まる循環水素流及
び閉回路ネオン冷却サイクルとの熱交換によつ
て冷却すること; (d) 上記冷却された合一水素供給流を第一及び第
二の変換器/熱交換器の二ステージにおいて、
大部分がオルソ型の水素から大部分がパラ型の
水素に変換し、一方、同時に上記合一水素供給
流を閉回路ネオン冷却サイクル及び暖まる循環
水素流との熱交換によつて冷却すること; (e) 変換された合一水素供給流を濃密流体エクス
パンダー内に膨張させ、それにより、該供給流
を部分凝縮させること; (f) 工程(e)の部分凝縮水素供給流をガス相と液相
に分離し、該ガス相を循環水素流を形成させる
のに使用し、該液相をパラー水素濃度を増加さ
せるために更に変換させて液体水素生成流とし
て除去すること; (g) 上記循環水素流の冷却を回収するために暖
め、次いで上記循環水素流を工程(b)の上記圧縮
水素供給流と合流させる前に圧縮すること; (h) 閉回路ネオン冷却流を圧縮し、予備冷却する
こと; (i) 上記閉回路ネオン冷却流を第一の部分と第二
の部分に分割すること; (j) 上記第一の部分を更に冷却し、次いでその冷
却された第一の部分をタービン中に膨張させる
こと; (k) 工程(j)からの上記第一の部分を上記第二の変
換器/熱交換器において暖め、それにより冷却
を与えること; (l) 上記第二の部分をエクスパンダー中に膨張さ
せ、その膨張した第二の部分を工程(k)からの上
記暖まつた第一の部分と合流させて、再合流さ
れた閉回路ネオン冷却流を形成させること; (m) 上記再合流された閉回路冷却流を上記第一
の変換器/熱交換器中で暖めて、それにより冷
却を与えること; (n) 上記再合流された閉回路ネオン冷却流を更
に暖めて冷却価を回収すること;及び (o) 上記再合流閉回路ネオン冷却流を、上記閉
回路ネオン冷却流として工程(h)に再循環するこ
と; から成る水素の液化方法。 4 工程(c)における上記冷却のため、及び液体窒
素並びに冷たいガス状窒素で工程(h)における予備
冷却のための冷却を更に供給することから成る特
許請求の範囲第3項記載の方法。
[Claims] 1. Compressing and cooling a hydrogen stream, catalytically converting predominantly ortho hydrogen to predominantly para hydrogen, the converted, cooled, and compressed hydrogen stream; into an expander, thereby partially condensing the converted hydrogen stream, separating the partially condensed hydrogen stream into liquid and gas phases, and warming the gas phase for cooling recovery and recondensing the converted hydrogen stream. Expanding the converted, cooled, compressed hydrogen stream in a method of liquefying hydrogen by compressing and mixing with the compressed hydrogen stream prior to cooling and removing the liquid phase as a liquid hydrogen product. An improved method as described above, characterized in that it utilizes a dense fluid expander for the process and a closed circuit neon refrigeration cycle to provide at least intermediate cooling to the process. 2. Providing additional cooling for cooling the compressed hydrogen stream or for precooling neon or liquid and cold gaseous nitrogen in a closed circuit neon cooling cycle. the method of. 3 (a) compressing and cooling the gaseous hydrogen feed stream; (b) combining the compressed hydrogen feed stream with the compressed recycled hydrogen stream from step (g) to form a combined hydrogen feed; (c) cooling said combined hydrogen feed stream by heat exchange with a warming circulating hydrogen stream and a closed loop neon cooling cycle; (d) said cooled combined hydrogen feed stream; in two stages of first and second converter/heat exchanger,
converting predominantly ortho hydrogen to predominantly para hydrogen while simultaneously cooling the combined hydrogen feed stream by a closed circuit neon cooling cycle and heat exchange with a warming circulating hydrogen stream; (e) expanding the converted combined hydrogen feed stream into a dense fluid expander, thereby partially condensing the feed stream; (f) converting the partially condensed hydrogen feed stream of step (e) into a gas phase; separating into a liquid phase, using the gas phase to form a circulating hydrogen stream, and further converting the liquid phase to increase the para-hydrogen concentration and removing it as a liquid hydrogen product stream; (g) as described above; warming to recover the cooling of the circulating hydrogen stream and then compressing said circulating hydrogen stream before combining said compressed hydrogen feed stream of step (b); (h) compressing a closed circuit neon cooling stream and preparing a reserve; (i) splitting said closed circuit neon cooling stream into a first portion and a second portion; (j) further cooling said first portion and then said cooled first portion; (k) warming said first part from step (j) in said second converter/heat exchanger, thereby providing cooling; (l) said second part from step (j); expanding the portion into an expander and combining the expanded second portion with the warm first portion from step (k) to form a recombined closed circuit neon cooling stream; (m) warming said recombined closed circuit neon cooling stream in said first converter/heat exchanger thereby providing cooling; (n) further heating said recombined closed circuit neon cooling stream; and (o) recycling said recombined closed circuit neon cooling stream to step (h) as said closed circuit neon cooling stream. 4. The method of claim 3, further comprising providing cooling for said cooling in step (c) and for precooling in step (h) with liquid nitrogen and cold gaseous nitrogen.
JP62331858A 1987-01-07 1987-12-26 Method of liquefying hydrogen by using neon as precooling refrigerant and dense fluid expander Granted JPS63169468A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US1127 1987-01-07
US07/001,127 US4765813A (en) 1987-01-07 1987-01-07 Hydrogen liquefaction using a dense fluid expander and neon as a precoolant refrigerant
EP88107846A EP0342250B1 (en) 1988-05-16 1988-05-16 Hydrogen liquefaction using a dense fluid expander and neon as a precoolant refrigerant

Publications (2)

Publication Number Publication Date
JPS63169468A JPS63169468A (en) 1988-07-13
JPH0319471B2 true JPH0319471B2 (en) 1991-03-15

Family

ID=8198979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62331858A Granted JPS63169468A (en) 1987-01-07 1987-12-26 Method of liquefying hydrogen by using neon as precooling refrigerant and dense fluid expander

Country Status (5)

Country Link
US (1) US4765813A (en)
EP (1) EP0342250B1 (en)
JP (1) JPS63169468A (en)
CA (1) CA1298775C (en)
DE (1) DE3877351T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159653A (en) * 1994-12-02 1996-06-21 Nippon Sanso Kk Method and device for manufacturing liquid hydrogen

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193349A (en) * 1991-08-05 1993-03-16 Chicago Bridge & Iron Technical Services Company Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures
DE4403352B4 (en) * 1994-02-03 2004-09-09 Linde Ag Method and device for determining the para content of a hydrogen gas stream
DE10106483A1 (en) * 2001-02-13 2002-08-14 Linde Ag Method and device for liquefying hydrogen
US6694774B1 (en) * 2003-02-04 2004-02-24 Praxair Technology, Inc. Gas liquefaction method using natural gas and mixed gas refrigeration
DE10309134A1 (en) * 2003-02-28 2004-09-16 Frank Russmann Gas liquefaction process
US7127914B2 (en) * 2003-09-17 2006-10-31 Air Products And Chemicals, Inc. Hybrid gas liquefaction cycle with multiple expanders
GB0406615D0 (en) * 2004-03-24 2004-04-28 Air Prod & Chem Process and apparatus for liquefying hydrogen
US7278280B1 (en) * 2005-03-10 2007-10-09 Jefferson Science Associates, Llc Helium process cycle
US7409834B1 (en) * 2005-03-10 2008-08-12 Jefferson Science Associates Llc Helium process cycle
DE102007017212A1 (en) * 2007-04-12 2008-10-16 Forschungszentrum Jülich GmbH Method and device for cooling a gas
US8042357B2 (en) * 2009-04-23 2011-10-25 Praxair Technology, Inc. Hydrogen liquefaction method and liquefier
DE102011013345A1 (en) * 2011-03-08 2012-09-13 Linde Aktiengesellschaft refrigeration plant
EP3163236A1 (en) 2015-10-27 2017-05-03 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
EP3162871A1 (en) 2015-10-27 2017-05-03 Linde Aktiengesellschaft Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
EP3163235A1 (en) 2015-10-27 2017-05-03 Linde Aktiengesellschaft Novel cascade process for cooling and liquefying hydrogen in large-scale
US11815309B2 (en) 2018-11-07 2023-11-14 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Integration of hydrogen liquefaction with gas processing units
US20210131726A1 (en) * 2019-10-31 2021-05-06 Hylium Industries, Inc. Equipment for manufacturing liquid hydrogen
US20210131725A1 (en) * 2019-10-31 2021-05-06 Hylium Industries, Inc. Hydrogen liquefaction system
US11391511B1 (en) 2021-01-10 2022-07-19 JTurbo Engineering & Technology, LLC Methods and systems for hydrogen liquefaction
WO2022172415A1 (en) * 2021-02-12 2022-08-18 日揮グローバル株式会社 Liquefied hydrogen production device
CN113701448A (en) * 2021-07-05 2021-11-26 中国科学院理化技术研究所 Hydrogen liquefaction system and hydrogen liquefaction device based on multistage supersonic two-phase expander

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3098732A (en) * 1959-10-19 1963-07-23 Air Reduction Liquefaction and purification of low temperature gases
US3092461A (en) * 1960-01-20 1963-06-04 Air Prod & Chem Process for producing liquid hydrogen
US3180709A (en) * 1961-06-29 1965-04-27 Union Carbide Corp Process for liquefaction of lowboiling gases
US3389555A (en) * 1962-01-22 1968-06-25 Marquardt Corp Hydrogen conversion and restorage work cycle
CH527398A (en) * 1966-04-01 1972-08-31 Nautchno Izsledovatelski Sekto Liquefaction of neon with turboexpander
CH501321A (en) * 1968-12-19 1970-12-31 Sulzer Ag Method for cooling a load consisting of a partially stabilized superconducting magnet
US3609984A (en) * 1969-04-25 1971-10-05 Leo Garwin Process for producing liquefied hydrogen,helium and neon
US3613387A (en) * 1969-06-09 1971-10-19 Cryogenic Technology Inc Method and apparatus for continuously supplying refrigeration below 4.2 degree k.
US3992167A (en) * 1975-04-02 1976-11-16 Union Carbide Corporation Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
US4189930A (en) * 1977-06-17 1980-02-26 Antipenkov Boris A Method of obtaining refrigeration at cryogenic level
US4242875A (en) * 1978-05-10 1981-01-06 C F Braun & Co. Hydrogen cryogenic purification system
US4267701A (en) * 1979-11-09 1981-05-19 Helix Technology Corporation Helium liquefaction plant
US4346563A (en) * 1981-05-15 1982-08-31 Cvi Incorporated Super critical helium refrigeration process and apparatus
JPS59122868A (en) * 1982-12-27 1984-07-16 高エネルギ−物理学研究所長 Cascade-turbo helium refrigerating liquefier utilizing neon gas
US4456459A (en) * 1983-01-07 1984-06-26 Mobil Oil Corporation Arrangement and method for the production of liquid natural gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159653A (en) * 1994-12-02 1996-06-21 Nippon Sanso Kk Method and device for manufacturing liquid hydrogen

Also Published As

Publication number Publication date
US4765813A (en) 1988-08-23
EP0342250A1 (en) 1989-11-23
CA1298775C (en) 1992-04-14
DE3877351D1 (en) 1993-02-18
DE3877351T2 (en) 1993-05-06
JPS63169468A (en) 1988-07-13
EP0342250B1 (en) 1993-01-07

Similar Documents

Publication Publication Date Title
JPH0319471B2 (en)
RU2718378C1 (en) Large-scale liquefaction of hydrogen through high-pressure hydrogen refrigeration cycle combined with new pre-cooling with single mixed refrigerant
RU2753342C2 (en) Low-temperature mixed refrigerant for large-scale pre-cooling of hydrogen
US3992167A (en) Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
US5836173A (en) System for producing cryogenic liquid
CN100410609C (en) Hybrid gas liquefaction cycle with multiple expanders
EP3368631B1 (en) Method using hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
JPH0663698B2 (en) Liquid cryogen manufacturing method
KR20010040029A (en) Hybrid cycle for the production of liquefied natural gas
JP2020514673A (en) Equipment and methods for liquefying natural gas
EP3163235A1 (en) Novel cascade process for cooling and liquefying hydrogen in large-scale
US4638638A (en) Refrigeration method and apparatus
EP3561421B1 (en) Improved method and system for cooling a hydrocarbon stream using a gas phase refrigerant
Quack et al. Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen
JP2024501105A (en) Liquefied hydrogen production process
HT et al. Search for the Best Processes to Liquefy Hydrogen in Very Large Plants
JPH0627619B2 (en) Liquefaction method of natural gas