CH527398A - Liquefaction of neon with turboexpander - Google Patents

Liquefaction of neon with turboexpander

Info

Publication number
CH527398A
CH527398A CH242467A CH242467A CH527398A CH 527398 A CH527398 A CH 527398A CH 242467 A CH242467 A CH 242467A CH 242467 A CH242467 A CH 242467A CH 527398 A CH527398 A CH 527398A
Authority
CH
Switzerland
Prior art keywords
neon
cooled
liquefaction
movable wheel
expanded
Prior art date
Application number
CH242467A
Other languages
French (fr)
Inventor
Iliev Leyarovski Evgueni
Spassov Nanev Zvetan
Original Assignee
Nautchno Izsledovatelski Sekto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nautchno Izsledovatelski Sekto filed Critical Nautchno Izsledovatelski Sekto
Publication of CH527398A publication Critical patent/CH527398A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/02Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being an unheated pressurised gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/005Adaptations for refrigeration plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/32Neon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Neon is liquified under medium pressure by cooling it through indirect heat exchange with liquid nitrogen after which it is divided into a minor portion which is turboexpanded and used as the basic cold source to cool the remainder of the medium pressure neon, which latter is finally throttle expanded to effect liquefaction. The use of a turbo expander for the liquefaction of neon is more advantageous than the use of hydrogen and helium, as in the first case the sound velocity is small, which offers the possibility to realise the cycle with isentropic expansion of the gas without the known shortcoming inherent to ram expansion mechanics.

Description

  

  
 



  Procédé de liquéfaction de néon, installation pour sa mise en oeuvre
 et application du procédé
 Le présent brevet a pour objets un procédé de liquéfaction de néon, une installation pour sa mise en oeuvre et une application du procédé au refroidissement d'un solénoïde. Le procédé permet la préparation du néon liquide en grande quantité, dans un cycle hautement efficace, avec une dépense d'énergie relativement petite et avec un haut coefficient de liquéfaction.



   On connaît deux méthodes de liquéfaction du néon.



   L'une de ces méthodes consiste en un cycle à simple étranglement, après réfrigération préalable dans de l'azote liquide. A cause du coefficient d'efficacité très bas du cycle, pour obtenir un coefficient de liquéfaction admissible (0,15 à 0,18), il est nécessaire de soumettre le néon à une très haute pression (180 à 220 atm.), ce qui exige une grosse dépense d'énergie et un appareillage lourd et coûteux.



   La deuxième méthode consiste à effectuer la condensation du néon en le faisant passer par une cuve contenant de l'hydrogène liquide. Cette méthode est évidemment très simple et efficace, mais elle exige tout un système de liquéfaction de l'hydrogène, avec tous les risques et dépenses qui l'accompagnent. Etant donné que pour la liquéfaction d'un litre de néon il est nécessaire d'évaporer environ 4 litres d'hydrogène, le procédé est réalisable (quand il s'agit de grandes quantités de néon) seulement en des endroits où existent de grandes sources d'hydrogène liquide (p. ex. dans les environs des centres de lancement de fusées).



   La présente invention a pour but d'éliminer les défauts des deux méthodes précitées.



   Le procédé selon l'invention est caractérisé en ce qu'on comprime et refroidit du néon gazeux, on détend une première partie du néon refroidi et comprimé, en l'étranglant et en le faisant effectuer un travail, on refroidit une seconde partie du néon refroidi et comprimé avec la première partie de néon détendu et refroidi, et on refroidit et détend la seconde partie du néon refroidi et comprimé pour en liquéfier une partie au moins.



   En utilisant un cycle à détente isoentropique du néon, après réfrigération préalable à l'aide d'azote liquide, on a la possibilité d'abaisser la pression du néon à environ 30 atm. La dépense d'énergie, proportionnelle au rapport des pressions, est abaissée d'environ 6 fois, en comparaison avec le cycle à simple étranglement, ce qui est d'une importance capitale, quand il s'agit de préparer des grosses quantités de néon. L'utilisation d'hydrogène liquide, très dangereux à la manipulation et très coûteux, n'est pas nécessaire.



   Le dessin annexé illustre et représente, à titre d'exemple, une forme d'exécution de l'installation pour la mise en oeuvre du procédé selon l'invention.



   La fig. 1 représente un schéma du cycle de liquéfaction de néon.



   La fig. 2 représente une coupe verticale de l'installation de liquéfaction de néon, et
 la fig. 3 représente une coupe verticale de cette installation.



   A la fig. 1 du néon purifié et emmagasiné dans un gazomètre 1 est aspiré par un compresseur 2 et est envoyé, sous une haute pression, dans un échangeur de chaleur 11, d'où, refroidi par du néon à basse pression (b.p.) venant à contre-courant, il passe par un échangeur de chaleur d'une cuve à azote 12 où il est refroidi jusqu'à 780 K. Après passage par un échangeur de chaleur 13, une partie du néon haute pression (h.p.) passe successivement par des échangeurs de chaleur 14 et 15, tandis que l'autre partie, après avoir été étranglée dans un étrangleur 4 à une pression intermédiaire, est détendue dans un turbodétendeur 3 à environ 1 atm. et  est ajouté au flux à contre-courant de néon b.p. dans la partie inférieure de l'échangeur de chaleur 14.

  Le néon h.p., définitivement refroidi dans les échangeurs de chaleur 14 et 15 à la température optimale d'étranglement, est étranglé dans un étrangleur principal 5, où une partie du néon est liquéfiée. Le liquide obtenu (un mélange avec des vapeurs saturées) est employé comme agent réfrigérant, par exemple pour refroidir la bobine d'un puissant solénoïde 6 dans une cuve à néon 10, et les vapeurs obtenues, après passage par l'échangeur de chaleur 15, sont ajoutées au flux à contre-courant de néon b.p.



  venant du turbodétendeur, et refroidissent successivement le néon h.p. dans les échangeurs de chaleur 15, 14, 13 et 11, après quoi, en passant par le gazomètre 1 et le compresseur 2, parcourent à nouveau le cycle. On prévoit aussi la possibilité de soutirer du liquéfacteur du néon liquide dans des récipients a Dewar  . Dans ce cas, la cuve à azote fonctionne seulement pendant la période de mise en marche. La puissance développée par le turbodétendeur 3 est utilisée par un turbocompresseur 7, travaillant sur le même arbre à des   températures   d'azote     comprises entre 630 K et 900 K que l'air liquide et ses composants peuvent atteindre. L'énergie résultante est transformée en chaleur dans une cuve à azote 8 à l'aide d'un échangeur de chaleur 16, après quoi, le gaz est recueilli dans un collecteur 9 et de là il est aspiré de nouveau par le compresseur 7.



   L'installation de liquéfaction   (fig.    2) comprend un groupe échangeur de chaleur et un tube central porteur 46 qui sont placés dans un récipient   a      Dewar     19 muni d'une isolation à vide poussée. La partie sous vide du récipient   Dewar  est raccordée à une chemise à vide 33, dans laquelle se trouve une cuve 35 avec de l'azote liquide. Cette chemise est raccordée par un tube 24 à la chemise à vide du turbodétendeur 27 de façon que l'isolation des trois parties séparées du liquéfacteur soit commune. Des écrans à azote 41 et 36 servent d'isolants contre le rayonnement thermique.



  L'écran 41 est relié à une cuve principale d'azote 21 du liquéfacteur et l'écran 36 à une cuve à azote séparée 37. L'énergie obtenue sur l'arbre du turbodétendeur est absorbée par un dispositif à serpentin 29 et un collecteur 28 dans une cuve à azote 51, monté avec le groupe turbodétendeur mais isolé de celui-ci, de façon que les vapeurs d'azote soient librement évacuées dans l'atmosphère. La construction tout entière est supportée par le tube central 46 fixé par soudure à un couvercle supérieur 17. Le récipient   Dewar   19 est raccordé à celui-ci par une bride, tandis que la chemise à vide 33 est rattachée de la même manière (par bride) à un couvercle inférieur 30.



   Le turbodétendeur 3 est constitué par une turbine centripète à haut rendement, ce qui assure une forte détente en un seul étage. Etant donné que cette turbine demande un très haut régime de rotation (au-dessus de 100 000 tours/minute), la turbine est munie de paliers aérostatiques, l'agent sustentateur étant toujours du néon qui est soutiré du flux principal et refroidi à une température appropriée. Le turbodétendeur   (fig.    3) comprend une buse 56 avec couvercle 57, une roue mobile 70 avec diffuseur 61 incorporé dans un raccord 60 à joint labyrinthe 59. La roue mobile 70 est montée sur un arbre 62 à joint à labyrinthe 63. Sur le même arbre est montée aussi la roue mobile d'un compresseur 69.

  Le montage vertical de la turbine écarte le danger d'affaissement, surtout dans la partie en porte-àfaux entre des paliers 65 et la roue 70, ce qui serait fatal à ce haut régime de rotation. Le poids propre du rotor, ainsi que la force réactionnelle du jet libre, sont absorbés par un palier de butée 68. Le néon est introduit sous pression par un raccord 54 dans le boîtier du palier où il est étranglé dans un espace de travail du palier et sort par un raccord 67. Les paliers radiaux 65 fonctionnent de la même manière, le néon entrant sous pression par des raccords d'entrée 55 dans des chambres annulaires se trouvant entre eux et un corps 64 et sortant par un raccord de sortie 66.



   L'installation de liquéfaction du néon fonctionne de la manière suivante:
 Venant du compresseur, le néon h.p. accède à un collecteur 18 (fig. 2, tube en cuivre en forme d'anneau), d'où il est réparti dans les tubes d'un échangeur de chaleur   aHempson           à deux sections, l'une à néon 47, l'autre à azote 45.

  Refroidi par des vapeurs d'azote et du néon b.p., qui se déplacent en montant dans l'espace entre les tubes de deux sections de l'échangeur de chaleur, le néon h.p. accède, par des collecteurs 20 et 44, à un serpentin 43 de la cuve à azote 21 (récipient conique, dans lequel bout de l'azote sous une pression voisine de la pression atmosphérique) où il est refroidi jusqu'à environ   77-780 K.    Sortant d'un collecteur 22, le néon h.p. est réparti dans les tubes d'un échangeur de chaleur 42 (également du type        Hempson    ,    le contrecourant b.p. s'écoulant transversalement par rapport aux tubes) et après avoir passé dans un collecteur 23 se divise en deux flux:

   une partie de celui-ci, après détente dans une vanne d'étranglement 25 jusqu'à une pression intermédiaire, est envoyé sur la roue mobile d'un turbodétendeur 27, d'où, détendu à environ 2 atm. et refroidi, il est ajouté par un tube en cuivre 49, placé dans le tube central 46 en acier   inoxydable,    au contre-courant de néon b.p. dans l'espace entre les tubes d'un échangeur de chaleur 39; le reste du néon h.p. passant par un collecteur 40, accède aux tubes du même échangeur de chaleur 39, et passe par un collecteur 31, dans l'échangeur de chaleur de la zone froide d'un liquéfacteur 32.



  La dernière source de froid du liquéfacteur est un étrangleur principal 38, dans lequel le néon   hp.    est détendu jusqu'à 2 atm. et où une partie de celui-ci est liquéfiée. Le liquide est réparti entre le bobinage d'un aimant 34 dans la cuve à néon 35, tandis que les vapeurs formées pendant l'évaporation retournent dans l'espace entre les tubes du système d'échangeurs de chaleur, sous forme de contre-courant de néon b.p. Le cas échéant, on peut soutirer de la cuve du néon liquide par un tube central 48 et l'envoyer dans des récipients     Dewar  .   

 

   Le turbodétendeur fonctionne de la manière suivante: Le néon à haute pression, par exemple à 1015 atm., qui accède dans une chambre de distribution 58 est accéléré par la buse 56; le gaz accéléré (par une partie de la chute thermique dans la buse) est détendu jusqu'à environ 1 atm. sur les ailettes de la roue mobile 70 et quitte le turbodétendeur par le diffuseur 61 et le raccord de sortie 60. Les joints à labyrinthe 59 et 63 permettent d'utiliser entièrement la chute de pression après la buse, uniquement par la roue mobile. 



  
 



  Neon liquefaction process, installation for its implementation
 and application of the process
 The present patent relates to a neon liquefaction process, an installation for its implementation and an application of the process to the cooling of a solenoid. The process enables the preparation of liquid neon in large quantities, in a highly efficient cycle, with relatively low energy expenditure and with a high liquefaction coefficient.



   There are two known methods of liquefying neon.



   One of these methods is a single throttle cycle, after pre-refrigeration in liquid nitrogen. Because of the very low coefficient of efficiency of the cycle, to obtain an admissible coefficient of liquefaction (0.15 to 0.18), it is necessary to subject the neon to a very high pressure (180 to 220 atm.), This which requires a large expenditure of energy and heavy and expensive equipment.



   The second method consists of condensing the neon by passing it through a tank containing liquid hydrogen. This method is obviously very simple and efficient, but it requires a whole system of liquefying the hydrogen, with all the risks and expenses that accompany it. Since for the liquefaction of one liter of neon it is necessary to evaporate about 4 liters of hydrogen, the process is feasible (when it comes to large quantities of neon) only in places where there are large sources. liquid hydrogen (eg in the vicinity of rocket launch centers).



   The object of the present invention is to eliminate the defects of the two abovementioned methods.



   The method according to the invention is characterized in that one compresses and cools gaseous neon, one expands a first part of the cooled and compressed neon, by throttling it and by making it perform a work, one cools a second part of the neon cooled and compressed with the first part of expanded and cooled neon, and the second part of the cooled and compressed neon is cooled and expanded to liquefy at least part of it.



   By using an isoentropic expansion cycle of the neon, after prior refrigeration with liquid nitrogen, it is possible to lower the pressure of the neon to about 30 atm. The energy expenditure, proportional to the pressure ratio, is lowered by about 6 times, in comparison with the single throttle cycle, which is of utmost importance when it comes to preparing large quantities of neon . The use of liquid hydrogen, very dangerous to handle and very expensive, is not necessary.



   The appended drawing illustrates and represents, by way of example, one embodiment of the installation for implementing the method according to the invention.



   Fig. 1 represents a diagram of the neon liquefaction cycle.



   Fig. 2 shows a vertical section of the neon liquefaction plant, and
 fig. 3 shows a vertical section of this installation.



   In fig. 1 of the neon purified and stored in a gasometer 1 is sucked by a compressor 2 and is sent, under high pressure, to a heat exchanger 11, from where, cooled by low pressure neon (bp) coming against current, it passes through a heat exchanger of a nitrogen tank 12 where it is cooled to 780 K. After passing through a heat exchanger 13, part of the high pressure neon (hp) passes successively through heat exchangers. heat 14 and 15, while the other part, after being throttled in a throttle 4 at an intermediate pressure, is expanded in a turbo expander 3 to about 1 atm. and is added to the countercurrent flow of neon b.p. in the lower part of the heat exchanger 14.

  The h.p. neon, permanently cooled in the heat exchangers 14 and 15 to the optimum throttling temperature, is throttled in a main throttle 5, where part of the neon is liquefied. The liquid obtained (a mixture with saturated vapors) is used as a refrigerant, for example to cool the coil of a powerful solenoid 6 in a neon tank 10, and the vapors obtained, after passing through the heat exchanger 15 , are added to the counterflow of neon bp



  coming from the turboexpander, and successively cool the h.p. in the heat exchangers 15, 14, 13 and 11, after which, passing through the gasometer 1 and the compressor 2, go through the cycle again. Provision is also made for the possibility of drawing liquid neon from the liquefier into Dewar containers. In this case, the nitrogen tank operates only during the start-up period. The power developed by the turbocharging valve 3 is used by a turbocharger 7, working on the same shaft at nitrogen temperatures between 630 K and 900 K that liquid air and its components can reach. The resulting energy is converted into heat in a nitrogen tank 8 using a heat exchanger 16, after which the gas is collected in a collector 9 and from there it is sucked again by the compressor 7.



   The liquefaction plant (Fig. 2) comprises a heat exchanger unit and a central carrier tube 46 which are placed in a Dewar vessel 19 provided with high vacuum insulation. The vacuum part of the Dewar vessel is connected to a vacuum jacket 33, in which there is a vessel 35 with liquid nitrogen. This jacket is connected by a tube 24 to the vacuum jacket of the turbo-expander 27 so that the insulation of the three separate parts of the liquefier is common. Nitrogen screens 41 and 36 serve as insulators against thermal radiation.



  The screen 41 is connected to a main nitrogen tank 21 of the liquefier and the screen 36 to a separate nitrogen tank 37. The energy obtained on the shaft of the turbo-expander is absorbed by a coil device 29 and a manifold. 28 in a nitrogen tank 51, mounted with the turbo-expander group but isolated from it, so that the nitrogen vapors are freely discharged into the atmosphere. The entire construction is supported by the central tube 46 attached by welding to an upper cover 17. The Dewar 19 is connected thereto by a flange, while the vacuum jacket 33 is attached in the same way (by flange ) to a bottom cover 30.



   The turboexpander 3 is made up of a high efficiency centripetal turbine, which ensures high expansion in a single stage. Since this turbine requires a very high speed of rotation (above 100,000 revolutions / minute), the turbine is fitted with aerostatic bearings, the lifting agent always being neon which is withdrawn from the main flow and cooled to a appropriate temperature. The turboexpander (fig. 3) comprises a nozzle 56 with cover 57, a movable impeller 70 with diffuser 61 incorporated in a fitting 60 with labyrinth seal 59. The movable impeller 70 is mounted on a shaft 62 with labyrinth seal 63. On the same shaft is also mounted the movable wheel of a compressor 69.

  The vertical mounting of the turbine eliminates the danger of sagging, especially in the cantilevered part between the bearings 65 and the wheel 70, which would be fatal at this high speed of rotation. The own weight of the rotor, as well as the reaction force of the free jet, is absorbed by a thrust bearing 68. The neon is introduced under pressure through a fitting 54 into the bearing housing where it is throttled into a working space of the bearing. and exits through a fitting 67. The radial bearings 65 operate in the same way, the neon entering under pressure through inlet fittings 55 into annular chambers located between them and a body 64 and exiting through an outlet fitting 66.



   The neon liquefaction plant operates as follows:
 Coming from the compressor, the h.p. accesses a collector 18 (fig. 2, ring-shaped copper tube), from where it is distributed in the tubes of a two-section aHempson heat exchanger, one with neon 47, the other nitrogen 45.

  Cooled by nitrogen vapors and b.p. neon, which move upward in the space between the tubes of two sections of the heat exchanger, the h.p. accesses, through collectors 20 and 44, to a coil 43 of the nitrogen tank 21 (conical vessel, in which nitrogen boils at a pressure close to atmospheric pressure) where it is cooled to approximately 77-780 K. Coming out of a collector 22, the neon hp is distributed in the tubes of a heat exchanger 42 (also of the Hempson type, the countercurrent b.p. flowing transversely with respect to the tubes) and after having passed through a manifold 23 is divided into two flows:

   a part of it, after expansion in a throttle valve 25 to an intermediate pressure, is sent to the movable wheel of a turbosexpander 27, from where, expanded to about 2 atm. and cooled, it is added by a copper tube 49, placed in the central stainless steel tube 46, against the flow of neon b.p. in the space between the tubes of a heat exchanger 39; the rest of the neon h.p. passing through a manifold 40, accesses the tubes of the same heat exchanger 39, and passes through a manifold 31, in the heat exchanger of the cold zone of a liquefier 32.



  The last source of cold for the liquefier is a main choke 38, in which neon hp. is relaxed up to 2 atm. and where part of it is liquefied. The liquid is distributed between the coil of a magnet 34 in the neon tank 35, while the vapors formed during the evaporation return to the space between the tubes of the heat exchanger system, as a counter current. neon bp If necessary, liquid neon can be withdrawn from the tank via a central tube 48 and sent to Dewar containers.

 

   The turbo-expander operates as follows: The neon at high pressure, for example at 1015 atm., Which enters a distribution chamber 58 is accelerated by the nozzle 56; the accelerated gas (by part of the thermal drop in the nozzle) is expanded to about 1 atm. on the fins of the impeller 70 and leaves the turboexpander through the diffuser 61 and the outlet fitting 60. The labyrinth seals 59 and 63 allow full use of the pressure drop after the nozzle, only through the impeller.

 

Claims (1)

REVENDICATIONS 1. Procédé de liquéfaction de néon, caractérisé en ce qu'on comprime et refroidit du néon gazeux, on détend une première partie du néon refroidi et comprimé, en l'étranglant et en le faisant exécuter un travail, on refroidit une seconde partie du néon refroidi et com primé avec la première partie de néon détendu et refroidi, et on refroidit et détend la seconde partie du néon refroidi et comprimé pour en liquéfier une partie au moins. 1. Neon liquefaction process, characterized in that one compresses and cools gaseous neon, one expands a first part of the cooled and compressed neon, by throttling it and by making it perform a work, one cools a second part of the neon. cooled and compressed neon with the first part of expanded and cooled neon, and the second part of the cooled and compressed neon is cooled and expanded to liquefy at least part of it. 11. Installation pour la liquéfaction de néon selon la revendication I, caractérisé en ce qu'elle comprend un turbodétendeur dont une turbine radiale centripète à haut rendement utilise des paliers aérostatiques. 11. Installation for the liquefaction of neon according to claim I, characterized in that it comprises a turbo expander, a high efficiency centripetal radial turbine uses aerostatic bearings. III. Application du procédé selon la revendication I au refroidissement d'un solénoïde. III. Application of the method according to claim I to the cooling of a solenoid. SOUS-REVENDICATIONS 1. Installation selon la revendication II, caractérisée en ce que la turbine comprend une roue mobile (70), montée à une extrémité d'un arbre (62) sur l'extrémité opposée duquel est montée la roue mobile d'un compresseur (69), une buse (56) disposée latéralement à la roue mobile et un diffuseur (60) disposé axialement par rapport à la roue mobile. SUB-CLAIMS 1. Installation according to claim II, characterized in that the turbine comprises a movable wheel (70) mounted at one end of a shaft (62) on the opposite end of which is mounted the movable wheel of a compressor (69 ), a nozzle (56) disposed laterally to the movable wheel and a diffuser (60) disposed axially relative to the movable wheel. 2. Installation selon la revendication II et la sousrevendication 1, caractérisée en ce que les ouvertures d'aspiration et de refoulement du compresseur sont raccordées à un collecteur (9) par les deux bouts d'un tube en forme de serpentin (29) qui est plongé dans une cuve à azote (8). 2. Installation according to claim II and subclaim 1, characterized in that the suction and discharge openings of the compressor are connected to a manifold (9) by the two ends of a tube in the form of a coil (29) which is immersed in a nitrogen tank (8).
CH242467A 1966-04-01 1967-02-20 Liquefaction of neon with turboexpander CH527398A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BG44466 1966-04-01

Publications (1)

Publication Number Publication Date
CH527398A true CH527398A (en) 1972-08-31

Family

ID=3897197

Family Applications (1)

Application Number Title Priority Date Filing Date
CH242467A CH527398A (en) 1966-04-01 1967-02-20 Liquefaction of neon with turboexpander

Country Status (8)

Country Link
US (1) US3473342A (en)
JP (1) JPS4820099B1 (en)
CH (1) CH527398A (en)
DE (1) DE1551614A1 (en)
FR (1) FR1513967A (en)
GB (1) GB1186432A (en)
NL (1) NL6704364A (en)
SE (1) SE331106B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361711A (en) * 2020-10-30 2021-02-12 北京航天试验技术研究所 Hydrogen liquefaction equipment provided with three turboexpander units connected in series

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2151806B2 (en) * 1970-10-19 1976-05-13 Cryogenic Technology, Inc., WaItham, Mass. (V.St.A.) DEVICE FOR LIQUIDIFYING HELIUM
GB1372602A (en) * 1971-02-25 1974-10-30 Physicheski Inst S Aneb Pri Ba Separation of gases
NL7311471A (en) * 1973-08-21 1975-02-25 Philips Nv DEVICE FOR LIQUIDIZATION OF VERY LOW TEMPERATURE CONDENSING GASES.
US4765813A (en) * 1987-01-07 1988-08-23 Air Products And Chemicals, Inc. Hydrogen liquefaction using a dense fluid expander and neon as a precoolant refrigerant
US5647218A (en) * 1995-05-16 1997-07-15 Kabushiki Kaisha Toshiba Cooling system having plural cooling stages in which refrigerate-filled chamber type refrigerators are used
US6591632B1 (en) * 2002-11-19 2003-07-15 Praxair Technology, Inc. Cryogenic liquefier/chiller
DE102007017212A1 (en) * 2007-04-12 2008-10-16 Forschungszentrum Jülich GmbH Method and device for cooling a gas
DE102012104416A1 (en) * 2012-03-01 2013-09-05 Institut Für Luft- Und Kältetechnik Gemeinnützige Gmbh Method and arrangement for storing energy
CN113701448A (en) * 2021-07-05 2021-11-26 中国科学院理化技术研究所 Hydrogen liquefaction system and hydrogen liquefaction device based on multistage supersonic two-phase expander

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909903A (en) * 1956-11-07 1959-10-27 Little Inc A Liquefaction of low-boiling gases
DE1047805B (en) * 1957-06-07 1958-12-31 Sulzer Ag Expansion turbine with a coupled turbo compressor for cooling gaseous medium
US2932173A (en) * 1957-12-13 1960-04-12 Beech Aircraft Corp Method of liquefying helium
US3098732A (en) * 1959-10-19 1963-07-23 Air Reduction Liquefaction and purification of low temperature gases
US3144316A (en) * 1960-05-31 1964-08-11 Union Carbide Corp Process and apparatus for liquefying low-boiling gases
US3180709A (en) * 1961-06-29 1965-04-27 Union Carbide Corp Process for liquefaction of lowboiling gases
US3194025A (en) * 1963-01-14 1965-07-13 Phillips Petroleum Co Gas liquefactions by multiple expansion refrigeration
US3250079A (en) * 1965-03-15 1966-05-10 Little Inc A Cryogenic liquefying-refrigerating method and apparatus
US3358460A (en) * 1965-10-08 1967-12-19 Air Reduction Nitrogen liquefaction with plural work expansion of feed as refrigerant
US3377811A (en) * 1965-12-28 1968-04-16 Air Prod & Chem Liquefaction process employing expanded feed as refrigerant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361711A (en) * 2020-10-30 2021-02-12 北京航天试验技术研究所 Hydrogen liquefaction equipment provided with three turboexpander units connected in series

Also Published As

Publication number Publication date
JPS4820099B1 (en) 1973-06-19
GB1186432A (en) 1970-04-02
FR1513967A (en) 1968-02-16
US3473342A (en) 1969-10-21
SE331106B (en) 1970-12-14
DE1551614A1 (en) 1970-03-05
NL6704364A (en) 1967-10-02

Similar Documents

Publication Publication Date Title
US4242885A (en) Apparatus for a refrigeration circuit
EP0024962B1 (en) Cryogenic air separation process with production of high-pressure oxygen
EP0125980B1 (en) Process and apparatus for the cooling and liquefaction of at least a low boiling point gas, such as natural gas
CH527398A (en) Liquefaction of neon with turboexpander
JP2018505374A (en) System and method for liquefying natural gas
FR2714722A1 (en) Method and apparatus for liquefying a natural gas
FR2841330A1 (en) NATURAL GAS LIQUEFACTION WITH NATURAL GAS RECYCLING
KR20180087185A (en) Compression train including one centrifugal compressor and lng plant
US8215120B2 (en) Process for cooling a storage container
CN112225173A (en) Visual experimental apparatus of small-size hydrogen thick liquid preparation
PE20040921A1 (en) PROVISION OF LIQUEFACTION OF NON-VOLATILE NATURAL GAS
WO2009153427A2 (en) Method for liquefying natural gas with pre-cooling of the coolant mixture
FR2723183A1 (en) Process for the liquefaction of hydrogen
EP1446620B1 (en) Method and installation for helium production
Croft Cryogenic laboratory equipment
US6886344B2 (en) Method for the operation of a power plant
FR3112198A1 (en) Hydrogen refrigeration installation and process
Quack et al. Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen
EP0641983A1 (en) Process and installation for the production of gaseous oxygen and/or nitrogen under pressure
FR2775518A1 (en) PROCESS AND INSTALLATION FOR REFRIGERATED PRODUCTION FROM A THERMAL CYCLE OF A FLUID WITH LOW BOILING POINT
FR3072451A1 (en) METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
JP3669911B2 (en) Liquefied gas storage device
WO2009112744A2 (en) Apparatus for separating air by cryogenic distillation
Radebaugh Historical summary of cryogenic activity prior to 1950
CH513377A (en) Fluid refrigeration process - using two closed cycles - for operating gas

Legal Events

Date Code Title Description
PL Patent ceased