JPH0627619B2 - Liquefaction method of natural gas - Google Patents

Liquefaction method of natural gas

Info

Publication number
JPH0627619B2
JPH0627619B2 JP15734385A JP15734385A JPH0627619B2 JP H0627619 B2 JPH0627619 B2 JP H0627619B2 JP 15734385 A JP15734385 A JP 15734385A JP 15734385 A JP15734385 A JP 15734385A JP H0627619 B2 JPH0627619 B2 JP H0627619B2
Authority
JP
Japan
Prior art keywords
gas
separator
line
refrigerant
primary cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15734385A
Other languages
Japanese (ja)
Other versions
JPS6219674A (en
Inventor
五三実 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA GASU ENJINIARINGU KK
OOSAKA GASU KK
Original Assignee
OOSAKA GASU ENJINIARINGU KK
OOSAKA GASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA GASU ENJINIARINGU KK, OOSAKA GASU KK filed Critical OOSAKA GASU ENJINIARINGU KK
Priority to JP15734385A priority Critical patent/JPH0627619B2/en
Publication of JPS6219674A publication Critical patent/JPS6219674A/en
Publication of JPH0627619B2 publication Critical patent/JPH0627619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、天然ガスの液化方法に関する。TECHNICAL FIELD The present invention relates to a method for liquefying natural gas.

従来技術とその問題点 従来、天然ガスの液化方法としては、カスケード方式及
び混合冷媒(MCR)方式が使用されている。そしてカ
スケード方式に比してMCR方式の方が装置が簡単であ
ることから、最近では後者の方が多く用いられるように
なつてきた。しかしながら、MCR方式といえども装置
はそれほど簡単ではなく、大型の熱交換器を必要とする
ので、建設費は高い。また、混合冷媒成分の割合が性能
に大きな影響を及ぼすので、成分調整を慎重に行う必要
があり、運転開始後プラントが定常状態となるまでに長
時間を要し、更に開放点検時には混合冷媒の取扱いに特
別な注意を要する。
2. Description of the Related Art Conventional technology and its problems Conventionally, as a natural gas liquefaction method, a cascade method and a mixed refrigerant (MCR) method have been used. Since the MCR method is simpler than the cascade method, the latter method has recently been used more frequently. However, the MCR system is not so simple and requires a large heat exchanger, so that the construction cost is high. In addition, since the ratio of the mixed refrigerant components greatly affects the performance, it is necessary to carefully adjust the components, it takes a long time for the plant to reach a steady state after the start of operation, and the mixed refrigerant components may not be released during the open inspection. Special handling is required.

問題点を解決するための手段 本発明者は、このような技術の現状に鑑みて種々研究を
重ねた結果、プロパン等を冷媒とするランキンサイクル
により冷却して得た所定の温度および圧力の天然ガス自
体〔冷却ガス〕又は天然ガス〔冷却ガス〕に含まれる成
分の中から分離器〔第一の分離器〕でフラツシユして得
られるガス〔一次フラツシユガス〕(本明細書において
はこれらを一次冷却ガスという)の過半量を冷媒とする
ブレイトンサイクルにより寒冷をつくり(寒冷ガスと
し)、残りの一次冷却ガスを後出の二次フラツシユガス
によって冷却(これを二次冷却という)した後に、前出
の寒冷ガスとともに分離器〔第二の分離器〕に導入して
フラツシユ・液化して液化ガスと二次フラツシユガスに
分離する場合には、従来の技術の問題点が大巾に軽減さ
れることを見出した。即ち、本発明は、下記の方法を提
供するものである: (i)圧縮機で圧縮した後に凝縮機で液化した冷媒を、
冷却器で熱交換させて気化させた後に圧縮機に循環させ
るランキンサイクルの冷却器で、天然ガスおよび循環ガ
スを一次冷却して得られる圧力30kg/cm・G以上、
且つ温度−20〜−70℃の冷却ガス、又は、前記ラン
キンサイクルの冷却器で、天然ザスおよび循環ガスを一
次冷却して得られた冷却ガスを第一の分離器でフラッシ
ュして得られる圧力30kg/cm・G以上、且つ温度−
20〜−70℃の一次フラッシュガスを一次冷却ガスと
し、 (ii)一次冷却ガスの過半量を膨脹機で膨脹させて寒冷
ガスとし、 (iii)一次冷却ガスの残りを冷媒と熱交換させて二次
冷却ガスとし、 (iv)寒冷ガスおよび二次冷却ガスを第二の分離機に導
入して液化ガスと二次フラッシュガスとに分離する方法
であって、 (vi)一次冷却ガスと熱交換させる冷媒として二次フラ
ッシュガスを使用し、一次冷却ガスと熱交換した後の二
次フラッシュガスを圧縮機で圧縮して循環ガスとするブ
レイトンサイクルを利用した天然ガスの液化方法におい
て、 (vii)一次フラッシュガスの過半量を膨脹させる膨脹
機により回収された動力を、一次冷却ガスと熱交換した
後の二次フラッシュガスの圧縮及び/又はランキンサイ
クルにおける冷媒の圧縮に使用することを特徴とする天
然ガスの液化方法。
Means for Solving the Problems The present inventor has conducted various studies in view of the current state of the art, and as a result, has found that natural gas having a predetermined temperature and pressure obtained by cooling with a Rankine cycle using propane or the like as a refrigerant. Gas (primary flash gas) obtained by flashing with a separator [first separator] from the components contained in the gas itself [cooling gas] or natural gas [cooling gas] (these are primary cooling in this specification) The Brayton cycle that uses a majority of the gas as refrigerant is cold (as cold gas), and the remaining primary cooling gas is cooled by the secondary flush gas described later (this is called secondary cooling). When introduced into a separator (second separator) together with cold gas to flash / liquefy and separate into liquefied gas and secondary flash gas, the problems of conventional technology are widespread. It was found to be reduced to. That is, the present invention provides the following method: (i) a refrigerant liquefied in a condenser after being compressed by a compressor,
A Rankine cycle cooler in which heat is exchanged in a cooler to be vaporized and then circulated in a compressor. A pressure of 30 kg / cm 2 · G or more obtained by primarily cooling natural gas and circulating gas,
And a cooling gas having a temperature of −20 to −70 ° C., or a pressure obtained by flushing the cooling gas obtained by primary cooling the natural gas and the circulating gas with the cooler of the Rankine cycle in the first separator. 30kg / cm 2 · G or more, and temperature-
A primary flash gas of 20 to -70 ° C is used as a primary cooling gas, (ii) a majority of the primary cooling gas is expanded by an expander to be a cold gas, and (iii) the rest of the primary cooling gas is heat-exchanged with a refrigerant. A method for separating a liquefied gas and a secondary flash gas by introducing a cold gas and a secondary cooling gas into a second separator, as a secondary cooling gas, and (vi) a primary cooling gas and a heat In a natural gas liquefaction method using a Brayton cycle, in which a secondary flash gas is used as a refrigerant to be exchanged, and the secondary flash gas after heat exchange with a primary cooling gas is compressed by a compressor to form a circulating gas, (vii ) The power recovered by the expander that expands the majority of the primary flash gas is used to compress the secondary flash gas after heat exchange with the primary cooling gas and / or to compress the refrigerant in the Rankine cycle. Method of liquefying a natural gas which is characterized in that.

以下、図面に示す本発明に係るフローチヤートの例を参
照しつつ、本発明を詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to the example of the flow chart according to the present invention shown in the drawings.

第1図において、約70kg/cm・Gの天然ガスは、ラ
イン(1)から酸性ガス除去装置(3)に入り、炭酸ガ
ス、硫化水素等の酸性ガスが除去された後、ライン
(5)を経て吸着脱湿器(7)で水分が除去される。こ
の天然ガスは、ライン(9)でライン(111)からの
循環ガスと一緒になり、第一のガス冷却器(11)に入
つて約0℃まで冷却され、ライン(13)を経て第二の
ガス冷却器(15)で約−30℃まで冷却され、ライン
(17)を経てLPG回収器(19)に入り、LPG留
分が回収された後、ライン(21)を経て第三のガス冷
却器(23)で約−60℃まで冷却され、ライン(2
5)を経て高圧分離器〔第一の分離器〕(27)に入
る。天然ガス中にエタン、プロパンなどの重質炭化水素
が多く含まれる場合には、この高圧分離器〔第一の分離
器〕(27)で凝縮分が分離される。
In FIG. 1, about 70 kg / cm 2 · G of natural gas enters the acid gas removal device (3) from the line (1), and after the acid gases such as carbon dioxide and hydrogen sulfide are removed, the line (5 ) And water is removed by the adsorption dehumidifier (7). This natural gas is combined with the circulating gas from the line (111) in the line (9), enters the first gas cooler (11) and is cooled to about 0 ° C., and then the second through the line (13). Is cooled to about −30 ° C. by the gas cooler (15), enters the LPG recovery unit (19) via the line (17), and the LPG fraction is recovered, and then the third gas via the line (21). It is cooled to about -60 ° C by the cooler (23), and the line (2
After 5), the high pressure separator [first separator] (27) is entered. When the natural gas contains a large amount of heavy hydrocarbons such as ethane and propane, the high pressure separator [first separator] (27) separates the condensed component.

ガス冷却器(11)、(15)及び(23)における天
然ガスの冷却は、プロパン、プロパンとエタンの混合物
またはR−13B1などの冷媒によるカスケードランキ
ンサイクルが用いられる。即ち、原動機(29)により
多段圧縮機(31)で圧縮された冷媒は、ライン(3
3)を経て凝縮器(35)で液化し、ライン(37)を
経て、その一部はライン(39)を通り、第一の冷却器
(11)に入つて気化し、ライン(41)を経て圧縮機
(31)の高圧段吸込に戻る。第一の冷却器(11)に
入らない冷媒は、ライン(43)で減圧され、その一部
はライン(45)を通つて第二の冷却器(15)で気化
され、ライン(47)を経て圧縮機(31)の中圧段吸
込に戻る。残りの液化された冷媒は、ライン(49)を
通つて更に減圧され、第三の冷却器(23)で気化さ
れ、ライン(51)を経て圧縮機(31)の低圧段吸込
に戻る。このようにして、循環冷媒の気化熱によつて、
ガスは冷却される。
For cooling the natural gas in the gas coolers (11), (15) and (23), a cascade Rankine cycle using a refrigerant such as propane, a mixture of propane and ethane, or R-13B1 is used. That is, the refrigerant compressed in the multi-stage compressor (31) by the prime mover (29) is transferred to the line (3
3) and then liquefies in the condenser (35), then passes through the line (37), part of which passes through the line (39), enters the first cooler (11) and is vaporized, and the line (41) is passed through. Then, the high pressure stage suction of the compressor (31) is restored. Refrigerant that does not enter the first cooler (11) is decompressed in the line (43), and a part of it is vaporized in the second cooler (15) through the line (45) and then in the line (47). Then, the compressor (31) returns to the intermediate pressure stage suction. The remaining liquefied refrigerant is further depressurized through the line (49), vaporized in the third cooler (23), and returned to the low pressure stage suction of the compressor (31) through the line (51). In this way, by the heat of vaporization of the circulating refrigerant,
The gas is cooled.

上記第三のガス冷却器(23)で冷却され、高圧分離器
〔第一の分離器〕(27)で分離されたガス〔一次フラ
ツシユガス(一次冷却ガス)〕の一部は、ライン(5
3)を経て第一の熱交換器(55)に入り、約−80℃
まで冷却され、ライン(57)を経て第二の熱交換器
(59)で約−21℃に冷却され、得られた二次冷却ガ
スは、ライン(61)を経て中圧分離器〔第二の分離
器〕(63)に入り、約9kg/cm・Gに減圧され、温
度は約−125℃に低下し、液〔液化ガス〕とガス〔二
次フラツシユガス〕に分離される。また、前出の高圧分
離器〔第一の分離器〕(27)を出たガス〔一次フラツ
シユガス(一次冷却ガス)〕の過半量(残り)は、ライ
ン(65)を経て膨脹機(67)に入り、圧力約9kg/
cm・G、温度−125℃に膨脹して(寒冷ガスとな
り)、一部は液化され、ライン(69)を経て前出の中
圧分離器〔第二の分離器〕(63)に入り、前出の二次
冷却ガスとともに気液分離される。また、前出の高圧分
離器〔第一の分離器〕(27)で分離された液成分が多
い場合、その一部は、ライン(71)を通つて前出の中
圧分離器〔第二の分離器〕(63)で減圧され、前出の
二次冷却ガスおよび寒冷ガスとともに気液分離される。
中圧分離器〔第二の分離器〕(63)で分離された液体
成分〔液化ガス〕は、ライン(75)を通つて窒素分離
器(77)に入り、窒素を分離除去した後、ライン(7
9)を経て低圧分離器(81)で、圧力はほぼ大気圧、
温度は約−162℃となつて、気液分離され、液体成分
は、ライン(83)を経て液化天然ガスタンク(85)
に送られる。なお窒素を除去する必要のない場合は、窒
素分離器(77)は不要となる。
A part of the gas [primary flush gas (primary cooling gas)] cooled by the third gas cooler (23) and separated by the high pressure separator [first separator] (27) is part of the line (5
After going through 3), enter the first heat exchanger (55), and at about -80 ° C.
Cooled to about −21 ° C. in the second heat exchanger (59) via the line (57), and the obtained secondary cooling gas is passed through the line (61) to the intermediate pressure separator [second Separator] (63), the pressure is reduced to about 9 kg / cm 2 · G, the temperature is lowered to about -125 ° C, and the liquid [liquefied gas] and the gas [secondary flush gas] are separated. In addition, the majority (remaining amount) of the gas [primary flush gas (primary cooling gas)] discharged from the high pressure separator [first separator] (27) described above passes through the line (65) and the expander (67). Enter, pressure about 9kg /
cm 2 · G, expanded to temperature -125 ° C (becomes cold gas), partly liquefied, and entered the above-mentioned intermediate pressure separator [second separator] (63) via line (69). , And the gas and liquid are separated together with the above-mentioned secondary cooling gas. When a large amount of liquid components are separated by the high pressure separator [first separator] (27) described above, a part of the liquid component passes through the line (71) and the medium pressure separator [second separator] described above is used. Separator] (63) The pressure is reduced, and the secondary cooling gas and the cold gas are separated into gas and liquid.
The liquid component [liquefied gas] separated by the medium pressure separator [second separator] (63) enters the nitrogen separator (77) through the line (75) to separate and remove nitrogen, and then the line (7
After 9), in the low pressure separator (81), the pressure is almost atmospheric pressure,
The temperature is about -162 ° C, and the gas and liquid are separated, and the liquid component is liquefied natural gas tank (85) through line (83).
Sent to. If it is not necessary to remove nitrogen, the nitrogen separator (77) is unnecessary.

中圧分離器〔第二の分離器〕(63)で分離されたガス
〔二次フラツシユガス〕は、ライン(87)を経て第二
の熱交換器(59)で熱交換し、温度は約−85℃とな
り、ライン(89)においてライン(73)よりの高圧
分離器〔第一の分離器〕(27)の液体成分の一部と合
流し、第一の熱交換器(55)に入つて約−65℃まで
(前出の一次冷却ガスと)熱交換されるこの高圧分離器
〔第一の分離器〕(27)の液体成分の一部は、ランキ
ンサイクルに循環使用されることになるが、循環使用し
ない場合は、第一の熱交換器(55)と第二の熱交換器
(59)とを共通のものとすることができる。
The gas [secondary flush gas] separated in the medium pressure separator [second separator] (63) is heat-exchanged in the second heat exchanger (59) via the line (87), and the temperature is about −. It reaches 85 ° C., joins a part of the liquid component of the high-pressure separator [first separator] (27) from the line (73) in the line (89), and enters the first heat exchanger (55). A part of the liquid component of this high-pressure separator (first separator) (27), which is heat-exchanged (to the above-mentioned primary cooling gas) up to about -65 ° C, is recycled to the Rankine cycle. However, when it is not circulated, the first heat exchanger (55) and the second heat exchanger (59) can be common.

第一の熱交換器(55)を出た中圧のガス〔二次フラツ
シユガス〕は、ライン(91)を経て膨脹機(67)に
よつて駆動される中圧圧縮機(93)によつて約27kg
/cm・Gに圧縮され、循環ガスとして、ライン(9
5)を通り、原動機(99)によつて駆動される高圧循
環ガス圧縮機(105)に吸込に入る。
The medium pressure gas (secondary flush gas) exiting the first heat exchanger (55) is passed through a line (91) by an intermediate pressure compressor (93) driven by an expander (67). About 27kg
/ Cm 2 · G, compressed to the line (9
5) through suction into the high-pressure circulating gas compressor (105) driven by the prime mover (99).

低圧分離器(81)で分離されたガスは、ライン(9
7)を経て低圧循環ガス圧縮機(101)で約27kg/
cm・Gまで圧縮され、ライン(103)を経てライン
(95)からの中圧循環ガスと一緒になつて、高圧循環
ガス圧縮機(105)で約70kg/cm・Gまで加圧さ
れる。このガスは、ライン(107)を経て循環ガス冷
却器(109)で冷却され、ライン(111)を通つて
天然ガスとライン(9)で合流される。
The gas separated in the low pressure separator (81) is fed into the line (9
Approximately 27 kg / in the low pressure circulating gas compressor (101) via 7)
It is compressed to cm 2 · G and is combined with the medium pressure circulating gas from line (95) via line (103) and pressurized to about 70 kg / cm 2 · G in the high pressure circulating gas compressor (105). It This gas is cooled in the circulating gas cooler (109) via the line (107), and merged with the natural gas in the line (9) through the line (111).

このように循環ガスと天然ガスとは、循環して使用され
るため、天然ガス中に窒素含有量が多い場合は、循環ガ
スでは窒素が主成分となるが、性能上はあまり問題はな
い。
As described above, since the circulating gas and the natural gas are circulated and used, when the natural gas has a large nitrogen content, the circulating gas mainly contains nitrogen, but there is no problem in terms of performance.

以上の説明は、実施例に基ずくもので、その圧力、温度
条件は天然ガスがメタン100%の場合のものであり、
天然ガスの組成や圧力が変わると、各部の温度、圧力も
若干変わる。
The above description is based on the examples, and the pressure and temperature conditions are for the case where natural gas is 100% methane,
When the composition and pressure of natural gas change, the temperature and pressure of each part also change slightly.

メタン100%の実施例で、天然ガスの入口圧力を70
kg/cm・G、冷却水温度を20℃とすれば、液化天然
ガス製造能力125t/h (100万t/年)の場合、循
環ガス圧縮機の入力は約28,000kw、プロパン冷媒
圧縮機の入力は約19,000kw必要であり、液化メタ
ン1t当りの必要な入力は376kwh となる。
In the case of 100% methane, the inlet pressure of natural gas is 70%.
Assuming kg / cm 2 · G and cooling water temperature of 20 ° C, if the liquefied natural gas production capacity is 125 t / h (1 million t / year), the input of the circulating gas compressor is about 28,000 kw, propane refrigerant compression The input of the machine is about 19,000kw, and the required input per ton of liquefied methane is 376kwh.

第1図の低圧分離器(81)から出るフラツシユガスの
低温を利用して一次冷却ガスの二次冷却をするフローチ
ャートを第2図に示す。これは、第三の熱交換器(11
3)と循環ガス圧縮機の中間冷却器(115)を必要と
するが、液化天然ガス1トン当りの必要入力は、第1図
の実施例の場合よりもわずかに少なくなる。
A flow chart for secondary cooling of the primary cooling gas by utilizing the low temperature of the flush gas discharged from the low pressure separator (81) in FIG. 1 is shown in FIG. This is the third heat exchanger (11
3) and the intercooler (115) of the circulating gas compressor are required, but the required input per ton of liquefied natural gas is slightly less than in the embodiment of FIG.

発明の効果 ランキンサイクルにより天然ガスと循環ガスの一次冷却
を行つて温度を−20〜−70℃とした後、ブレイトン
サイクルにより二次冷却を行う本発明の天然ガス液化方
法によれば、以下の如き効果が得られる。
Effects of the Invention According to the natural gas liquefaction method of the present invention, which performs primary cooling of natural gas and circulating gas by Rankine cycle to bring the temperature to −20 to −70 ° C. and then secondary cooling by Brayton cycle, Such an effect can be obtained.

(1) 本発明実施例と同じ条件下に行なわれるカスケ
ードサイクルとを比較すると、必要入力を同一とした場
合、後者では3流体8段カスケードが必要になり、本発
明の方がシステムが簡単で建設費が安価となる。
(1) Comparing the embodiment of the present invention with a cascade cycle performed under the same conditions, if the required inputs are the same, the latter requires a three-fluid eight-stage cascade, and the present invention is simpler in system. Construction costs are low.

また、本発明実施例と同じ条件のMCR方式と比較する
と、本発明の方が必要入力がやや少ない。また、MCR
方式の場合は、3流体以上の熱交換器を使用する必要が
あり、全熱交換量も大きく、熱交換の要素数も多いの
で、本発明よりも建設費が高くなる。
Also, compared with the MCR method under the same conditions as the embodiment of the present invention, the present invention requires slightly less input. Also, MCR
In the case of the method, since it is necessary to use a heat exchanger of three fluids or more, the total heat exchange amount is large, and the number of heat exchange elements is large, the construction cost is higher than that of the present invention.

結局、本発明は、冷凍サイクルでは不利とみられがちな
ブレイトンサイクルを使用するものではあるが、膨脹機
の断熱効率が約80%得られることにより、有効エネル
ギ(エクセルギ)損失が少なくなり、また膨脹機によつ
て一種の熱交換をさせることになり、全体の熱交換量を
少なくすることができ、熱交換のエクセルギ損失を少な
くすることによつて総合効率を高めたことになり、その
効果は大きい。
After all, although the present invention uses the Brayton cycle, which is often seen as a disadvantage in the refrigeration cycle, the effective energy (exergy) loss is reduced and the expansion heat is reduced because the adiabatic efficiency of the expander is about 80%. The machine will perform a kind of heat exchange, the total amount of heat exchange can be reduced, and the total efficiency can be improved by reducing the exergy loss of heat exchange. large.

(2) 特殊な冷媒を必要としないので、装置が簡単で
あり、運転操作も容易である。特に混合冷媒を使用しな
いために始動および停止時の操作が容易で、断続運転も
しやすい。
(2) Since no special refrigerant is required, the device is simple and the operation is easy. In particular, since the mixed refrigerant is not used, the operation at the time of starting and stopping is easy, and the intermittent operation is easy.

(3) 熱交換器の数が少なく、そのすべてが2流体熱
交換器であり、アルミニウムフイン熱交換器が容易に使
用でき、小型で安価となる。
(3) The number of heat exchangers is small, all of which are two-fluid heat exchangers, the aluminum fin heat exchanger can be easily used, and it is small and inexpensive.

(4)実施例では膨脹機で回収した動力を循環ガス(二
次フラツシユガス)の圧縮に使用しているが、一次冷却
の冷媒圧縮のために使用してもよい。
(4) In the embodiment, the power recovered by the expander is used to compress the circulating gas (secondary flush gas), but it may be used to compress the refrigerant for the primary cooling.

(5) 膨脹機とこれに直結する圧縮機は、通常高速タ
ーボ式が使用され、コンパクトで経済的である。
(5) As the expander and the compressor directly connected to it, a high speed turbo type is usually used, which is compact and economical.

(6) 天然ガス液化基地のタンクで発生するボイルオ
フガスも、使用する装置で回収することができる。
(6) Boil-off gas generated in the tank of the natural gas liquefaction base can also be collected by the device used.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は、本発明の実施態様を示すフローチ
ヤートである。 (11)……第一のガス冷却器、 (15)……第二のガス冷却器、 (19)……LPG回収器、 (23)……第三のガス冷却器、 (27)……高圧分離器、 (29)……原動機、 (31)……多段圧縮機、 (35)……凝縮器、 (55)……第一の熱交換器、 (59)……第二の熱交換器、 (63)……中圧分離器、 (67)……膨脹機、 (77)……窒素分離器、 (81)……低圧分離器、 (85)……液化天然ガスタンク、 (93)……中圧圧縮機、 (99)……原動機、 (101)……低圧循環ガス圧縮機、 (105)……高圧循環ガス圧縮機、 (109)……循環ガス冷却器。
1 and 2 are flow charts showing an embodiment of the present invention. (11) …… First gas cooler, (15) …… Second gas cooler, (19) …… LPG recovery machine, (23) …… Third gas cooler, (27) …… High-pressure separator, (29) …… motor, (31) …… multistage compressor, (35) …… condenser, (55) …… first heat exchanger, (59) …… second heat exchange. Vessel, (63) ... Medium pressure separator, (67) ... Expander, (77) ... Nitrogen separator, (81) ... Low pressure separator, (85) ... Liquefied natural gas tank, (93) …… Medium pressure compressor, (99) …… prime mover, (101) …… low pressure circulating gas compressor, (105) …… high pressure circulating gas compressor, (109) …… circulating gas cooler.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(i)圧縮機で圧縮した後に凝縮機で液化
した冷媒を、冷却器で熱交換させて気化させた後に圧縮
機に循環させるランキンサイクルの冷却器で、天然ガス
および循環ガスを一次冷却して得られる圧力30kg/cm
・G以上、且つ温度−20〜−70℃の冷却ガス、又
は、前記ランキンサイクルの冷却器で、天然ガスおよび
循環ガスを一次冷却して得られた冷却ガスを第一の分離
機でフラッシュして得られる圧力30kg/cm・G以
上、且つ温度−20〜−70℃の一次フラッシュガスを
一次冷却ガスとし、 (ii)一次冷却ガスの過半量を膨脹機で膨脹させて寒冷
ガスとし、 (iii)一次冷却ガスの残りを冷媒と熱交換させて二次
冷却ガスとし、 (iv)寒冷ガスおよび二次冷却ガスを第二の分離機に導
入して液化ガスと二次フラッシュガスとに分離する方法
であって、 (vi)一次冷却ガスと熱交換させる冷媒として二次フラ
ッシュガスを使用し、一次冷却ガスと熱交換した後の二
次フラッシュガスを圧縮機で圧縮して循環ガスとするブ
レイトンサイクルを利用した天然ガスの液化方法におい
て、 (vii)一次フラッシュガスの過半量を膨脹させる膨脹
機により回収された動力を、一次冷却ガスと熱交換した
後の二次フラッシュガスの圧縮及び/又はランキンサイ
クルにおける冷媒の圧縮に使用することを特徴とする天
然ガスの液化方法。
(I) A Rankine cycle cooler in which a refrigerant that has been compressed in a compressor and then liquefied in a condenser is heat-exchanged in a cooler to be vaporized and then circulated in the compressor. Pressure obtained by primary cooling of 30 kg / cm
A cooling gas having a temperature of −20 to −70 ° C. of 2 · G or more, or a cooling gas obtained by primary cooling natural gas and circulating gas with the Rankine cycle cooler is flushed with the first separator. A pressure of 30 kg / cm 2 · G or more and a temperature of −20 to −70 ° C. is used as the primary cooling gas, and (ii) a majority of the primary cooling gas is expanded with an expander to obtain a cold gas. , (Iii) The rest of the primary cooling gas is heat-exchanged with a refrigerant to form a secondary cooling gas, and (iv) the cold gas and the secondary cooling gas are introduced into a second separator to produce a liquefied gas and a secondary flash gas. (Vi) A secondary flash gas is used as a refrigerant for exchanging heat with the primary cooling gas, and the secondary flash gas after heat exchange with the primary cooling gas is compressed by a compressor to circulate gas. Brayton cycle (Vii) The compression and / or Rankine cycle of the secondary flash gas after heat exchange of the power recovered by the expander for expanding the majority of the primary flash gas with the primary cooling gas, A method for liquefying natural gas, which is used for compressing a refrigerant in.
JP15734385A 1985-07-17 1985-07-17 Liquefaction method of natural gas Expired - Lifetime JPH0627619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15734385A JPH0627619B2 (en) 1985-07-17 1985-07-17 Liquefaction method of natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15734385A JPH0627619B2 (en) 1985-07-17 1985-07-17 Liquefaction method of natural gas

Publications (2)

Publication Number Publication Date
JPS6219674A JPS6219674A (en) 1987-01-28
JPH0627619B2 true JPH0627619B2 (en) 1994-04-13

Family

ID=15647607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15734385A Expired - Lifetime JPH0627619B2 (en) 1985-07-17 1985-07-17 Liquefaction method of natural gas

Country Status (1)

Country Link
JP (1) JPH0627619B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA200800686A1 (en) * 2005-10-04 2008-10-30 АС-САН ХОЛДИНГ АпС COOLING SYSTEM FOR AIR CONDITIONING SYSTEM AND HEAT PUMPS

Also Published As

Publication number Publication date
JPS6219674A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
EP3368630B1 (en) Low-temperature mixed--refrigerant for hydrogen precooling in large scale
US6253574B1 (en) Method for liquefying a stream rich in hydrocarbons
TWI388788B (en) Liquefaction method and system
US6446465B1 (en) Liquefaction process and apparatus
US4169361A (en) Method of and apparatus for the generation of cold
RU2270408C2 (en) Method and device for liquefied gas cooling
US11774173B2 (en) Arctic cascade method for natural gas liquefaction in a high-pressure cycle with pre-cooling by ethane and sub-cooling by nitrogen, and a plant for its implementation
RU2496066C2 (en) Method of nitrogen double expansion
US20020148225A1 (en) Energy conversion system
JP3965444B2 (en) Methods and equipment for natural gas liquefaction
JPH01222194A (en) Manufacture of liquid freezing mixture
JP2007506064A (en) Hybrid gas liquefaction cycle with multiple expanders
JP2006504928A (en) Motor driven compressor system for natural gas liquefaction
JPWO2006051622A1 (en) Low temperature liquefaction refrigeration method and device
WO2008090165A2 (en) Method and apparatus for cooling a hydrocarbon stream
US4765813A (en) Hydrogen liquefaction using a dense fluid expander and neon as a precoolant refrigerant
RU2568697C2 (en) Liquefaction of fraction enriched with hydrocarbons
JP2001526376A (en) Liquefaction process and equipment
JPH0564722A (en) Separation of carbon dioxide in combustion exhaust gas
RU2725914C1 (en) Method of liquefying a hydrocarbon-rich fraction
JP4142559B2 (en) Gas liquefaction apparatus and gas liquefaction method
US20230332833A1 (en) Process for Producing Liquefied Hydrogen
RU2740112C1 (en) Natural gas liquefaction method "polar star" and installation for its implementation
AU701955B2 (en) Method for cooling and/or liquefying a medium
JPH0627619B2 (en) Liquefaction method of natural gas