JPH079346B2 - Helium liquefier - Google Patents

Helium liquefier

Info

Publication number
JPH079346B2
JPH079346B2 JP63332046A JP33204688A JPH079346B2 JP H079346 B2 JPH079346 B2 JP H079346B2 JP 63332046 A JP63332046 A JP 63332046A JP 33204688 A JP33204688 A JP 33204688A JP H079346 B2 JPH079346 B2 JP H079346B2
Authority
JP
Japan
Prior art keywords
hydrogen
helium
precooling
gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63332046A
Other languages
Japanese (ja)
Other versions
JPH02176386A (en
Inventor
重男 戸村
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP63332046A priority Critical patent/JPH079346B2/en
Publication of JPH02176386A publication Critical patent/JPH02176386A/en
Publication of JPH079346B2 publication Critical patent/JPH079346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/90Boil-off gas from storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ヘリウムを液化する装置の改良に関し、水
素吸蔵合金を用いた水素液化装置で予冷するようにして
回転機械を使用せず、長時間運転できるようにしたもの
である。
Description: TECHNICAL FIELD The present invention relates to an improvement of a device for liquefying helium, which is precooled by a hydrogen liquefying device using a hydrogen storage alloy and which does not use a rotary machine and can be used for a long time. It is designed to be able to drive for hours.

[従来の技術] 気体のうち沸点が最も低いヘリウムを液化した液体ヘリ
ウムは、物質の超電導性や超流体性などの研究には不可
欠であり、新しい電子機器等にも種々応用されつつあ
る。
[Prior Art] Liquid helium obtained by liquefying helium, which has the lowest boiling point among gases, is indispensable for research on superconductivity and superfluidity of substances, and is being applied to various new electronic devices.

このようなヘリウムを液化するには、例えば第2図に示
すように、液体ヘリウムサイクルAと予冷するための液
体窒素サイクルBとを付設しておき、圧縮機1で圧縮さ
れたヘリウムガスを予冷用熱交換器2に送って液化窒素
サイクルBからの液化窒素で予冷した後、絞り弁3に行
くヘリウムガスの一部を膨脹タービン4に入れて可逆膨
脹させ、低温となったヘリウムを絞り弁3から分離器5
を経て圧縮機1に戻るヘリウムと合流させるとともに、
この戻りガスと絞り弁3へのヘリウムとを第1及び第2
熱交換器6,7で熱交換させるようにしながら、分離器5
に液体ヘリウムを得るようにしている。
To liquefy such helium, for example, as shown in FIG. 2, a liquid helium cycle A and a liquid nitrogen cycle B for precooling are attached, and the helium gas compressed by the compressor 1 is precooled. After being sent to the heat exchanger 2 for cooling and precooled with liquefied nitrogen from the liquefied nitrogen cycle B, a part of the helium gas that goes to the throttle valve 3 is put into the expansion turbine 4 for reversible expansion, and the helium which has become low temperature is throttled. 3 to separator 5
Through helium that returns to compressor 1 via
This return gas and helium to the throttle valve 3 are used as the first and second
While allowing heat to be exchanged with the heat exchangers 6 and 7, the separator 5
I am trying to get liquid helium.

この場合に使用される液化窒素サイクルBは、例えば3
台の圧縮機8,9,10と熱交換器11と絞り弁12などで構成さ
れており、絞り膨脹などを利用して分離器13に液体窒素
を得るようにしている。
The liquefied nitrogen cycle B used in this case is, for example, 3
It is composed of the compressors 8, 9, 10 of the stage, the heat exchanger 11, the throttle valve 12, etc., and the liquid nitrogen is obtained in the separator 13 by utilizing the expansion of the throttle.

[発明が解決しようとする課題] このようなヘリウムの液化装置では、圧縮したヘリウム
ガスの予冷のため付設される液体窒素サイクルB中にモ
ータなどで駆動される圧縮機8,9,10が設置されており、
回転部分を潤滑するため潤滑油が使用されている。この
潤滑油中に空気などが混入していると、熱交換器11や絞
り弁12に凍結付着するなどの問題があるとともに、潤滑
油の極僅かな量が吸着器を通過して循環され、これが熱
交換器11の伝熱面に付着してしまい、熱交換器効率が低
下してしまうという問題がある。
[Problems to be Solved by the Invention] In such a helium liquefier, compressors 8, 9, 10 driven by a motor or the like are installed in a liquid nitrogen cycle B additionally provided for precooling compressed helium gas. Has been done,
Lubricating oil is used to lubricate rotating parts. When air or the like is mixed in the lubricating oil, there is a problem that the heat exchanger 11 or the throttle valve 12 freezes and adheres, and a very small amount of the lubricating oil is circulated through the adsorber, There is a problem that this adheres to the heat transfer surface of the heat exchanger 11 and the heat exchanger efficiency decreases.

これらの空気の混入及び潤滑油の循環の問題は、圧縮機
の運転に伴って潤滑油を補給する必要があることから次
第に堆積して影響が大きくなり、伝熱効率の低下を招い
てしまう。
These problems of air mixing and circulation of lubricating oil are gradually accumulated because the lubricating oil needs to be replenished with the operation of the compressor, and the influence thereof becomes large, resulting in a decrease in heat transfer efficiency.

そこで、従来は、長くても2000時間程度運転を行うと、
運転を停止、熱交換器11や吸着器などを清掃するように
しており、長時間の連続運転ができないという問題があ
った。
So, in the past, if you operate for about 2000 hours at the longest,
Since the operation is stopped and the heat exchanger 11 and the adsorber are cleaned, there is a problem that continuous operation for a long time cannot be performed.

また、液体ヘリウムサイクルAの効率向上のためには、
予冷温度をできるだけ低くすることが有効であり、さら
に温度を下げることができる簡単な装置が必要とされて
いる。
In order to improve the efficiency of the liquid helium cycle A,
It is effective to lower the precooling temperature as much as possible, and there is a need for a simple device that can further lower the temperature.

この発明は、かかる従来技術の問題点に鑑みてなされた
もので、潤滑油を必要とする回転機械を使用することな
く、しかも予冷温度を下げることができ、長時間の連続
運転ができるヘリウムの液化装置を提供しようとするも
のである。
The present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to reduce the precooling temperature without using a rotating machine that requires lubricating oil, and to perform a long-term continuous operation of helium. It is intended to provide a liquefaction device.

[課題を解決するための手段] 上記課題を解決するためこの発明のヘリウムの液化装置
は、ヘリウムガスを予冷した後、膨脹機による可逆膨脹
と絞り弁による絞り膨脹とを組み合わせてヘリウムを液
化する液化装置において、ヘリウムガスの予冷用熱交換
器をヘリウムガスの圧縮機の入側に設け、このヘリウム
ガスの予冷用熱交換器に予冷用液体水素を送る水素液化
サイクルを、水素吸蔵合金が入れられ加熱・冷却を切り
替えて水素ガスの放出・吸蔵が可能な2つの反応容器
と、加熱される前記反応容器から放出される高圧水素ガ
スを冷却する熱交換器と、冷却された水素ガスを可逆膨
脹と絞り膨脹とを組み合わせて行う膨脹機及び絞り弁
と、膨脹された水素から液体水素を分離する分離器とで
構成し、この水素液化サイクルの分離器から前記ヘリウ
ムガスの予冷用熱交換器に予冷用の液体水素を供給可能
に接続したことを特徴とするものである。
[Means for Solving the Problems] In order to solve the above problems, the helium liquefying device of the present invention liquefies helium by precooling helium gas and then combining reversible expansion by an expander and throttle expansion by a throttle valve. In the liquefaction device, a helium gas precooling heat exchanger is provided on the inlet side of the helium gas compressor, and a hydrogen liquefaction cycle in which a hydrogen liquefaction cycle for sending precooling liquid hydrogen to this helium gas precooling heat exchanger is entered by the hydrogen storage alloy. Heating and cooling can be switched to release and store hydrogen gas, two heat exchangers, a heat exchanger that cools high-pressure hydrogen gas discharged from the heated reaction vessel, and the cooled hydrogen gas can be reversible. It is composed of an expander and a throttle valve that perform expansion and throttle expansion in combination, and a separator that separates liquid hydrogen from expanded hydrogen. It is characterized in that liquid heat for precooling is connected to a heat exchanger for precooling helium gas so that it can be supplied.

[作用] このような水素吸蔵合金を用いる水素液化サイクルを水
素吸蔵合金が入れられ加熱・冷却を切り替えて水素ガス
の放出・吸蔵が可能な2つの反応容器と、加熱される前
記反応容器から放出される高圧水素ガスを冷却する熱交
換器と、冷却された水素ガスを可逆膨脹と絞り膨脹とを
組み合わせて行う膨脹機及び絞り弁と、膨脹された水素
から液体水素を分離する分離器とで構成してヘリウムの
予冷を行うようにしており、圧縮機などの回転機械を使
用しないことから、潤滑油を必要とせず、潤滑油中の空
気や潤滑油自体の循環による詰まりや汚染の問題をなく
し、長時間の連続運転を可能としている。
[Operation] In a hydrogen liquefaction cycle using such a hydrogen storage alloy, two reaction vessels capable of releasing / storing hydrogen gas by inserting a hydrogen storage alloy and switching between heating and cooling, and releasing from the heated reaction vessel The heat exchanger for cooling the high-pressure hydrogen gas, the expander and throttle valve for performing the reversible expansion and the restriction expansion of the cooled hydrogen gas, and the separator for separating the liquid hydrogen from the expanded hydrogen. Since it is configured to pre-cool helium and does not use a rotating machine such as a compressor, it does not require lubricating oil, and problems such as clogging and pollution due to air in lubricating oil and circulation of lubricating oil itself are eliminated. It eliminates the need for continuous operation for a long time.

また、液体窒素よりも温度の低い液体水素を予冷に用い
るので、一層効率良くヘリウムの液化ができるととも
に、液体ヘリウムサイクルの圧縮機の入り口側でヘリウ
ムを冷却するようにしてターボ式圧縮機などの低温コン
プレッサの使用をも可能としている。
In addition, since liquid hydrogen whose temperature is lower than that of liquid nitrogen is used for pre-cooling, it is possible to more efficiently liquefy helium, and to cool helium at the inlet side of the compressor of the liquid helium cycle, such as a turbo compressor. It also allows the use of low temperature compressors.

[実施例] 以下、この発明の一実施例を図面を参照しながら詳細に
説明する。
[Embodiment] An embodiment of the present invention will be described below in detail with reference to the drawings.

第1図はこの発明のヘリウムの液化装置の一実施例にか
かる概略構成図である。
FIG. 1 is a schematic configuration diagram according to an embodiment of a helium liquefying apparatus of the present invention.

このヘリウムの液化装置20は、液体ヘリウムサイクルA
と液体水素サイクルCとで構成されている。
This helium liquefaction device 20 is a liquid helium cycle A
And a liquid hydrogen cycle C.

液体ヘリウムサイクルAは3台の予冷用熱交換器21,22,
23を備えて液体水素サイクルCからの液体水素で予冷さ
れるようになっており、第1予冷用熱交換器21で冷却さ
れたヘリウムガスが低圧圧縮機24に送られて圧縮された
後、中間冷却器としての第2予冷用熱交換器22で冷却さ
れ、さらに高圧圧縮機25で加圧され、第3予冷用熱交換
器23で冷却される。
Liquid helium cycle A consists of three precooling heat exchangers 21,22,
23 is provided for precooling with the liquid hydrogen from the liquid hydrogen cycle C, and after the helium gas cooled in the first precooling heat exchanger 21 is sent to the low pressure compressor 24 and compressed, It is cooled in the second precooling heat exchanger 22 as an intercooler, further pressurized by the high-pressure compressor 25, and cooled in the third precooling heat exchanger 23.

こうして冷却された低温高圧のヘリウムは絞り弁26に送
られるが、その途中でヘリウムの一部が膨脹タービン27
に入れられて可逆膨脹され、低温となったヘリウムを絞
り弁26からのヘリウムと合流させるとともに、この戻り
ガスと絞り弁26へのヘリウムとを熱交換器28で熱交換さ
せるようにしながら、分離器29に液体ヘリウムを得るよ
うにしている。
The low-temperature high-pressure helium cooled in this way is sent to the throttle valve 26, and part of the helium is expanded along the expansion turbine 27.
The helium, which has been cooled and reversibly expanded due to its low temperature, is joined with the helium from the throttle valve 26, and the return gas and the helium to the throttle valve 26 are heat-exchanged by the heat exchanger 28, and separated. Liquid helium is obtained in vessel 29.

一方、ヘリウムガスの予冷に使用される液体水素サイク
ルCは、水素吸蔵合金を用いて水素ガスの圧縮などを行
うものである。
On the other hand, the liquid hydrogen cycle C used for precooling the helium gas is for compressing the hydrogen gas using a hydrogen storage alloy.

この液体水素サイクルCでは、2つの水素吸蔵合金が入
れられた反応容器30,31が設けられ、一方が蒸気などの
加熱源で加熱され、吸着されている水素を放出すること
で高圧の水素を得ることができるようになっており、他
方は、水などの冷却水で冷却され、水素を吸着するよう
になっている。
In this liquid hydrogen cycle C, reaction vessels 30 and 31 in which two hydrogen storage alloys are placed are provided, and one of them is heated by a heating source such as steam to release the adsorbed hydrogen to generate high-pressure hydrogen. The other side is cooled with cooling water such as water and adsorbs hydrogen.

このように2つの反応容器30,31は水素圧縮機として機
能するようになっており、それぞれの反応容器30,31で
反応が飽和状態となった後、2つの三方弁32,33で操作
して冷却と加熱を切り替えることで連続使用できるよう
になっている。
In this way, the two reaction vessels 30 and 31 function as a hydrogen compressor, and after the reaction is saturated in each of the reaction vessels 30 and 31, they are operated by the two three-way valves 32 and 33. It can be used continuously by switching between cooling and heating.

これら反応容器30,31に入れられる水素吸蔵合金として
は、例えば100℃に加熱したとき、40〜50kg/cm2の高圧
水素が放出され、常温常圧(20℃,1kg/cm2程度)程度で
冷却したとき、水素の吸蔵がおこなわれる性質を持った
ものが使用される。
As the hydrogen storage alloy is placed in these reaction vessels 30 and 31, for example when heated to 100 ° C., is discharged high-pressure hydrogen 40~50kg / cm 2, room temperature and atmospheric pressure (20 ℃, 1kg / cm 2 or so) degrees It is used that has the property of absorbing hydrogen when cooled at.

例えば2つの三方弁32,33を図中黒く塗り潰した部分を
閉じるようにし、反応容器30を加熱側とし、反応容器31
を冷却側とすると、反応容器30から放出される高圧の水
素は、三方弁32から第1,第2及び第3熱交換器34,35,36
で冷却されながら絞り弁37に行く途中で一部が膨脹ター
ビン38に送られて可逆膨脹され、低温となった水素が絞
り弁37から分離器39を経て反応容器31に戻る水素と合流
させられるとともに、この戻りガスと絞り弁37への水素
とが第1,第2及び第3熱交換器34,35,36で熱交換され、
分離器39に低温の水素ガスとともに、液体水素が得られ
る。
For example, the two three-way valves 32 and 33 are closed in black in the figure, the reaction container 30 is on the heating side, and the reaction container 31 is
On the cooling side, the high-pressure hydrogen released from the reaction vessel 30 is transferred from the three-way valve 32 to the first, second and third heat exchangers 34, 35, 36.
On the way to the throttle valve 37 while being cooled by, part of the hydrogen is sent to the expansion turbine 38 and reversibly expanded, and the low temperature hydrogen is merged with hydrogen returning from the throttle valve 37 to the separator 39 to the reaction vessel 31. At the same time, this return gas and hydrogen to the throttle valve 37 are heat-exchanged in the first, second and third heat exchangers 34, 35, 36,
Liquid hydrogen is obtained in the separator 39 together with low-temperature hydrogen gas.

こうして得られた水素の低温流体が液体ヘリウムサイク
ルAの第1,第2及び第3予冷用熱交換器21,22,23に送ら
れ、ヘリウムを予冷するようになっている。
The low-temperature fluid of hydrogen thus obtained is sent to the first, second and third heat exchangers 21, 22, 23 for precooling of the liquid helium cycle A to precool helium.

そして、予冷後の水素は、三方弁33を経て反応容器31に
送られ、水素吸蔵合金に吸蔵される。
Then, the precooled hydrogen is sent to the reaction vessel 31 through the three-way valve 33 and is stored in the hydrogen storage alloy.

こうして2つの反応容器30,31での水素の放出と吸蔵が
行われ、それぞれの反応が飽和状態となった後、加熱側
を冷却側にし、冷却側を加熱側にするよう2つの三方弁
32,33を切り替えて図中斜線で示す部分を閉じるように
して連続した運転を行う。
In this way, hydrogen is released and occluded in the two reaction vessels 30 and 31, and after the respective reactions are saturated, two three-way valves are set so that the heating side is the cooling side and the cooling side is the heating side.
Continuous operation is performed by switching between 32 and 33 and closing the shaded area in the figure.

このようなヘリウムの液化装置20によれば、予冷用の液
体水素サイクルBが水素吸蔵合金を用いるものであるた
め、回転機械部分がなく、潤滑油を使用することがない
ので、第1,第2及び第3熱交換器34,35,36の伝熱部分に
付着堆積することがなく、長時間運転しても伝熱性能が
低下することがない。
According to such a helium liquefying apparatus 20, since the liquid hydrogen cycle B for precooling uses the hydrogen storage alloy, there is no rotating machine part and no lubricating oil is used. The second and third heat exchangers 34, 35, 36 do not adhere to and deposit on the heat transfer portions, and the heat transfer performance does not deteriorate even after long-term operation.

また、液体ヘリウムサイクルAの予冷が液体水素温度で
行われるので、液体窒素を用いる場合よりも低くするこ
とができ、ヘリウムの液化が容易となるとともに、低圧
圧縮機24に吸入される前のヘリウムを冷却するようにし
ているので、密度の高いヘリウムを効率良く圧縮でき
る。
Further, since the liquid helium cycle A is pre-cooled at the liquid hydrogen temperature, it can be made lower than in the case of using liquid nitrogen, liquefying helium is facilitated, and helium before being sucked into the low pressure compressor 24 is used. Since it is cooled, helium with high density can be compressed efficiently.

さらに、高圧化も可能となり、低温コンプレッサの使用
ができるとともに、ターボ圧縮機を使用することもで
き、装置の小形化が計れ、ドラムなどへの収容も簡単に
でき、外部との熱遮断や騒音防止も容易となる。
In addition, high pressure is possible, a low temperature compressor can be used, a turbo compressor can be used, the device can be downsized, and it can be easily housed in a drum, etc. Prevention is also easy.

尚、上記実施例では、液体ヘリウムサイクルで圧縮機を
2段としたが、これに限らず、さらに多段としたり、レ
シプロ式のもので1段としても良い。
In the above embodiment, the liquid helium cycle has two stages of compressors. However, the number of stages is not limited to this, and more stages may be used, or a reciprocating type may have one stage.

[発明の効果] 以上、一実施例とともに具体的に説明したようにこの発
明のヘリウムの液化装置によれば、圧縮機で圧縮したヘ
リウムガスの予冷用熱交換器に水素吸蔵合金を用いて水
素を吸蔵放出させて得られる液体水素を供給するように
したので、圧縮機などの回転機械を使用しないことか
ら、潤滑油を必要とせず、潤滑油中の空気や潤滑油自体
の循環による詰まりや汚染の問題をなくし、長時間の連
続運転が可能となった。
[Effects of the Invention] According to the helium liquefaction device of the present invention as specifically described above with reference to the embodiment, the hydrogen storage alloy is used in the heat exchanger for precooling the helium gas compressed by the compressor. Since liquid hydrogen obtained by occluding and releasing hydrogen is supplied, a rotating machine such as a compressor is not used.Therefore, lubricating oil is not required, and clogging due to circulation of air in the lubricating oil or the lubricating oil itself The problem of pollution was eliminated and continuous operation for a long time became possible.

また、従来の液体窒素よりも温度の低い液体水素を予冷
に用いるので、一層効率良くヘリウムの液化ができると
ともに、液体ヘリウムサイクルでの圧縮機の入り口側で
ヘリウムを冷却するようにすれば、ターボ圧縮機など低
温コンプレッサの使用も可能となり、装置のコンパクト
化を計ることが容易となるとともに、ドラムなどに入
れ、外部との熱遮断を計ったり、騒音を遮断することが
容易となる。
Also, since liquid hydrogen, which has a lower temperature than conventional liquid nitrogen, is used for pre-cooling, helium can be liquefied more efficiently, and if helium is cooled at the inlet side of the compressor in a liquid helium cycle, a turbo A low-temperature compressor such as a compressor can be used, and it is easy to make the device compact, and it is easy to put it in a drum or the like to shut off heat from the outside or to shut off noise.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明のヘリウムの液化装置の一実施例にか
かる概略構成図、第2図は従来装置の概略構成図であ
る。 20:ヘリウムの液化装置、21,22,23:第1,第2及び第3予
冷用熱交換器、24,25:低圧及び高圧圧縮機、26:絞り
弁、27:膨脹タービン、28:熱交換器、29:分離器、30,3
1:反応容器、32,33:三方弁、34,35,36:第1,第2及び第
3熱交換器、37:絞り弁、38:膨脹タービン、39:分離
器。
FIG. 1 is a schematic configuration diagram according to an embodiment of a helium liquefying device of the present invention, and FIG. 2 is a schematic configuration diagram of a conventional device. 20: helium liquefier, 21,22,23: heat exchangers for first, second and third pre-cooling, 24,25: low and high pressure compressors, 26: throttle valve, 27: expansion turbine, 28: heat Exchanger, 29: Separator, 30,3
1: reaction vessel, 32, 33: three-way valve, 34, 35, 36: first, second and third heat exchangers, 37: throttle valve, 38: expansion turbine, 39: separator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ヘリウムガスを予冷した後、膨脹機による
可逆膨脹と絞り弁による絞り膨脹とを組み合わせてヘリ
ウムを液化する液化装置において、ヘリウムガスの予冷
用熱交換器をヘリウムガスの圧縮機の入側に設け、この
ヘリウムガスの予冷用熱交換器に予冷用液体水素を送る
水素液化サイクルを、水素吸蔵合金が入れられ加熱・冷
却を切り替えて水素ガスの放出・吸蔵が可能な2つの反
応容器と、加熱される前記反応容器から放出される高圧
水素ガスを冷却する熱交換器と、冷却された水素ガスを
可逆膨脹と絞り膨脹とを組み合わせて行う膨脹機及び絞
り弁と、膨脹された水素から液体水素を分離する分離器
とで構成し、この水素液化サイクルの分離器から前記ヘ
リウムガスの予冷用熱交換器に予冷用の液体水素を供給
可能に接続したことを特徴とするヘリウムの液化装置。
1. A liquefying device for liquefying helium by precooling helium gas, and then combining reversible expansion by an expander and expansion by a throttle valve, wherein a heat exchanger for precooling helium gas is replaced by a compressor for helium gas. A hydrogen liquefaction cycle, which is installed on the inlet side and sends liquid hydrogen for precooling to the heat exchanger for precooling helium gas, is a hydrogen liquefaction cycle in which a hydrogen storage alloy is inserted and heating / cooling can be switched to release and store hydrogen gas. A container, a heat exchanger for cooling the high-pressure hydrogen gas discharged from the heated reaction container, an expander and a throttle valve for combining the cooled hydrogen gas with reversible expansion and throttle expansion, It is composed of a separator for separating liquid hydrogen from hydrogen, and the separator for this hydrogen liquefaction cycle is connected to the heat exchanger for precooling the helium gas so that liquid hydrogen for precooling can be supplied. Liquefier helium characterized by.
JP63332046A 1988-12-28 1988-12-28 Helium liquefier Expired - Lifetime JPH079346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332046A JPH079346B2 (en) 1988-12-28 1988-12-28 Helium liquefier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332046A JPH079346B2 (en) 1988-12-28 1988-12-28 Helium liquefier

Publications (2)

Publication Number Publication Date
JPH02176386A JPH02176386A (en) 1990-07-09
JPH079346B2 true JPH079346B2 (en) 1995-02-01

Family

ID=18250536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332046A Expired - Lifetime JPH079346B2 (en) 1988-12-28 1988-12-28 Helium liquefier

Country Status (1)

Country Link
JP (1) JPH079346B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564062B (en) * 2011-09-19 2014-09-10 上海启元空分技术发展股份有限公司 Method for extracting high-purity liquid neon
GB2503731A (en) * 2012-07-06 2014-01-08 Highview Entpr Ltd Cryogenic energy storage and liquefaction process
GB201601878D0 (en) 2016-02-02 2016-03-16 Highview Entpr Ltd Improvements in power recovery
CN108444213B (en) * 2018-05-28 2023-09-26 江苏国富氢能技术装备股份有限公司 Purifying device in hydrogen liquefying device
CN109631494B (en) * 2019-01-03 2021-04-13 北京中科富海低温科技有限公司 Helium production system and production method
CN112361711A (en) * 2020-10-30 2021-02-12 北京航天试验技术研究所 Hydrogen liquefaction equipment provided with three turboexpander units connected in series
CN113983760A (en) * 2021-10-29 2022-01-28 四川空分设备(集团)有限责任公司 Helium ultra-low temperature purification and liquefaction system

Also Published As

Publication number Publication date
JPH02176386A (en) 1990-07-09

Similar Documents

Publication Publication Date Title
US4267701A (en) Helium liquefaction plant
US5161382A (en) Combined cryosorption/auto-refrigerating cascade low temperature system
US4169361A (en) Method of and apparatus for the generation of cold
US3144316A (en) Process and apparatus for liquefying low-boiling gases
JPS5880474A (en) Cryogenic cooling device
JPS60114681A (en) Method and device for liquefying natural gas
JPS59122868A (en) Cascade-turbo helium refrigerating liquefier utilizing neon gas
US3735601A (en) Low temperature refrigeration system
JPH079346B2 (en) Helium liquefier
CN114353432A (en) Hydrogen liquefaction device adopting magnetic refrigeration
Jones Sorption refrigeration research at JPL/NASA
CN114963688B (en) Hydrogen liquefaction system adopting low-temperature turbine compression cycle
AU701955B2 (en) Method for cooling and/or liquefying a medium
JPH10246524A (en) Freezing device
JP3211942B2 (en) Method and apparatus for driving coal gasification combined cycle system
JP2574815B2 (en) Cryogenic refrigeration equipment
JPH0275882A (en) Compressing method for low molecular weight gas
JPS6317360A (en) Cryogenic refrigerating method
JP2513711B2 (en) Neon refrigeration cycle
JPH06101919A (en) Cryogenic freezing apparatus
JPH03504267A (en) Adsorption cryogenic refrigerator and method for cooling objects by such a refrigerator
JPS62129676A (en) Gas liquefying refrigerator
JPS6332258A (en) Cryogenic refrigerator
JPS58210478A (en) Helium liquefier
WO2023240033A1 (en) Cryogenic gas cooling system and method