US3735601A - Low temperature refrigeration system - Google Patents
Low temperature refrigeration system Download PDFInfo
- Publication number
- US3735601A US3735601A US00160024A US3735601DA US3735601A US 3735601 A US3735601 A US 3735601A US 00160024 A US00160024 A US 00160024A US 3735601D A US3735601D A US 3735601DA US 3735601 A US3735601 A US 3735601A
- Authority
- US
- United States
- Prior art keywords
- refrigerant
- stream
- expansion
- heat exchanger
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 49
- 239000003507 refrigerant Substances 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 7
- 230000008016 vaporization Effects 0.000 claims description 5
- 238000009834 vaporization Methods 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 50
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 36
- 239000003345 natural gas Substances 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 6
- 239000000470 constituent Substances 0.000 abstract description 5
- 239000002826 coolant Substances 0.000 abstract description 5
- 238000000926 separation method Methods 0.000 abstract description 4
- 238000007599 discharging Methods 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000003092 Artemisia dracunculus Nutrition 0.000 description 1
- 240000001851 Artemisia dracunculus Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical class C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- -1 i.e. Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0085—Ethane; Ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0097—Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0208—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0232—Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
- F25J2270/06—Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
Definitions
- ABSTRACT A refrigeration system in which a pressurized gas provides the energy.
- the gas is expanded through an expansion engine and then passed through a heat exchanger, wherein the refrigeration effect resulting from its expansion is recovered.
- the expansion engine operates a conventional closed loop refrigeration system which is, in turn, cascaded through the low temperature gas discharging from the expansion engine.
- the refrigeration cycle may also reject heat at a higher temperature to any suitable cooling medium.
- the invention is particularly suited for the liquefaction of natural gas or for low temperature separation of gas constituents.
- This invention relates to a low temperature refrigeration method and apparatus particularly adapted for liquefying natural gas or the like.
- a source of gas under pressure is expanded through one or more expansion engines, such as expansion turbines, wherein the temperature of the gas is greatly reduced.
- the mechanical work of the expansion engine is used to drive a closed loop refrigeration cycle.
- the refrigerant is cooled initially to a suitable heat sink, such as a cooling tower, and is further cooled by passing it through a heat exchanger wherein the low temperature expanded gas from the expansion engine is the cooling medium.
- the refrigerant is passed through a second heat exchanger wherein it withdraws heat from another me dium.
- the gas to be liquefied is drawn from a pressurized source, and may be tapped from the same supply of energy gas for the expansion engine.
- the gas is passed through the two heat exchangers, whereby it is cooled first by the expanded gas and then by the at least partially vaporized refrigerant.
- the expanded energy gas may be conducted from the system for commercial use, as in a distribution system, or it may be compressed and recycled.
- FIG. 1 is a schematic flow diagram of a gas liquefaction system embodying features of this invention.
- FIG. 2 is a partial schematic flow diagram of another embodiment of this invention.
- a pressurized supply of gas is provided at pipeline 10 from any suitable source (not shown).
- the gas for example, may comprise natural gas supplied directly from a gas well or from a gas transmission pipeline.
- a stream of the gas is drawn off at 12 as the energy source for the refrigeration system of this invention.
- the gas is conducted through line 16 along a processing or expander stream E wherein it is employed to provide the mechanical work necessary to operate a closed refrigeration cycle R which is the principal component of this refrigerating system.
- the processing stream P is conducted through conduit 16 to one or more turbines 18, 20 and 22 (T T and T three being shown for purposes of illustration.
- the expander or proisessing stream E expands in the expansion turbines 18, 20 and22 to produce mechanical work, and exhausts therefrom at IE at a greatly reduced pressure and at a substantially lower temperature. Because the gas conducted to the turbines 18, 20 and 22 is at the relatively high temperature of the pipeline gas 10, there is a concomitant high drop in enthalpy through the turbine, which results in a correspondingly high output of work.
- the low temperature expanded processing stream E, from the final turbine stage is fed through conduit 24 to and through a heat exchanger 26 for cooling of the liquid refrigerant steam, and the medium to be refrigerated, as will be hereinafter described.
- the processing gas E which is now at a commercially usable pressure, may be returned through line 28 to pipeline for transmission to a distributing system (not shown).
- a pressure reducing regulator 30 enables some gas to be fed from the pipeline 10 to augment that fed from the processing system discharge line 28.
- the turbines 18, and 22 are mechanically coupled to compressors 32, 34 and 36 (C C and C which compress and circulate a refrigerant through heat exchangers. More particularly, in the refrigerating system R, a refrigerant, such as fluorinated hydrocarbon or ethylene, is pumped from the first compressor 32 and heat exchanger 38a, to the second compressor 34 and the heat exchanger 38b, and then through compressor 36 and heat exchanger 38c. At the heat exchangers 38a, 38b and 380, the heat resulting from the compression of the refrigerant is dissipated to the surrounding air, water, or other cooling medium, depending upon the type heat exchanger used.
- a refrigerant such as fluorinated hydrocarbon or ethylene
- the refrigerant flows through a conduit 40 to the heat exchanger 26 where it gives up heat and is condensed.
- the thus cooled liquid refrigerant emerges from the heat exchanger 26 and is then passed through an expansion or throttle valve 42 whereupon the liquid expands and returns to a mixed liquid-vapor state at a greatly reduced temperature.
- the cold fluid is then conducted through heat exchangers 46 and 26 where the sensible heat and latent heat of vaporization of the refrigerant are withdrawn from a medium to be cooled.
- the vaporized refrigerant may also help cool the oncoming liquid refrigerant flowing therethrough.
- the vaporized refrigerant is returned to the compressor 32 through a conduit 48 to complete the refrigeration cycle.
- the natural gas is delivered to the heat exchangers 26 and 46 along a liquefaction path L which includes a conduit 50 connected to the outlet of a conventional carbon dioxide separator 52, if required.
- the liquefaction fluid L passes sequentially through the heat exchangers 26 and 46 with negligible pressure loss, emerging from the heat exchanger 46 in a pressurized, but low temperature liquefied condition.
- the cold, pressurized liquefaction fluid L from the heat exchanger 46 then flows through temperature controlled expansion valve 54, which results in further cooling of the already cold fluid by reason of the Joule- Kelvin (Joule-Thomson) effect. After expansion through the valve 54, liquefaction is substantially complete, and the fluid is conducted through line 56 to an insulated storage tank 58.
- the refrigeration system of this invention may be employed to liquefy a portion of the natural gas in pipeline 10.
- a portion of the gas is drawn off at 60 from the line 16 and directed through the liquefaction path just described.
- the natural gas from the same source is diverted into two streams, an expander or processing stream E and a liquefaction stream L, one to provide the energy and the other to receive the refrigeration afiects.
- the liquefaction stream L is first cooled at heat exchanger 26 by the sec- 0nd cooling pass of the refrigerant stream R and by the cooled, expanded process stream E, from the expansion turbines 18, 20 and 22.
- the net effect might be, for example, to cool the gas from about F. to, say 1 10F.
- Also cooled at heat exchanger 20 is the refrigerant which, as described, was precooled at the heat exchangers 38a, 38b and 380.
- the gas is further cooled by the first cooling pass of the refrigerant stream, wherein the result could be to reduce the temperature of the liquefaction stream further to about 200F. which, at its relatively high pressure is sufficient to liquefy it. Then, after expansion through the valve 54, the stream is cooled to about 260F. and still liquefied. It is within the capability of those skilled in the art to utilize the liquefied stream for further cooling if desired, as by diverting some of the stream to return through the heat exchanger as a flash sub-cooler, or by drawing off vaporized fluid from the tank 58 for the same purpose.
- the process gas B may enter the system at about 1000 p.s.i. and at about 70F. and be cooled by expansion through the turbines 18, 20 and 22 to about -1 14F. Then, after passing through the heat exchanger 26, where it absorbs heat from the liquid refrigerant in line 40 and from the liquefaction stream L in line 50, it is reheated to about F. and is at a pressure suitable for a distribution system. In the meantime, the refirgerant is delivered to the compressors 32, 34 and 36 at about atmospheric pressure and at about 80F. in temperature. The pressure is progressively increased through the compressors to about, say 200 p.s.i.
- the temperature is also increased at each compressor, but after each pass through the heat exchanger, it is returned to about F. This greatly reduces the work load imposed on the expanded gas at the heat exchanger 26. There, the refrigerant is further cooled to about l00F. and liquefied. At the expansion valve, the temperature is further reduced to about 200F. as it enters the heat exchanger in a liquid-vapor state.
- a pressurized gas is cooled by expansion to function as a cooling medium and the mechanical work produced during such expansion drives a closed loop refrigeration cycle as the principal cooling source.
- the same gas may be directed in a separate path through heat exchangers to be cooled by the two sources just recited.
- the expanded process stream E, in line 28 may be passed through a compressor 62 which may be driven by an engine or motor 64.
- the compressed gas is then reintroduced to input line 12 at the pressure therein to circulate back through the processing stream E to the first turbine 18 and then continuing as in the embodiment of FIG. 1.
- a low temperature refrigeration method comprising the steps of:
- said liquefaction stream and said processing stream are drawn from the same supply source.
- said processing stream is not cooled prior to expansion thereof through said expansion engine.
- said refrigerant is precooled between said compressor means and said first heat exchanger.
- a refrigeration system comprising:
- expansion engine means to which said processing stream conduit is connected
- a closed refrigeration system including said compressor means, a refrigerant circulated by said compressor means, and an expansion means,
- refrigerant conductor means circulating said refrigerant through said first heat exchanger for cooling the liquid refrigerant prior to said expansion means
- a liquefaction stream conduit connected to said source and successively to said first and second heat exchangers.
- conduit means connecting the outlet of said compressor means to said heat sink means for initial cooling of said refrigerant.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
A refrigeration system in which a pressurized gas provides the energy. The gas is expanded through an expansion engine and then passed through a heat exchanger, wherein the refrigeration effect resulting from its expansion is recovered. The expansion engine operates a conventional closed loop refrigeration system which is, in turn, cascaded through the low temperature gas discharging from the expansion engine. Prior to being cooled by the low temperature gas, the refrigeration cycle may also reject heat at a higher temperature to any suitable cooling medium. The invention is particularly suited for the liquefaction of natural gas or for low temperature separation of gas constituents.
Description
States Patent Stannard, Jr.
[ LOW TEMPERATURE REFRIGERATION SYSTEM [76] Inventor: James H. Stannard, Jr., 583 Tarragon Drive, San Rafael, Calif.
[22] Filed: July 16, 1971 [21] Appl.No.: 160,024
[56] References Cited UNITED STATES PATENTS 3,300,991 1/1967 Carney ..62/335 2,753,700 7/1956 Morrison.... ..62/87 3,002,362 10/1961 Morrison ..62/87 FOREIGN PATENTS OR APPLICATIONS 249,486 4/1948 Switzerland ..62/332 [4 1 May 29,1973
Primary Examiner-William .I. Wye Att0rney-Melvin R. Stidham [5 7] ABSTRACT A refrigeration system in which a pressurized gas provides the energy. The gas is expanded through an expansion engine and then passed through a heat exchanger, wherein the refrigeration effect resulting from its expansion is recovered. The expansion engine operates a conventional closed loop refrigeration system which is, in turn, cascaded through the low temperature gas discharging from the expansion engine. Prior to being cooled by the low temperature gas, the refrigeration cycle may also reject heat at a higher temperature to any suitable cooling medium. The invention is particularly suited for the liquefaction of natural gas or for low temperature separation of gas constituents.
7 Claims, 2 Drawing Figures BACKGROUND OF THE INVENTION This invention relates to a low temperature refrigeration method and apparatus particularly adapted for liquefying natural gas or the like.
There are a number of known processes for the production of very low temperature (cryogenic) refrigeration. Most of such processes rely upon the application of externally applied mechanical work to drive conventional refrigeration equipment which may be cascaded from one refrigeration cycle to the next to provide the very low temperature which may be required to liquefy natural gas or to accomplish other cryogenic tasks.
Several expansion cycles have been utilized for the lique-faction of gases which utilize the potential energy of the feed gas as the source of liquefaction refrigera tion. While such expansion cycles have been used successfully for the liquefaction of both atmospheric gases, i.e., Helium, Nitrogen and Oxygen, and natural gas, as well as the low temperature separation of natural gas constituents, they have not fully utilized the potential energy available in the expansion of a high pressure stream of gas.
In the natural gas industry, it is often necessary to ex pand large volumes of natural gas from a high pressure to a low pressure to enable its use. Several commercial installations have been constructed to utilize the refrigeration available from this expansion for the purpose of liquefying or separating the natural gas constituents. However, such expander-cycle plants have had limited application because of the relatively small amount of refrigeration that they are capable of producing.
OBJECTS OF THE INVENTION It is an object of this invention to provide an improved method and apparatus which is commercially advantageous for the economic production of large quantities of cryogenic refrigeration.
It is a further object of this invention to provide a highly efficient method of liquefying natural gas, or the like.
It is a further object of this invention to provide a low temperature refrigeration, utilizing a pressurized gas to drive a refrigeration system which contributes to the cooling and lique-faction of gas, and a means for the rejection of heat from the liquefaction cycle.
It is still a further object of this invention to provide a low temperature refrigeration system utilizing the refrigeration effect produced by expanding a pressurized gas through an expansion engine, which, in turn, drives a system producing additional refrigeration, which may be cascaded from the already low temperature produced by the expansion engine.
It is a further object of this invention to provide a system for liquefying natural gas or the like wherein a portion of the gas is expanded through an expansion engine, which, in turn, drives a closed loop refrigeration cycle. Both the refrigeration effect produced by the expanded gas and the refrigeration cycle are employed to cool a liquefaction stream of the natural gas.
Other objects and advantages of this invention will become apparent from the description to follow, particularly when read in conjunction with the accompanying drawing.
BRIEF SUMMARY OF THE INVENTION In the low temperature refrigeration system of this invention, a source of gas under pressure is expanded through one or more expansion engines, such as expansion turbines, wherein the temperature of the gas is greatly reduced. The mechanical work of the expansion engine is used to drive a closed loop refrigeration cycle. After compression, the refrigerant is cooled initially to a suitable heat sink, such as a cooling tower, and is further cooled by passing it through a heat exchanger wherein the low temperature expanded gas from the expansion engine is the cooling medium. After expansion, the refrigerant is passed through a second heat exchanger wherein it withdraws heat from another me dium.
Where the refrigeration system of this invention is employed for the liquefaction of natural gas or the like, the gas to be liquefied is drawn from a pressurized source, and may be tapped from the same supply of energy gas for the expansion engine. In any event, the gas is passed through the two heat exchangers, whereby it is cooled first by the expanded gas and then by the at least partially vaporized refrigerant. In the meantime, the expanded energy gas may be conducted from the system for commercial use, as in a distribution system, or it may be compressed and recycled.
THE DRAWINGS FIG. 1 is a schematic flow diagram of a gas liquefaction system embodying features of this invention; and FIG. 2 is a partial schematic flow diagram of another embodiment of this invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The Embodiment of FIG. 1
In the flow diagram of FIG. 1, a pressurized supply of gas is provided at pipeline 10 from any suitable source (not shown). The gas, for example, may comprise natural gas supplied directly from a gas well or from a gas transmission pipeline. In any event, a stream of the gas is drawn off at 12 as the energy source for the refrigeration system of this invention.
After removal of water and other contaminents if required, for example, with an adsorber 14, the gas is conducted through line 16 along a processing or expander stream E wherein it is employed to provide the mechanical work necessary to operate a closed refrigeration cycle R which is the principal component of this refrigerating system. Specifically, the processing stream P is conducted through conduit 16 to one or more turbines 18, 20 and 22 (T T and T three being shown for purposes of illustration. The expander or proisessing stream E expands in the expansion turbines 18, 20 and22 to produce mechanical work, and exhausts therefrom at IE at a greatly reduced pressure and at a substantially lower temperature. Because the gas conducted to the turbines 18, 20 and 22 is at the relatively high temperature of the pipeline gas 10, there is a concomitant high drop in enthalpy through the turbine, which results in a correspondingly high output of work.
The low temperature expanded processing stream E, from the final turbine stage is fed through conduit 24 to and through a heat exchanger 26 for cooling of the liquid refrigerant steam, and the medium to be refrigerated, as will be hereinafter described. From the heat exchanger 26, the processing gas E, which is now at a commercially usable pressure, may be returned through line 28 to pipeline for transmission to a distributing system (not shown). A pressure reducing regulator 30 enables some gas to be fed from the pipeline 10 to augment that fed from the processing system discharge line 28.
The turbines 18, and 22 are mechanically coupled to compressors 32, 34 and 36 (C C and C which compress and circulate a refrigerant through heat exchangers. More particularly, in the refrigerating system R, a refrigerant, such as fluorinated hydrocarbon or ethylene, is pumped from the first compressor 32 and heat exchanger 38a, to the second compressor 34 and the heat exchanger 38b, and then through compressor 36 and heat exchanger 38c. At the heat exchangers 38a, 38b and 380, the heat resulting from the compression of the refrigerant is dissipated to the surrounding air, water, or other cooling medium, depending upon the type heat exchanger used. From the heat exchanger 38c, the refrigerant flows through a conduit 40 to the heat exchanger 26 where it gives up heat and is condensed. The thus cooled liquid refrigerant emerges from the heat exchanger 26 and is then passed through an expansion or throttle valve 42 whereupon the liquid expands and returns to a mixed liquid-vapor state at a greatly reduced temperature. The cold fluid is then conducted through heat exchangers 46 and 26 where the sensible heat and latent heat of vaporization of the refrigerant are withdrawn from a medium to be cooled. In the heat exchanger 26, the vaporized refrigerant may also help cool the oncoming liquid refrigerant flowing therethrough. From the heat exchanger 26, the vaporized refrigerant is returned to the compressor 32 through a conduit 48 to complete the refrigeration cycle.
Where the refrigeration system of this invention is employed for liquefaction of natural gas or for low temperature separation of its constituents, the natural gas is delivered to the heat exchangers 26 and 46 along a liquefaction path L which includes a conduit 50 connected to the outlet of a conventional carbon dioxide separator 52, if required. With carbon dioxide thus removed, the liquefaction fluid L passes sequentially through the heat exchangers 26 and 46 with negligible pressure loss, emerging from the heat exchanger 46 in a pressurized, but low temperature liquefied condition.
The cold, pressurized liquefaction fluid L from the heat exchanger 46 then flows through temperature controlled expansion valve 54, which results in further cooling of the already cold fluid by reason of the Joule- Kelvin (Joule-Thomson) effect. After expansion through the valve 54, liquefaction is substantially complete, and the fluid is conducted through line 56 to an insulated storage tank 58.
The refrigeration system of this invention may be employed to liquefy a portion of the natural gas in pipeline 10. In such event, a portion of the gas is drawn off at 60 from the line 16 and directed through the liquefaction path just described. Thus, the natural gas from the same source is diverted into two streams, an expander or processing stream E and a liquefaction stream L, one to provide the energy and the other to receive the refrigeration afiects.
Reviewing the cooling process, the liquefaction stream L is first cooled at heat exchanger 26 by the sec- 0nd cooling pass of the refrigerant stream R and by the cooled, expanded process stream E, from the expansion turbines 18, 20 and 22. The net effect might be, for example, to cool the gas from about F. to, say 1 10F. Also cooled at heat exchanger 20 is the refrigerant which, as described, was precooled at the heat exchangers 38a, 38b and 380.
At the second heat exchanger 46, the gas is further cooled by the first cooling pass of the refrigerant stream, wherein the result could be to reduce the temperature of the liquefaction stream further to about 200F. which, at its relatively high pressure is sufficient to liquefy it. Then, after expansion through the valve 54, the stream is cooled to about 260F. and still liquefied. It is within the capability of those skilled in the art to utilize the liquefied stream for further cooling if desired, as by diverting some of the stream to return through the heat exchanger as a flash sub-cooler, or by drawing off vaporized fluid from the tank 58 for the same purpose.
In the refrigeration system, the process gas B may enter the system at about 1000 p.s.i. and at about 70F. and be cooled by expansion through the turbines 18, 20 and 22 to about -1 14F. Then, after passing through the heat exchanger 26, where it absorbs heat from the liquid refrigerant in line 40 and from the liquefaction stream L in line 50, it is reheated to about F. and is at a pressure suitable for a distribution system. In the meantime, the refirgerant is delivered to the compressors 32, 34 and 36 at about atmospheric pressure and at about 80F. in temperature. The pressure is progressively increased through the compressors to about, say 200 p.s.i. Of course, the temperature is also increased at each compressor, but after each pass through the heat exchanger, it is returned to about F. This greatly reduces the work load imposed on the expanded gas at the heat exchanger 26. There, the refrigerant is further cooled to about l00F. and liquefied. At the expansion valve, the temperature is further reduced to about 200F. as it enters the heat exchanger in a liquid-vapor state.
Thus, in this system, a pressurized gas is cooled by expansion to function as a cooling medium and the mechanical work produced during such expansion drives a closed loop refrigeration cycle as the principal cooling source. Optionally, the same gas may be directed in a separate path through heat exchangers to be cooled by the two sources just recited.
THE EMBODIMENT OF FIG. 2
In the embodiment of FIG. 2, the expanded process stream E, in line 28 may be passed through a compressor 62 which may be driven by an engine or motor 64. The compressed gas is then reintroduced to input line 12 at the pressure therein to circulate back through the processing stream E to the first turbine 18 and then continuing as in the embodiment of FIG. 1.
While this invention has been described in detail in conjunction with preferred embodiments thereof, it is obvious that various changes and modifications may suggest themselves to those skilled in the art without departing from the spirit and scope of the invention as defined by the appended claims.
What is claimed is:
l. A low temperature refrigeration method comprising the steps of:
drawing off a processing stream of pressurized gas from a supply source thereof,
expanding the stream through an expansion engine,
then
passing the expanded stream through a first heat exchanger,
employing said expansion engine to drive a refrigeration system compressor,
circulating a refrigerant in said system from said compressor through said first heat exchanger to cool said refrigerant prior to expansion and vaporization thereof,
conducting said refrigerant from said first heat exchanger,
expanding said refrigerant to at least partial vaporization,
then passing said refrigerant through a second heat exchanger,
drawing ofi a liquefaction stream of pressuirzed gas from a supply source thereof, and
passing the pressurized gas successively through said first and second heat exchangers to be cooled first by said expanded stream and further by said expanded refrigerant.
2. The method defined by claim 1 wherein:
said liquefaction stream and said processing stream are drawn from the same supply source.
3. The low temperature refrigeration method defined by claim 1 including the further steps of:
compressing the expandedprocessing stream to the level of said supply source, and
then conducting said processing stream to said source.
4. The method of providing refrigeration defined by claim 1 wherein:
said processing stream is not cooled prior to expansion thereof through said expansion engine.
5. The method defined by claim 1 wherein:
said refrigerant is precooled between said compressor means and said first heat exchanger.
6. A refrigeration system comprising:
a source of pressurized gas,
a processing stream conduit connected to said source,
expansion engine means to which said processing stream conduit is connected,
a first heat exchanger connected to the outlet of said expansion engine means,
compressor means to which said expansion engine means are coupled for driving said compressor means,
a closed refrigeration system including said compressor means, a refrigerant circulated by said compressor means, and an expansion means,
refrigerant conductor means circulating said refrigerant through said first heat exchanger for cooling the liquid refrigerant prior to said expansion means,
a liquefaction stream conduit connected to said source and successively to said first and second heat exchangers.
7. The system defined by claim 6 including:
auxiliary heat sink means, and
conduit means connecting the outlet of said compressor means to said heat sink means for initial cooling of said refrigerant.
Claims (7)
1. A low temperature refrigeration method comprising the steps of: drawing off a processing stream of pressurized gas from a supply source thereof, expanding the stream through an expansion engine, then passing the expanded stream through a first heat exchanger, employing said expansion engine to drive a refrigeration system compressor, circulating a refrigerant in said system from said compressor through said first heat exchanger to cool said refrigerant prior to expansion and vaporization thereof, conducting said refrigerant from said first heat exchanger, expanding said refrigerant to at least partial vaporization, then passing said refrigerant through a second heat exchanger, drawing off a liquefaction stream of pressurized gas from a supply source thereof, and passing the pressurized gas successively through said first and second heat exchangers to be cooled first by said expanded stream and further by said expanded refrigerant.
2. The method defined by claim 1 wherein: said liquefaction stream and said processing stream are drawn from the same supply source.
3. The low temperature refrigeration method defined by claim 1 including the further steps of: compressing the expanded processing stream to the level of said supply source, and then conducting said processing stream to said source.
4. The method of providIng refrigeration defined by claim 1 wherein: said processing stream is not cooled prior to expansion thereof through said expansion engine.
5. The method defined by claim 1 wherein: said refrigerant is precooled between said compressor means and said first heat exchanger.
6. A refrigeration system comprising: a source of pressurized gas, a processing stream conduit connected to said source, expansion engine means to which said processing stream conduit is connected, a first heat exchanger connected to the outlet of said expansion engine means, compressor means to which said expansion engine means are coupled for driving said compressor means, a closed refrigeration system including said compressor means, a refrigerant circulated by said compressor means, and an expansion means, refrigerant conductor means circulating said refrigerant through said first heat exchanger for cooling the liquid refrigerant prior to said expansion means, a liquefaction stream conduit connected to said source and successively to said first and second heat exchangers.
7. The system defined by claim 6 including: auxiliary heat sink means, and conduit means connecting the outlet of said compressor means to said heat sink means for initial cooling of said refrigerant.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16002471A | 1971-07-16 | 1971-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3735601A true US3735601A (en) | 1973-05-29 |
Family
ID=22575163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00160024A Expired - Lifetime US3735601A (en) | 1971-07-16 | 1971-07-16 | Low temperature refrigeration system |
Country Status (1)
Country | Link |
---|---|
US (1) | US3735601A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522636A (en) * | 1984-02-08 | 1985-06-11 | Kryos Energy Inc. | Pipeline gas pressure reduction with refrigeration generation |
US4711093A (en) * | 1987-02-27 | 1987-12-08 | Kryos Energy Inc. | Cogeneration of electricity and refrigeration by work-expanding pipeline gas |
US4797141A (en) * | 1987-04-21 | 1989-01-10 | Carburos Metalicos S.A. | Method for obtaining CO2 and N2 from internal combustion engine or turbine generated gases |
US5036678A (en) * | 1990-03-30 | 1991-08-06 | General Electric Company | Auxiliary refrigerated air system employing mixture of air bled from turbine engine compressor and air recirculated within auxiliary system |
US5056335A (en) * | 1990-04-02 | 1991-10-15 | General Electric Company | Auxiliary refrigerated air system employing input air from turbine engine compressor after bypassing and conditioning within auxiliary system |
US5444971A (en) * | 1993-04-28 | 1995-08-29 | Holenberger; Charles R. | Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers |
US6070418A (en) * | 1997-12-23 | 2000-06-06 | Alliedsignal Inc. | Single package cascaded turbine environmental control system |
WO2000052403A1 (en) * | 1999-03-04 | 2000-09-08 | Robert Wissolik | Natural gas letdown liquefaction system |
WO2000057118A1 (en) * | 1999-03-23 | 2000-09-28 | Robert Wissolik | Industrial gas pipeline letdown liquefaction system |
US6128909A (en) * | 1998-06-04 | 2000-10-10 | Alliedsignal Inc. | Air cycle environmental control systems with two stage compression and expansion and separate ambient air fan |
US20050144979A1 (en) * | 2004-01-06 | 2005-07-07 | Zollinger William T. | Method of liquifying a gas |
RU2576410C2 (en) * | 2014-02-28 | 2016-03-10 | Закрытое акционерное общество "Криогаз" | Natural gas liquefaction method |
WO2019008107A1 (en) * | 2017-07-07 | 2019-01-10 | Global Lng Services As | Large scale coastal liquefaction |
EP3489601A1 (en) * | 2017-11-27 | 2019-05-29 | Air Products And Chemicals, Inc. | Method and system for cooling a hydrocarbon stream |
US20190195536A1 (en) * | 2016-06-22 | 2019-06-27 | Samsung Heavy Ind. Co., Ltd | Fluid cooling apparatus |
EP3695859A1 (en) | 2010-02-19 | 2020-08-19 | Fenwal, Inc. | Authorization scheme to minimize the use of unauthorized medical device disposables on a medical device instrument |
US11009291B2 (en) * | 2018-06-28 | 2021-05-18 | Global Lng Services As | Method for air cooled, large scale, floating LNG production with liquefaction gas as only refrigerant |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH249486A (en) * | 1944-06-03 | 1947-06-30 | Heller Laszlo | Method and device for cooling gases and liquids. |
FR949331A (en) * | 1946-07-13 | 1949-08-26 | Brown | Device for air conditioning mines |
DE913405C (en) * | 1951-04-13 | 1954-06-14 | Gutehoffnungshuette Sterkrade | Process to increase the cooling effect and economy of compressed air in mining operations |
US2753700A (en) * | 1952-03-27 | 1956-07-10 | Constock Liquid Methane Corp | Method for using natural gas |
US3002362A (en) * | 1959-09-24 | 1961-10-03 | Liquifreeze Company Inc | Natural gas expansion refrigeration system |
US3300991A (en) * | 1964-07-07 | 1967-01-31 | Union Carbide Corp | Thermal reset liquid level control system for the liquefaction of low boiling gases |
GB1184854A (en) * | 1967-01-31 | 1970-03-18 | Liquid Air Canada | Improvements in or relating to the Refrigerating of Gases |
-
1971
- 1971-07-16 US US00160024A patent/US3735601A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH249486A (en) * | 1944-06-03 | 1947-06-30 | Heller Laszlo | Method and device for cooling gases and liquids. |
FR949331A (en) * | 1946-07-13 | 1949-08-26 | Brown | Device for air conditioning mines |
DE913405C (en) * | 1951-04-13 | 1954-06-14 | Gutehoffnungshuette Sterkrade | Process to increase the cooling effect and economy of compressed air in mining operations |
US2753700A (en) * | 1952-03-27 | 1956-07-10 | Constock Liquid Methane Corp | Method for using natural gas |
US3002362A (en) * | 1959-09-24 | 1961-10-03 | Liquifreeze Company Inc | Natural gas expansion refrigeration system |
US3300991A (en) * | 1964-07-07 | 1967-01-31 | Union Carbide Corp | Thermal reset liquid level control system for the liquefaction of low boiling gases |
GB1184854A (en) * | 1967-01-31 | 1970-03-18 | Liquid Air Canada | Improvements in or relating to the Refrigerating of Gases |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522636A (en) * | 1984-02-08 | 1985-06-11 | Kryos Energy Inc. | Pipeline gas pressure reduction with refrigeration generation |
US4711093A (en) * | 1987-02-27 | 1987-12-08 | Kryos Energy Inc. | Cogeneration of electricity and refrigeration by work-expanding pipeline gas |
WO1988006704A1 (en) * | 1987-02-27 | 1988-09-07 | The Brooklyn Union Gas Company | Cogeneration of electricity and refrigeration by work-expanding pipeline gas |
US4797141A (en) * | 1987-04-21 | 1989-01-10 | Carburos Metalicos S.A. | Method for obtaining CO2 and N2 from internal combustion engine or turbine generated gases |
US5036678A (en) * | 1990-03-30 | 1991-08-06 | General Electric Company | Auxiliary refrigerated air system employing mixture of air bled from turbine engine compressor and air recirculated within auxiliary system |
US5056335A (en) * | 1990-04-02 | 1991-10-15 | General Electric Company | Auxiliary refrigerated air system employing input air from turbine engine compressor after bypassing and conditioning within auxiliary system |
US5444971A (en) * | 1993-04-28 | 1995-08-29 | Holenberger; Charles R. | Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers |
US6070418A (en) * | 1997-12-23 | 2000-06-06 | Alliedsignal Inc. | Single package cascaded turbine environmental control system |
US6128909A (en) * | 1998-06-04 | 2000-10-10 | Alliedsignal Inc. | Air cycle environmental control systems with two stage compression and expansion and separate ambient air fan |
WO2000052403A1 (en) * | 1999-03-04 | 2000-09-08 | Robert Wissolik | Natural gas letdown liquefaction system |
WO2000057118A1 (en) * | 1999-03-23 | 2000-09-28 | Robert Wissolik | Industrial gas pipeline letdown liquefaction system |
US6196021B1 (en) | 1999-03-23 | 2001-03-06 | Robert Wissolik | Industrial gas pipeline letdown liquefaction system |
US20050144979A1 (en) * | 2004-01-06 | 2005-07-07 | Zollinger William T. | Method of liquifying a gas |
US6997012B2 (en) * | 2004-01-06 | 2006-02-14 | Battelle Energy Alliance, Llc | Method of Liquifying a gas |
EP3695859A1 (en) | 2010-02-19 | 2020-08-19 | Fenwal, Inc. | Authorization scheme to minimize the use of unauthorized medical device disposables on a medical device instrument |
RU2576410C2 (en) * | 2014-02-28 | 2016-03-10 | Закрытое акционерное общество "Криогаз" | Natural gas liquefaction method |
US20190195536A1 (en) * | 2016-06-22 | 2019-06-27 | Samsung Heavy Ind. Co., Ltd | Fluid cooling apparatus |
US11859873B2 (en) * | 2016-06-22 | 2024-01-02 | Samsung Heavy Ind. Co., Ltd | Fluid cooling apparatus |
WO2019008107A1 (en) * | 2017-07-07 | 2019-01-10 | Global Lng Services As | Large scale coastal liquefaction |
CN110869686A (en) * | 2017-07-07 | 2020-03-06 | 全球As液化天然气服务 | Large scale coastal liquefaction |
US11402152B2 (en) | 2017-07-07 | 2022-08-02 | Tor Christensen | Large scale coastal liquefaction |
EP3489601A1 (en) * | 2017-11-27 | 2019-05-29 | Air Products And Chemicals, Inc. | Method and system for cooling a hydrocarbon stream |
US11624555B2 (en) | 2017-11-27 | 2023-04-11 | Air Products And Chemicals, Inc. | Method and system for cooling a hydrocarbon stream |
US11009291B2 (en) * | 2018-06-28 | 2021-05-18 | Global Lng Services As | Method for air cooled, large scale, floating LNG production with liquefaction gas as only refrigerant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3735601A (en) | Low temperature refrigeration system | |
US3323315A (en) | Gas liquefaction employing an evaporating and gas expansion refrigerant cycles | |
US4169361A (en) | Method of and apparatus for the generation of cold | |
US4267701A (en) | Helium liquefaction plant | |
US3677019A (en) | Gas liquefaction process and apparatus | |
US3347055A (en) | Method for recuperating refrigeration | |
US2494120A (en) | Expansion refrigeration system and method | |
CA2618576C (en) | Natural gas liquefaction process for lng | |
CN100510574C (en) | Cryogenic liquefying refrigerating method and system | |
US4638639A (en) | Gas refrigeration method and apparatus | |
US3144316A (en) | Process and apparatus for liquefying low-boiling gases | |
US3300991A (en) | Thermal reset liquid level control system for the liquefaction of low boiling gases | |
US3018634A (en) | Method and apparatus for vaporizing liquefied gases and obtaining power | |
US3203191A (en) | Energy derived from expansion of liquefied gas | |
EA006724B1 (en) | Process for producing liquid natural gas (variants) | |
WO2008090165A2 (en) | Method and apparatus for cooling a hydrocarbon stream | |
US4346563A (en) | Super critical helium refrigeration process and apparatus | |
KR20190120776A (en) | Polar cascade method for liquefying natural gas in high pressure cycle with precooling by ethane and auxiliary cooling by nitrogen and plant for its implementation | |
US3194025A (en) | Gas liquefactions by multiple expansion refrigeration | |
JP2016128738A (en) | Gas liquefier and gas liquefying method | |
KR940000732B1 (en) | Method and apparatus for producing a liquefied permanent gas stream | |
US20210381756A1 (en) | Cooling method for liquefying a feed gas | |
US3224207A (en) | Liquefaction of gases | |
AU2015388393A1 (en) | Natural gas production system and method | |
US3609984A (en) | Process for producing liquefied hydrogen,helium and neon |