JPH0667511B2 - Anaerobic water treatment method - Google Patents

Anaerobic water treatment method

Info

Publication number
JPH0667511B2
JPH0667511B2 JP3385288A JP3385288A JPH0667511B2 JP H0667511 B2 JPH0667511 B2 JP H0667511B2 JP 3385288 A JP3385288 A JP 3385288A JP 3385288 A JP3385288 A JP 3385288A JP H0667511 B2 JPH0667511 B2 JP H0667511B2
Authority
JP
Japan
Prior art keywords
carrier
methane
reaction tank
fermenting bacteria
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3385288A
Other languages
Japanese (ja)
Other versions
JPH01210098A (en
Inventor
和夫 紫崎
良輔 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3385288A priority Critical patent/JPH0667511B2/en
Publication of JPH01210098A publication Critical patent/JPH01210098A/en
Publication of JPH0667511B2 publication Critical patent/JPH0667511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は下水や産業廃水などの有機性廃水を嫌気性流動
床型処理装置によって処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a method for treating organic wastewater such as sewage and industrial wastewater by an anaerobic fluidized bed type treatment apparatus.

(従来の技術) 嫌気性細菌であるメタン発酵細菌を利用した嫌気性処理
方法は、嫌気性処理方法と比較してi)余剰汚泥発生量
が少ない、ii)曝気のための動力が不要である、などの
利点がある。しかし嫌気性処理方法は有機物の分解速度
が小さいため処理時間が長くかかるという欠点があっ
た。このような欠点を解消するためには細菌の高濃度化
を図り処理時間を短縮する必要があった。このため砂、
プラスチック類、セラミックスなどの担体にメタン発酵
細菌を付着させ、これを反応槽内で流動状態に保ちなが
ら処理を行う流動床型水処理方法が提案されている。こ
のような方法ではメタン発酵細菌が高濃度に保持できる
ため、処理時間の短縮が可能である。第3図に従来の流
動床型水処理方法の概略のフロー図を示す。第3図にお
いて、下水および産業廃水などの有機性廃水はは流入管
1を介してポンプ2によって反応槽3に流入される。ま
た処理水は反応槽3の上部に設けられている処理水排出
管5を介して排出される。反応槽3内の担体を流動させ
る上昇流を与えるために処理水の一部は循環管6を介し
てポンプ7によって反応槽3の下部へ循環される。
(Prior Art) An anaerobic treatment method using methane-fermenting bacteria, which is an anaerobic bacterium, i) produces less excess sludge than anaerobic treatment methods, and ii) does not require power for aeration. , And so on. However, the anaerobic treatment method has a drawback that the treatment time is long because the decomposition rate of organic substances is low. In order to eliminate such defects, it was necessary to increase the concentration of bacteria and shorten the treatment time. For this reason sand,
A fluidized bed-type water treatment method has been proposed in which methane-fermenting bacteria are attached to a carrier such as plastics or ceramics, and the methane-fermenting bacteria are treated while being kept in a fluidized state in a reaction tank. In such a method, since the methane-fermenting bacteria can be maintained at a high concentration, the processing time can be shortened. FIG. 3 shows a schematic flow chart of a conventional fluidized bed type water treatment method. In FIG. 3, organic wastewater such as sewage and industrial wastewater is introduced into a reaction tank 3 by a pump 2 via an inflow pipe 1. Further, the treated water is discharged through the treated water discharge pipe 5 provided at the upper part of the reaction tank 3. A part of the treated water is circulated to the lower part of the reaction tank 3 by the pump 7 through the circulation pipe 6 in order to give an upward flow for flowing the carrier in the reaction tank 3.

反応槽3ではメタン発酵細菌を付着した担体が担体流動
層4を形成している。廃水がこの担体流動層4を流動す
る間に有機性物質はメタン発酵細菌によって嫌気的に処
理され、炭酸ガスとメタンを主成分とする発酵ガスを生
成する。発酵ガスはガス排出管8を介して排出される。
In the reaction tank 3, the carrier to which the methane-fermenting bacteria is attached forms the carrier fluidized bed 4. While the wastewater flows through the carrier fluidized bed 4, the organic substances are anaerobically treated by the methane-fermenting bacteria to produce a fermentation gas containing carbon dioxide and methane as main components. The fermentation gas is discharged through the gas discharge pipe 8.

(発明が解決しようとする課題) 上述した従来の流動床型水処理方法において、良好な処
理を行うためには担体流動層を形成する担体に十分な量
のメタン発酵細菌を付着させる必要がある。このための
期間として4,5ケ月以上の長期間を要するため、水処理
装置の立上げの際には、この期間は計画よりもかなり低
い負荷で運転しなければならないという問題点があっ
た。
(Problems to be Solved by the Invention) In the conventional fluidized bed water treatment method described above, it is necessary to attach a sufficient amount of methane-fermenting bacteria to the carrier forming the carrier fluidized bed in order to perform good treatment. . Since this requires a long period of 4 months or more, there is a problem in that when starting up the water treatment device, it is necessary to operate with a load much lower than planned during this period.

さらに、従来の流動床型水処理方法では、廃水中の固形
物の除去が比較的悪く、通常50%程度であった。このた
め固形物濃度が高い廃水の場合には処理水の固形物濃度
が高いという問題点があった。
Furthermore, in the conventional fluidized bed type water treatment method, the removal of solids from the waste water was relatively poor, and was usually about 50%. Therefore, in the case of waste water having a high solid content concentration, there is a problem that the solid content concentration of the treated water is high.

このため、立上げ期間がより短く、廃水中の固形物除去
にすぐれている流動床型水処理方法の開発が期待されて
いた。
Therefore, it has been expected to develop a fluidized bed type water treatment method which has a shorter start-up period and is excellent in removing solid matters in wastewater.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 本発明は、有機性廃水を反応槽へ供給し、嫌気性条件下
で処理する嫌気性水処理方法に関するもので、粒径0.1
〜0.3mm、比重1〜3程度の担体を充填した反応槽の初
期立ち上げ時に、種菌体として、1000〜10000vss-mg/
(ここで、vssはVolatile Suspended Solidsの略で、
菌体を表す単位の一種である。)の濃度に調整したメタ
ン発酵細菌を反応槽に投入し、これを線流速1〜20m/
時の速度で循環させ、メタン発酵細菌の固定化担体への
付着および造粒物の形成を行うことにより、反応槽下部
にはメタン発酵細菌を付着した担体流動層を形成せし
め、該担体流動層の上部には固定化担体を核にしたメタ
ン発酵細菌の造粒物流動層を形成せしめて処理を行うこ
とを特徴とする。
(Means for Solving the Problem) The present invention relates to an anaerobic water treatment method in which organic wastewater is supplied to a reaction tank and treated under anaerobic conditions.
〜0.3mm, specific gravity of about 1〜3, when the reaction vessel filled with the carrier was initially set up, the seed cells were 1000-10,000vss-mg /
(Here, vss is an abbreviation for Volatile Suspended Solids,
It is a type of unit that represents bacterial cells. ) The methane-fermenting bacterium adjusted to the concentration of) is put into a reaction tank, and the linear velocity is 1 to 20 m
By circulating the methane-fermenting bacteria on the immobilized carrier and forming granules at the speed of time, a carrier fluidized bed with the methane-fermenting bacteria adhered is formed in the lower part of the reaction tank. It is characterized by forming a fluidized bed of a granulated product of methane-fermenting bacteria with an immobilized carrier as a core in the upper part of the treatment.

(作 用) 本発明は、担体を充てんした反応槽内に上向流でメタン
発酵細菌を循環することによって、メタン発酵細菌が担
体を核にして短期間で1〜10mmの大きさに造粒すること
を発見して完成したものである。ここでメタン発酵細菌
が短期間で造粒するためには、1,000〜10,000mg/の
メタン発酵細菌を上向流で反応槽内を循環し、この上向
流によって担体を流動させ、特にその担体流動層の上方
境界面付近では比較的激しい担体の流動を生じさせるこ
とが重要である。このため上向流の速度を適正に調節す
ることが重要になる。適正な流速は用いる担体の比重、
大きさおよび形状などによって異なるが、1〜20m/時
の範囲が望ましい。
(Operation) The present invention circulates methane-fermenting bacteria in a carrier-filled reaction vessel in an upward flow, so that the methane-fermenting bacteria can be granulated in a size of 1 to 10 mm in a short period with the carrier as a nucleus. It was discovered and completed. In order to granulate the methane-fermenting bacteria in a short period of time, 1,000-10,000 mg / methane-fermenting bacteria are circulated in the reaction tank in an upward flow, and the carrier is caused to flow by the upward flow. It is important to cause relatively vigorous carrier flow near the upper boundary of the fluidized bed. Therefore, it is important to properly control the velocity of the upward flow. The proper flow velocity is the specific gravity of the carrier used,
The range of 1 to 20 m / hour is desirable, although it depends on the size and shape.

従来、流動床型水処理方法において、メタン発酵細菌の
造粒物が担体流動層の上方に形成されることが知られて
いる。この場合は担体表面上に付着しているメタン発酵
細菌の生物膜が廃水中の固形物を付着しながら成長して
比較的長間を要して自然に造粒化される。これに対して
本発明では、メタン発酵細菌の造粒物を積極的に形成さ
せることが特徴で、しかも担体を核にして数〜数十時間
で形成されるものである。また、従来知られている造粒
物は1〜2mm程度の大きさであるのに対し、本発明によ
る造粒物は1〜10mm程度である。以上述べたように本発
明による造粒物は従来知られている造粒物とは異なるも
のである。
Conventionally, in a fluidized bed type water treatment method, it is known that granules of methane-fermenting bacteria are formed above a carrier fluidized bed. In this case, the biofilm of methane-fermenting bacteria adhering to the surface of the carrier grows while adhering the solid matter in the waste water, and naturally granulates for a relatively long time. On the other hand, the present invention is characterized in that a granulated product of methane-fermenting bacteria is positively formed, and is formed in several to several tens of hours with the carrier as a nucleus. The conventionally known granules have a size of about 1 to 2 mm, whereas the granules according to the present invention have a size of about 1 to 10 mm. As described above, the granulated product according to the present invention is different from the conventionally known granulated product.

本発明では、反応槽の初期立上げ時にメタン発酵細菌の
造粒物を形成させ、担体にメタン発酵細菌が十分に付着
するまでの期間は、主に造粒したメタン発酵細菌によっ
て廃水の処理を行う。このようにすることによって、初
期の立上げ時において、従来法により高負荷での処理が
可能となる。
In the present invention, the granules of methane-fermenting bacteria are formed at the initial start-up of the reaction tank, and until the methane-fermenting bacteria adhere sufficiently to the carrier, the wastewater is mainly treated by the granulated methane-fermenting bacteria. To do. By doing so, it is possible to perform processing with a high load by the conventional method at the initial startup.

さらに、担体に付着したメタン発酵細菌より造粒物の方
が廃水中の固形物を捕捉しやすいので、立上げ初期から
固形物除去の良好な処理が可能となる。さらに実施例の
項で後述するように、本発明によれば定常運転転時にお
いても廃水中の固形物除去は非常に良好になる。これ
は、本発明では処理法に比較して大きな造粒物を形成さ
せるので、従来法では捕捉しにくかった比較的大きな固
形物も除去できるためと考えられる。
Furthermore, since the granules are easier to capture the solid matter in the waste water than the methane-fermenting bacteria attached to the carrier, the solid matter can be removed satisfactorily from the initial stage of start-up. Further, as will be described later in the section of Examples, according to the present invention, the removal of solid matters in the wastewater becomes very good even during steady operation. It is considered that this is because in the present invention, a large granule is formed as compared with the treatment method, so that it is possible to remove a relatively large solid matter which is difficult to be captured by the conventional method.

(実施例) 以下、本発明の実施例を示し、本発明をより詳しく説明
する。
(Example) Hereinafter, the present invention will be described in more detail by showing examples of the present invention.

(実施例1) 内径5cm、高さ100cmの円筒状の反応槽に、粒径0.2〜0.3
mmの多孔質セラミックスを担体として、容積比で約25%
充填した。
Example 1 A cylindrical reaction tank having an inner diameter of 5 cm and a height of 100 cm was charged with a particle size of 0.2 to 0.3.
Approximately 25% in volume ratio using mm porous ceramics as a carrier
Filled.

ここで、従来から消化槽用いられる担体としては、粒径
0.1〜1mm程度、比重1〜3程度のものが用いられてお
り、本発明で用いる担体もこれに準じたものを用いれば
よい。ただし、本発明では粒径は上述したように0.2〜
0.3mm程度のものが最も好ましく、通常の範囲としては
0.1〜0.3mm程度のものが用いられる。また、前記多孔質
セラミックスの比重は通常2程度である。もちろん、多
孔質セラミックスに限らず、一般に用いられている硅砂
等を用いてもよい。この反応槽内に種菌体として下水処
理場の消化汚泥(メタン発酵細菌)を約5500vss-mg/
の濃度に調整して、反応槽を約13m/時の上向流速で循
環した。前記種菌体として、もちろん純粋な菌体を用い
てもよいが、この実施例では前述のように下水処理場の
消化汚泥を用いた。反応槽内の水温は約36℃になるよう
にコントロールした。消化汚泥の循環を開始してから約
15時間後には直径2〜3mmのメタン発酵細菌の造粒物が
形成されたことが確認できた。ここで、担体は前述のよ
うに反応槽内に容積比で約25%充填したが、このうちの
数%が造粒物となり、担体上に堆積される。造粒物の量
は種菌体である消化汚泥の濃度によって異なるが、上述
した5500vss-mg/程度であれば、担体と合わせて、反
応槽の容積比で90%程度の量となる。すなわち、数%の
担体を核として、反応槽の容積比で約70%近くの造粒物
が得られる。もちろん、消化汚泥の濃度が低い場合は造
粒物も少なく、例えば、2000〜3000vss-mg/程度の比
較的薄い濃度の場合は、造粒物の量は担体と合わせて、
反応槽の容積比で50%程度と少なくなる。ペプトン、グ
ルコース、無機塩類から成る廃水をTOC濃度100mg/に
なるように調整して反応槽へ連続的に流入させた。85%
以上のTOC除去率を保ちながら徐々に廃水の流入量を増
大し、負荷を高めた。この時の負荷の上昇過程を第1図
に示した。約2ケ月間でTOC負荷6kg/m3・日まで高める
ことができた。
Here, as the carrier conventionally used in the digestion tank, the particle size is
A carrier having a specific gravity of about 0.1 to 1 mm and a specific gravity of about 1 to 3 is used, and the carrier to be used in the present invention may be a carrier according to this. However, in the present invention, the particle size is 0.2 to
0.3mm is the most preferable, and the normal range is
The thing of about 0.1 to 0.3 mm is used. The specific gravity of the porous ceramics is usually about 2. Of course, not only porous ceramics, but commonly used silica sand or the like may be used. About 5500 vss-mg / digested sludge (methane-fermenting bacteria) from a sewage treatment plant is used as an inoculum in this reactor.
The reaction tank was circulated at an upward flow rate of about 13 m / hr. As the seed cells, of course, pure cells may be used, but in this example, digested sludge of a sewage treatment plant was used as described above. The water temperature in the reaction tank was controlled to be about 36 ° C. Approximately since the circulation of digested sludge started
After 15 hours, it was confirmed that granules of methane-fermenting bacteria having a diameter of 2 to 3 mm were formed. Here, the carrier was filled in the reaction tank in a volume ratio of about 25% as described above, but a few% of this became a granulated material, which was deposited on the carrier. The amount of the granulated product varies depending on the concentration of the digested sludge, which is the inoculum, but if it is about 5500 vss-mg / about described above, it will be about 90% in volume ratio of the reaction tank including the carrier. That is, about 70% of the granules in the volume ratio of the reaction tank can be obtained by using several% of the carrier as a core. Of course, when the concentration of digested sludge is low, the amount of granules is also small. For example, in the case of a relatively thin concentration of 2000 to 3000 vss-mg /, the amount of granules should be combined with the carrier,
The volume ratio of the reaction tank is reduced to about 50%. Waste water consisting of peptone, glucose, and inorganic salts was adjusted to a TOC concentration of 100 mg / and continuously flowed into the reaction tank. 85%
While maintaining the above TOC removal rate, the inflow of wastewater was gradually increased and the load was increased. The process of load increase at this time is shown in FIG. We were able to increase the TOC load to 6 kg / m 3 · day in about two months.

(比較例) 実施例1と同様な装置および方法で試験を行った。ただ
し、反応槽内で消化汚泥(実施1と同じく、約5500vss-
mg/の濃度とする)を循環する際には、上向流速5m/
時で行った。この場合には担体の流動はあまり生じず、
メタン発酵細菌の造粒物は形成されなかった。ただし、
上向流速1〜5m/時の範囲でも、消化汚泥の濃度を1000
0vss-mg/程度と高濃度にすれば、比較的少量ではあ
るが造粒物が得られた。また、消化汚泥の濃度が1000vs
s-mg/程度と低濃度の場合であっても、上向流速を20
m/時に設定すれば、やはり造粒物を得ることができ
る。消化汚泥の循環を約1週間行った後、反応槽から消
化汚泥を溢流させて抜き出し、実施例1と同様な条件で
人工廃水を反応槽へ流入させた。この際には反応槽内の
上向流速が実施例1と同様に13m/時になるように、処
理水を反応槽下部へ循環した。実施例1と同様に、85%
以上のTOC除去率を保ちながら徐々に負荷を高めた。こ
の時の負荷の上昇過程を第1図に点線で示した。約3ケ
月間かかってもTOC負荷約3kg/m3・日までしか負荷をか
けることができなかった。
(Comparative Example) A test was performed using the same apparatus and method as in Example 1. However, in the reaction tank, digested sludge (similar to Example 1, about 5500 vss-
flow rate of 5m /
I went by time. In this case, the carrier does not flow so much,
No granules of methane-fermenting bacteria were formed. However,
Even in the range of upward flow velocity of 1 to 5 m / hour, the concentration of digested sludge is 1000
When the concentration was as high as 0 vss-mg /, a granulated product was obtained although the amount was relatively small. Also, the concentration of digested sludge is 1000vs
Even if the concentration is as low as s-mg /
Granules can still be obtained by setting m / hour. After the digested sludge was circulated for about 1 week, the digested sludge was overflowed from the reaction tank and extracted, and the artificial wastewater was allowed to flow into the reaction tank under the same conditions as in Example 1. At this time, the treated water was circulated to the lower part of the reaction tank so that the upward flow velocity in the reaction tank was 13 m / hour as in Example 1. As in Example 1, 85%
The load was gradually increased while maintaining the above TOC removal rate. The increase process of the load at this time is shown by the dotted line in FIG. Even if it took about 3 months, the TOC load could only be applied up to about 3 kg / m 3 · day.

(実施例2) 実施例1の試験終了時の条件で続けて試験を行った。た
だし、実施例1ではペプトン、グルコース、無機塩類を
水道水で溶解して廃水としていたのに対し、実施例2で
は、下水処理場の最初沈殿池出口水を用いて溶解させ、
廃水中の固形物除去についての状態を行った。最初沈殿
池出口水は毎週下水処理場から運搬した。試験結果を第
2図に示した。処理水の固形物濃度は常に10mg/以下
であった。本発明は固形物除去についても非常に効果の
あることが明らかになった。
(Example 2) The test was continued under the conditions at the end of the test of Example 1. However, in Example 1, peptone, glucose, and inorganic salts were dissolved in tap water to form waste water, whereas in Example 2, it was dissolved using the first settling tank outlet water of the sewage treatment plant,
The conditions for solids removal in wastewater were carried out. The first settling basin outlet water was transported weekly from the sewage treatment plant. The test results are shown in FIG. The solid concentration of treated water was always 10 mg / or less. It was revealed that the present invention is also very effective in removing solids.

〔発明の効果〕〔The invention's effect〕

本発明によれば、反応槽の初期立上げの期間を短縮する
ことができ、運転開始後、短期間で設計通りの負荷にす
ることができる。さらに、廃水中の固形物除去能は非常
に高く、良好な処理水を得ることができる。
According to the present invention, the initial startup period of the reaction tank can be shortened, and the load as designed can be achieved within a short period after the start of operation. Further, the ability to remove solids in waste water is very high, and good treated water can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本発明の効果を説明するための図
で、第3図は従来法の概略フロー図である。
1 and 2 are views for explaining the effect of the present invention, and FIG. 3 is a schematic flow chart of the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】有機性廃水を反応槽へ供給し、嫌気性条件
下で処理する嫌気性水処理方法において、 粒径0.1〜0.3mm、比重1〜3程度の担体を充填した反応
槽の初期立ち上げ時に、種菌体として、1000〜10000vss
-mg/濃度に調整したメタン発酵細菌を反応槽に投入
し、これを線流速1〜20m/時の速度で循環させ、メタ
ン発酵細菌の固定化担体への付着および造粒物の形成を
行うことにより、反応槽下部にはメタン発酵細菌を付着
した担体流動層を形成せしめ、該担体流動層の上部には
固定化担体を核にしたメタン発酵細菌の造粒物流動層を
形成せしめて処理を行うことを特徴とする嫌気性水処理
方法。
1. In an anaerobic water treatment method in which organic wastewater is supplied to a reaction tank and treated under anaerobic conditions, the initial stage of the reaction tank filled with a carrier having a particle size of 0.1 to 0.3 mm and a specific gravity of about 1 to 3. At startup, as an inoculum, 1000-10,000vss
-Add methane-fermenting bacteria adjusted to mg / concentration to the reaction tank and circulate it at a linear flow rate of 1 to 20 m / hour to attach the methane-fermenting bacteria to the immobilized carrier and form granules. As a result, a carrier fluidized bed with methane-fermenting bacteria attached is formed in the lower part of the reaction tank, and a granulated fluidized bed of methane-fermenting bacteria with an immobilized carrier as a core is formed in the upper part of the carrier fluidized bed for treatment. A method for treating anaerobic water, which comprises:
JP3385288A 1988-02-18 1988-02-18 Anaerobic water treatment method Expired - Fee Related JPH0667511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3385288A JPH0667511B2 (en) 1988-02-18 1988-02-18 Anaerobic water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3385288A JPH0667511B2 (en) 1988-02-18 1988-02-18 Anaerobic water treatment method

Publications (2)

Publication Number Publication Date
JPH01210098A JPH01210098A (en) 1989-08-23
JPH0667511B2 true JPH0667511B2 (en) 1994-08-31

Family

ID=12398037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3385288A Expired - Fee Related JPH0667511B2 (en) 1988-02-18 1988-02-18 Anaerobic water treatment method

Country Status (1)

Country Link
JP (1) JPH0667511B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101897A (en) * 1989-09-16 1991-04-26 Toshiba Corp Formation of methane bacteria granule
JP2006051490A (en) * 2004-01-15 2006-02-23 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and method
JP4687600B2 (en) * 2006-07-31 2011-05-25 株式会社Ihi Methane fermentation equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227498A (en) * 1986-03-31 1987-10-06 Kurita Water Ind Ltd Fluidized bed type anaerobic treatment apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227498A (en) * 1986-03-31 1987-10-06 Kurita Water Ind Ltd Fluidized bed type anaerobic treatment apparatus

Also Published As

Publication number Publication date
JPH01210098A (en) 1989-08-23

Similar Documents

Publication Publication Date Title
JP5150993B2 (en) Denitrification method and apparatus
JP4224951B2 (en) Denitrification method
JPH02245297A (en) Two-stage treating method of waste water
EG20446A (en) Wastewater treatment process and apparatus
JP2008284427A (en) Apparatus and method for treating waste water
US4159945A (en) Method for denitrification of treated sewage
JP2002336885A (en) Method for aerobic treatment of waste water
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
JPH06182393A (en) Fluidized bed type denitrification treating device
JPH0667511B2 (en) Anaerobic water treatment method
JP4501432B2 (en) Anaerobic treatment method and apparatus
JPH06142682A (en) Anaerobic water treatment device
JP2002172399A (en) Denitrification treatment method
JP3794736B2 (en) Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen
JP2002177986A (en) Biological denitrification equipment
JP2000093992A (en) Wastewater treatment system
JPH01293189A (en) Fluidized bed type water treatment device
JPH04341397A (en) Methane fermentation treatment apparatus and methane fermentation method
JPH0218918B2 (en)
JPS59162997A (en) Organic filthy water disposal
JP2007044661A (en) Methane fermentation method
JPH0747387A (en) Anaerobic device for water treatment and method therefor
JPH0133238B2 (en)
JPH06182392A (en) Method and apparatus for removing nitrogen

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees