JPH0665621A - Method for operating two-step tuyere type smelting reduction furnace - Google Patents

Method for operating two-step tuyere type smelting reduction furnace

Info

Publication number
JPH0665621A
JPH0665621A JP22575692A JP22575692A JPH0665621A JP H0665621 A JPH0665621 A JP H0665621A JP 22575692 A JP22575692 A JP 22575692A JP 22575692 A JP22575692 A JP 22575692A JP H0665621 A JPH0665621 A JP H0665621A
Authority
JP
Japan
Prior art keywords
tuyere
gas
raceway
reduction furnace
smelting reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22575692A
Other languages
Japanese (ja)
Other versions
JP2777311B2 (en
Inventor
Taro Kusakabe
太郎 日下部
Hideyuki Momokawa
秀行 桃川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4225756A priority Critical patent/JP2777311B2/en
Publication of JPH0665621A publication Critical patent/JPH0665621A/en
Application granted granted Critical
Publication of JP2777311B2 publication Critical patent/JP2777311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PURPOSE:To stabilize a fluidized bed and to improve the yield of ore powder by adjusting a raceway depth in the raceway at an upper step tuyere by change of the operational condition. CONSTITUTION:Oxygen-containing high temp. gas is blown together with ore and flux from the upper step tuyere in a two-step tuyere smelting reduction furnace and the oxygen-containing high temp. gas is blown from the lower-step tuyere. At this time, a non-dimensional raceway depth (DR/Dt) in the upper step raceway calculated from the equation I is controlled to <0.4. Then, Er value in the equation I is obtd. from the equation II. In this condition, Fe content in dust can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上下に2段の羽口を備
えた竪型溶融還元炉の操業方法に関する。更に詳しく
は、鉱石粉が操業中炉外に排出されるその割合を低減さ
せることを目的とする操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a vertical smelting reduction furnace having upper and lower tuyeres. More specifically, the present invention relates to an operating method for reducing the proportion of ore powder discharged outside the furnace during operation.

【0002】[0002]

【従来の技術】従来、2段羽口式溶融還元炉の操業は図
4に示す如く、上方から炭素還元剤を供給し、炉内下部
に充填層2を形成し、炉内上部に流動層3を形成し流動
層3には上段羽口4から粉状鉱石5を酸素気体とともに
供給し、下段羽口6から充填層2に含酸素気体7を吹き
込む。この下段羽口6からの吹き込みジェットは充填層
間にレースウェイ深さDR のレースウェイを形成し、こ
の含酸素気体7は充填層2の固体還元剤を燃焼して高温
の還元ガスを発生し、その高温還元ガスは充填層2を通
って上昇しながら分散されて流動層3の流動化ガスとな
る。このため炉内上昇ガスの分布はより重要になり、羽
口から吹き込まれた気体の炉内分散が不適当な場合、部
分的に流動化状態が悪化し、炉の操業が不安定になる。
流動層3の形成が不安定になると、流動層3内の温度差
が大となり、温度の不均一が生ずるため溶融金属10や
スラグ9の部分的な固化を生む。その結果、操業不能と
なったり、ガス流が変動し、生産の低下、歩留低下、還
元率低下などの不都合をもたらす。
2. Description of the Related Art Conventionally, in the operation of a two-stage tuyere type smelting reduction furnace, as shown in FIG. 4, a carbon reducing agent is supplied from above to form a packed bed 2 in the lower part of the furnace and a fluidized bed in the upper part of the furnace. 3, the powdered ore 5 is supplied to the fluidized bed 3 from the upper tuyeres 4 together with oxygen gas, and the oxygen-containing gas 7 is blown into the packed bed 2 from the lower tuyeres 6. The jet injected from the lower tuyere 6 forms a raceway having a raceway depth D R between the packed layers, and the oxygen-containing gas 7 burns the solid reducing agent in the packed layer 2 to generate a high-temperature reducing gas. The high-temperature reducing gas rises through the packed bed 2 and is dispersed into the fluidized gas of the fluidized bed 3. For this reason, the distribution of the rising gas in the furnace becomes more important, and if the dispersion of the gas blown from the tuyere in the furnace is improper, the fluidized state is partially deteriorated and the operation of the furnace becomes unstable.
When the formation of the fluidized bed 3 becomes unstable, the temperature difference in the fluidized bed 3 becomes large and the temperature becomes non-uniform, so that the molten metal 10 and the slag 9 are partially solidified. As a result, it becomes inoperable and the gas flow fluctuates, which causes inconveniences such as a reduction in production, a reduction in yield, and a reduction in reduction rate.

【0003】このような問題点を解決するために、本願
出願人は先に特開昭62−227017号公報で炭素系
固体還元剤の充填層に下段羽口から吹き込まれる気体の
レースウェイ深さDR を所定の範囲に制御することによ
り、流動層を安定化するための方法を提案した。しかし
ながら、下段羽口の上方に位置する流動層の流動化は複
数の上段羽口から鉱石粉とともに吹き込まれる含酸素ガ
スのレースウェイ深さによっても変動し、その深さの程
度によって鉱石粉が還元されることなくダストと一緒に
炉外に排出され、鉱石粉の歩留りを悪化させる原因とな
っていた。にもかかわらず流動層の安定化のための操業
技術は提案されていなかった。
In order to solve such a problem, the applicant of the present application has previously disclosed in JP-A-62-227017 the depth of raceway of gas blown from a lower tuyere into a packed bed of a carbon-based solid reducing agent. We proposed a method for stabilizing the fluidized bed by controlling D R within a predetermined range. However, the fluidization of the fluidized bed located above the lower tuyeres also varies depending on the raceway depth of the oxygen-containing gas blown together with the ore powder from multiple upper tuyeres, and the ore powder is reduced depending on the depth. It was discharged to the outside of the furnace together with the dust without being treated, which was a cause of deteriorating the yield of ore powder. Nevertheless, no operating technology has been proposed for stabilizing the fluidized bed.

【0004】そのため流動層を安定化させてダスト中の
Fe量を低下させることが望まれていた。また上記公開
公報に開示されたレースウェイ深さの制御は羽口の口径
を変えることによって行うため、その制御のたびに羽口
を取替える煩雑さがあった。またこのような羽口取替方
式ではレースウェイ深さDR の制御範囲に自由度を持た
そうとすれば口径の異なる羽口を多数準備する必要があ
った。また、その制御因子も口径にのみ依存するため制
御因子の選択自由度が低いという欠点があった。
Therefore, it has been desired to stabilize the fluidized bed and reduce the amount of Fe in the dust. Further, since the control of the raceway depth disclosed in the above-mentioned publication is carried out by changing the diameter of the tuyere, there has been the trouble of replacing the tuyere every time the control is performed. Further, in such a tuyere replacement method, in order to have a degree of freedom in the control range of the raceway depth D R , it is necessary to prepare a large number of tuyere having different diameters. In addition, since the control factor also depends only on the aperture, the degree of freedom in selecting the control factor is low.

【0005】[0005]

【発明が解決しようとする課題】本発明は以上の知見に
基づいて開発されたもので、上段羽口のレースウェイの
レースウェイ深さを操業条件を適宜変更することにより
調整し、流動層を安定化させて鉱石粉の歩留りを上げる
ことができる2段羽口式溶融還元炉の操業方法を提供す
ることを目的とする。
The present invention was developed on the basis of the above findings. The raceway depth of the upper tuyere raceway is adjusted by appropriately changing the operating conditions to form a fluidized bed. It is an object of the present invention to provide a method of operating a two-stage tuyere type smelting reduction furnace that can stabilize and improve the yield of ore powder.

【0006】[0006]

【課題を解決するための手段】本発明は以上の目的を達
成するために、竪型還元炉内に炭素固体還元剤の充填層
とその上方に流動層とを維持し、上段羽口より鉱石粉を
含酸素ガスとともに前記流動層に導入し、下段羽口から
含酸素ガスを前記充填層に吹込む2段羽口式溶融還元炉
の操業方法において、上段羽口から吹込む含酸素気体の
レースウェイ深さを、下記式で計算される無次元レース
ウェイ深さ(DR /Dt )が0.4未満の範囲内になる
ように制御することを特徴とするものである。
In order to achieve the above-mentioned object, the present invention maintains a packed bed of carbon solid reducing agent and a fluidized bed above it in a vertical reduction furnace, and ore from the upper tuyeres. In a method of operating a two-stage tuyere type smelting reduction furnace in which powder is introduced into the fluidized bed together with the oxygen-containing gas and the oxygen-containing gas is blown into the packed bed from the lower tuyeres, the oxygen-containing gas blown from the upper tuyeres The raceway depth is controlled so that the dimensionless raceway depth (D R / D t ) calculated by the following formula is within the range of less than 0.4.

【0007】[0007]

【数2】 [Equation 2]

【0008】Vu :上段羽口からの送風量(m3 /se
c) VL :下段羽口からの送風量(m3 /sec) ρB :嵩密度(kg/m3 ) ρg :ガス密度(kg/m3 ) Dt :羽口取付け部の炉内径(m) DT :羽口径(m) μw :摩擦係数(−) g :重力加速度(m/sec2 ) dp :粒子径(m) DR :レースウェイ深さ(m) Er :ガス流れによって決まる値 C1 :摩擦とガス密度によって決まる係数(kg/m
3 ) C2 :流動化開始速度によって決まる係数(sec/
m) C3 :粒子形状によって決まる係数(−) C4 :ガスの粘性によって決まる係数
V u : Volume of air blown from upper tuyeres (m 3 / se
c) V L : Air flow rate from lower tuyeres (m 3 / sec) ρ B : Bulk density (kg / m 3 ) ρ g : Gas density (kg / m 3 ) D t : Inner diameter of tuyeres (m) D T: blade diameter (m) μ w: friction coefficient (-) g: gravitational acceleration (m / sec 2) d p : particle diameter (m) D R: Raceway depth (m) E r: Value determined by gas flow C 1 : Coefficient determined by friction and gas density (kg / m
3) C 2: coefficient determined by the fluidization velocity (sec /
m) C 3: determined by the particle shape factor (-) C 4: coefficient determined by the viscosity of the gas

【0009】[0009]

【作用】図2、図3は、それぞれ竪型溶融還元炉1が安
定した状態、吹き上げた状態を模式的に示したものであ
る。図3のように、竪型溶融還元炉1の塔径Dt に対し
てレースウェイ深さDR がある限度より大となると、流
動層の吹上げが生じ、炉の操業が不安定となると共に、
炉外に排出するガス中に含まれるダスト中のFeの%が
上昇する。
2 and 3 schematically show the vertical smelting reduction furnace 1 in a stable state and in a blown state, respectively. As shown in FIG. 3, when the raceway depth D R exceeds a certain limit with respect to the tower diameter D t of the vertical smelting reduction furnace 1, the fluidized bed is blown up and the furnace operation becomes unstable. With
The percentage of Fe in the dust contained in the gas discharged outside the furnace increases.

【0010】ある2段羽口式溶融還元炉を用いて銑鉄を
製造した。その間上記レースウェイ深さDR の実験式の
無次元レースウェイ深さ(DR /Dt )の値を満足する
ように操業条件を変え、上段羽口のレースウェイ深さD
R を種々変化させ、レースウェイ深さとダスト中の鉱石
粉との割合との関係を求めた。図1はこれを示すもので
ある。無次元レースウェイ深さ(DR /Dt )が0.4
未満の範囲のときダスト中のFe量は著しく減少するこ
とがわかる。従ってダスト中のFe量の割合を少なくす
るためには無次元レースウェイ深さ(DR /Dt )の比
を0.4未満にする必要がある。
Pigment was produced using a certain two-stage tuyere type smelting reduction furnace. During that time, the operating conditions were changed so as to satisfy the value of the dimensionless raceway depth (D R / D t ) of the above-mentioned empirical formula of the raceway depth D R, and the raceway depth D of the upper tuyeres was changed.
R was variously changed and the relation between the raceway depth and the ratio of ore powder in the dust was obtained. FIG. 1 shows this. Dimensionless raceway depth (D R / D t ) is 0.4
It can be seen that the Fe amount in the dust is remarkably reduced in the range below. Therefore, in order to reduce the proportion of Fe in the dust, the ratio of the dimensionless raceway depth (D R / D t ) needs to be less than 0.4.

【0011】[0011]

【実施例】下記の(1)の仕様の炉を用いて、下記
(2)及び(3)の操業条件により、上段羽口からの含
酸素気体の無次元レースウェイ深さ(DR /Dt )が上
式において0.3(実施例)、0.47(比較例1)に
なるように操業条件を設定し、それぞれ5時間操業を続
けた。
[Example] Using a furnace having the following specifications (1) and operating conditions (2) and (3) below, the dimensionless raceway depth (D R / D) of oxygen-containing gas from the upper tuyeres The operating conditions were set so that t ) was 0.3 (Example) and 0.47 (Comparative Example 1) in the above equation, and the operation was continued for 5 hours.

【0012】 (1)2段羽口式溶融還元炉 a.塔径(m)Dt 1.5 b.炉高(m) 4 c.羽口段数(段) 2 (a)上段羽口(本) 3 (b)下段羽口(本) 3 (c)上下段羽口間隔(mm) 1500 (2)操業条件 a.風量(上段酸素濃度40容積%)(Nm3 /hr)Vu 660 (下段酸素濃度20容積%)(Nm3 /hr)VL 330 合計 990 b.含酸素高温ガス温度(℃) 1000 c.炭材(コークス)供給量(kg/h) 905 d.上段羽口からの吹込量(kg/h) (a)鉄鉱石粉(粒径2mm以下) 580 (b)石灰石粉(粒径1mm以下) 100 (c)珪石粉(粒径1mm以下) 48 (a)(b)(c)の平均粒子径dp (mm) 0.2 e.嵩密度(kg/m3 )ρB 1000 f.ガス密度(kg/m3 )ρg 0.272 g.壁と粒子の摩擦係数μw 0.21 h.羽口径(mm)DT 50 i.無次元レースウェイ深さ(DR /Dt ) 0.3 C1 =45,C2 =1.5,C3 =0.05,C4 =6.2 (3)操業条件 a.風量(上段酸素濃度40容積%)(Nm3 /hr) 900 (下段酸素濃度20容積%)(Nm3 /hr) 90 合計 990 b.含酸素高温ガス温度(℃) 1000 c.炭材(コークス)供給量(kg/h) 1080 d.上段羽口からの吹込量(kg/h) (a)鉄鉱石粉(粒径2mm以下) 580 (b)石灰石粉(粒径1mm以下) 100 (c)珪石粉(粒径1mm以下) 48 (a)(b)(c)の平均粒子径dp (mm) 0.2 e.嵩密度(kg/m3 )ρB 1000 f.ガス密度(kg/m3 )ρg 0.272 g.壁と粒子の摩擦係数(−)μw 0.21 h.羽口径(mm)DT 50 i.無次元レースウェイ深さ(DR /Dt ) 0.47 C1 =45,C2 =1.5,C3 =0.05,C4 =6.2 実施例では、排出されたダスト中のFe量の平均値は
0.02wt%であった。またこのときの単位時間当り
の出銑量は300kg/hrであった。これに対して、
比較例として無次元レースウェイ深さ(DR /DT )の
比が0.45になるように(1)式を用いて操業条件を
変更し、変更した状態(3)で5時間操業を続けた。こ
の間のダスト中のFe量の平均含有率は4.5wt%で
あった。また、このときの単位時間当りの出銑量は25
0kg/hrであった。以上述べた如く本発明によれば
ダスト中のFe量を効果的に低減させることができる。
(1) Two-stage tuyere type smelting reduction furnace a. Tower diameter (m) D t 1.5 b. Furnace height (m) 4 c. Number of tuyeres (tiers) 2 (a) Upper tuyeres (books) 3 (b) Lower tuyeres (books) 3 (c) Upper and lower tuyeres spacing (mm) 1500 (2) Operating conditions a. Air volume (upper oxygen concentration 40% by volume) (Nm 3 / hr) V u 660 (lower oxygen concentration 20% by volume) (Nm 3 / hr) VL 330 Total 990 b. Oxygen-containing high temperature gas temperature (° C) 1000 c. Carbonaceous material (coke) supply rate (kg / h) 905 d. Amount blown from upper tuyeres (kg / h) (a) Iron ore powder (particle size 2 mm or less) 580 (b) Limestone powder (particle size 1 mm or less) 100 (c) Silica powder (particle size 1 mm or less) 48 (a ) (B) (c) average particle diameter d p (mm) 0.2 e. Bulk density (kg / m 3 ) ρ B 1000 f. Gas density (kg / m 3 ) ρ g 0.272 g. Coefficient of friction between wall and particle μ w 0.21 h. Tuyere diameter (mm) D T 50 i. Dimensionless raceway depth (D R / D t ) 0.3 C 1 = 45, C 2 = 1.5, C 3 = 0.05, C 4 = 6.2 (3) Operating conditions a. Air volume (upper oxygen concentration 40% by volume) (Nm 3 / hr) 900 (lower oxygen concentration 20% by volume) (Nm 3 / hr) 90 Total 990 b. Oxygen-containing high temperature gas temperature (° C) 1000 c. Carbonaceous material (coke) supply rate (kg / h) 1080 d. Amount blown from upper tuyeres (kg / h) (a) Iron ore powder (particle size 2 mm or less) 580 (b) Limestone powder (particle size 1 mm or less) 100 (c) Silica powder (particle size 1 mm or less) 48 (a ) (B) (c) average particle diameter d p (mm) 0.2 e. Bulk density (kg / m 3 ) ρ B 1000 f. Gas density (kg / m 3 ) ρ g 0.272 g. Coefficient of friction between wall and particle (−) μ w 0.21 h. Tuyere diameter (mm) D T 50 i. Dimensionless raceway depth (D R / D t ) 0.47 C 1 = 45, C 2 = 1.5, C 3 = 0.05, C 4 = 6.2 In the example, in the discharged dust The average amount of Fe was 0.02 wt%. The amount of tapped metal per unit time at this time was 300 kg / hr. On the contrary,
As a comparative example, the operating conditions were changed using the equation (1) so that the ratio of the dimensionless raceway depth (D R / D T ) was 0.45, and the changed condition (3) was used for 5 hours of operation. Continued. During this period, the average content of Fe in the dust was 4.5 wt%. The amount of tapping metal per unit time at this time is 25
It was 0 kg / hr. As described above, according to the present invention, the amount of Fe in dust can be effectively reduced.

【0013】[0013]

【発明の効果】本発明によれば、2段羽口式型溶融還元
炉の計算式で求めたレースウェイ深さを0.4未満に制
御する方法によって、安定した操業を続け、排ガス中に
含まれて放出されるFe源を最小限に止めることがで
き、歩留向上を図ることができる。
According to the present invention, by the method of controlling the raceway depth determined by the calculation formula of the two-stage tuyere type smelting reduction furnace to less than 0.4, stable operation is continued and The Fe source contained and released can be minimized, and the yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】DR /Dt とダスト中のFe含有率との関係を
示す図である。
FIG. 1 is a diagram showing the relationship between D R / D t and the Fe content in dust.

【図2】レースウェイ深さと塔径の関係とを示す説明図
である。
FIG. 2 is an explanatory diagram showing the relationship between raceway depth and tower diameter.

【図3】レースウェイ深さと塔径の関係とを示す説明図
である。
FIG. 3 is an explanatory diagram showing the relationship between raceway depth and tower diameter.

【図4】竪型溶融還元炉の模式的縦断面図である。FIG. 4 is a schematic vertical sectional view of a vertical smelting reduction furnace.

【符号の説明】[Explanation of symbols]

1 還元炉 2 充填層 3 流動層 4 上段羽口 5 粉状鉱石 6 下段羽口 7 気体 9 溶融スラ
グ 10 溶融金属 11 上段レー
スウェイ DR レースウェイ深さ Dt 塔径
1 Reduction furnace 2 Packed bed 3 Fluidized bed 4 Upper stage tuyeres 5 Powdered ore 6 Lower stage tuyeres 7 Gas 9 Molten slag 10 Molten metal 11 Upper raceway D R Raceway depth D t Tower diameter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2段羽口式溶融還元炉において、上段羽
口から含酸素高温ガスを鉱石及びフラックスと共に吹き
込み、かつ下段羽口から含酸素高温ガスを吹き込むに際
し、次式で計算される上段レースウェイの無次元レース
ウェイ深さ(DR /Dt )を0.4未満に制御すること
を特徴とする2段羽口式溶融還元炉の操業方法。 【数1】 u :上段羽口からの送風量(m3 /sec) VL :下段羽口からの送風量(m3 /sec) ρB :嵩密度(kg/m3 ) ρg :ガス密度(kg/m3 ) Dt :羽口取付け部の炉内径(m) DT :羽口径(m) μw :摩擦係数(−) g :重力加速度(m/sec2 ) dp :粒子径(m) DR :レースウェイ深さ(m) Er :ガス流れによって決まる値 C1 :摩擦とガス密度によって決まる係数(kg/m
3 ) C2 :流動化開始速度によって決まる係数(sec/
m) C3 :粒子形状によって決まる係数(−) C4 :ガスの粘性によって決まる係数
1. In a two-stage tuyere type smelting reduction furnace, when oxygen-containing high temperature gas is blown together with ore and flux from the upper stage tuyere and oxygen-containing high temperature gas is blown from the lower stage tuyere, the upper stage calculated by the following equation A method for operating a two-stage tuyere smelting reduction furnace, characterized in that the dimensionless raceway depth (D R / D t ) of the raceway is controlled to less than 0.4. [Equation 1] Vu : Airflow from upper tuyeres (m 3 / sec) VL : Airflow from lower tuyeres (m 3 / sec) ρ B : Bulk density (kg / m 3 ) ρ g : Gas density (kg) / M 3 ) D t : Furnace inner diameter (m) at tuyere attachment part D T : Tuyere diameter (m) μ w : Friction coefficient (-) g: Gravitational acceleration (m / sec 2 ) d p : Particle diameter (m ) D R : Raceway depth (m) E r : Value determined by gas flow C 1 : Coefficient determined by friction and gas density (kg / m
3) C 2: coefficient determined by the fluidization velocity (sec /
m) C 3: determined by the particle shape factor (-) C 4: coefficient determined by the viscosity of the gas
JP4225756A 1992-08-25 1992-08-25 Operation method of two-stage tuyere type smelting reduction furnace Expired - Fee Related JP2777311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4225756A JP2777311B2 (en) 1992-08-25 1992-08-25 Operation method of two-stage tuyere type smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4225756A JP2777311B2 (en) 1992-08-25 1992-08-25 Operation method of two-stage tuyere type smelting reduction furnace

Publications (2)

Publication Number Publication Date
JPH0665621A true JPH0665621A (en) 1994-03-08
JP2777311B2 JP2777311B2 (en) 1998-07-16

Family

ID=16834333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4225756A Expired - Fee Related JP2777311B2 (en) 1992-08-25 1992-08-25 Operation method of two-stage tuyere type smelting reduction furnace

Country Status (1)

Country Link
JP (1) JP2777311B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256537A (en) * 1985-09-04 1987-03-12 Kawasaki Steel Corp Manufacture of molten metal from powdery ore containing metal oxide
JPS62227017A (en) * 1986-03-28 1987-10-06 Kawasaki Steel Corp Production of molten metal from powdery ore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256537A (en) * 1985-09-04 1987-03-12 Kawasaki Steel Corp Manufacture of molten metal from powdery ore containing metal oxide
JPS62227017A (en) * 1986-03-28 1987-10-06 Kawasaki Steel Corp Production of molten metal from powdery ore

Also Published As

Publication number Publication date
JP2777311B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
EP2210959B1 (en) Process for producing molten iron
JPH0665621A (en) Method for operating two-step tuyere type smelting reduction furnace
WO1997027337A1 (en) Method for operating shaft furnace
US3156527A (en) Method for the production of titanium tetrachloride and zirconium chlorides
JP2004027265A (en) Method for operating blast furnace performing blow-in of pulverlized fine coal
JPS63153208A (en) Production of molten iron from powdery iron ore
JPH06172825A (en) Operation of blast furnace
JPS6043403B2 (en) Blast furnace operation method using pulverized coal injection
JP3590543B2 (en) How to inject iron-containing powder into the blast furnace
JPH0718313A (en) Operation of vertical furnace
JP4005682B2 (en) How to operate a vertical furnace
JPH07197114A (en) Coke packing layer type vertical smelting furnace
JPS62227017A (en) Production of molten metal from powdery ore
JPH07278634A (en) Operation of scrap melting furnace
JPH01118090A (en) Circulating fluidized-bed pre-reducing device
JPH0559416A (en) Method for operating two step tuyere type smelting reduction furnace
JPS59176584A (en) Disperser for gas of fluidized bed spare reducing furnace
JPS62227015A (en) Method for operating carbonaceous material-packed bed type smelting and reducing furnace
JPS6114203B2 (en)
JPH0586444B2 (en)
JPH066729B2 (en) Method for producing molten metal from powdered ore
JPH042643B2 (en)
JPH0149776B2 (en)
JPH0730376B2 (en) Operation method of smelting reduction furnace
JPH01213A (en) How to operate a smelting reduction furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980414

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees