JPH0586444B2 - - Google Patents

Info

Publication number
JPH0586444B2
JPH0586444B2 JP30913286A JP30913286A JPH0586444B2 JP H0586444 B2 JPH0586444 B2 JP H0586444B2 JP 30913286 A JP30913286 A JP 30913286A JP 30913286 A JP30913286 A JP 30913286A JP H0586444 B2 JPH0586444 B2 JP H0586444B2
Authority
JP
Japan
Prior art keywords
tuyere
furnace
pulverized coal
gas
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30913286A
Other languages
Japanese (ja)
Other versions
JPS63166908A (en
Inventor
Takashi Takebe
Yojiro Yamaoka
Yotaro Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP30913286A priority Critical patent/JPS63166908A/en
Publication of JPS63166908A publication Critical patent/JPS63166908A/en
Publication of JPH0586444B2 publication Critical patent/JPH0586444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) この発明は、製鉄用高炉、特に酸素高炉におい
て、羽口から吹き込まれる微粉炭の粒度に特徴を
有する高炉操業法に関するものである。
[Detailed Description of the Invention] "Objective of the Invention" (Industrial Application Field) This invention relates to a blast furnace operating method for iron-making blast furnaces, particularly oxygen blast furnaces, which is characterized by the particle size of pulverized coal injected from the tuyeres. It is.

(従来の技術) 従来の高炉操業法は、若干の酸素富化は行なう
ものの、生産性の高い実用高炉においては略全部
が羽口からの高温送風(空気)が主体をなしてい
る。従つて通常の高炉においては、羽口もしくは
羽口近傍から炉内に吹き込まれる微粉炭の量は通
常50〜60Kg/T程度であり、その粒度構成は200
メツシユ以下が70〜80%を占め最大粒度0.5mmが
一般的に使用されている。しかし乍ら、これ程の
粒度までに石炭を粉砕するに要する費用もかなり
な金額に達する。そこで、近年微粉炭の中でも比
較的粗粒を使用する例がIron and Steel
Engineer、1986年1月号に平均粒度0.3〜0.5mm、
2mm以下を3%程度含むものとして高炉に使用さ
れた例が報告されている。
(Prior Art) Although conventional blast furnace operating methods involve some oxygen enrichment, in practical blast furnaces with high productivity, high-temperature air (air) is blown almost entirely from the tuyeres. Therefore, in a normal blast furnace, the amount of pulverized coal injected into the furnace from the tuyere or the vicinity of the tuyere is usually about 50 to 60 kg/T, and its particle size composition is 200 kg/T.
The particles below mesh account for 70-80%, and a maximum particle size of 0.5 mm is generally used. However, the cost required to crush coal to such a particle size is considerable. Therefore, in recent years, examples of using relatively coarse grains of pulverized coal are Iron and Steel.
Engineer, January 1986 issue, average particle size 0.3-0.5mm,
It has been reported that a material containing about 3% of 2 mm or less was used in a blast furnace.

これは羽口先が2000℃以上もあるので高速の熱
分解時に自ら破裂することを期待したものであ
る。
Since the temperature at the tuyere tip is over 2000℃, it was hoped that it would rupture on its own during high-speed thermal decomposition.

第1図のAは従来の微粉炭の粒度範囲。Bは前
述の報文の粒度範囲を示す。
A in Figure 1 shows the particle size range of conventional pulverized coal. B indicates the granularity range of the aforementioned report.

又、近年においては、高炉の生産性をより高め
る目的から羽口から常温の酸素を吹き込む操業方
法、例えば特開昭60−159104号も提案され、又、
送風の主体を空気としないで酸素もしくは酸素と
炉頂ガスとした特公昭37−3356、特公昭52−
32323、もしくは石炭ガス化もしくは化学工業用
ガスを得ることが主目的で副次的に溶銑を製造す
る際に酸素を主体とする送風を行ない微粉炭も使
用された例として特公昭31−4939、特公昭31−
10755等もあるが微粉炭の粒度構成の改良に言及
したものはない。
In addition, in recent years, for the purpose of further increasing the productivity of blast furnaces, an operating method has been proposed in which oxygen at room temperature is blown into the tuyere, for example, in Japanese Patent Application Laid-open No. 159104/1983.
Special Publication No. 37-3356, Special Publication No. 1977-3356, Special Publication No. 3356, No. 3356, Special Publication No. 52-
32323, or Japanese Patent Publication No. 31-4939, as an example in which pulverized coal was used by blowing mainly oxygen when producing hot metal as a secondary product with the main purpose of coal gasification or obtaining gas for chemical industry. Tokuko Showa 31-
10755, etc., but there is no mention of improving the particle size structure of pulverized coal.

(発明が解決しようとする問題点) 本発明は、このような現状に鑑み創案されたも
のであり、酸素高炉の通常の操業条件下で、従来
の高炉操業では使用できなかつた粗粉炭の使用量
を可能な限り増大せしめ、粉砕に必要とされるコ
ストを低減せしめると同時に、炉前設備等におけ
るハンドリングの困難さを解決する操業方法を提
供することを目的とする。
(Problems to be Solved by the Invention) The present invention was devised in view of the current situation, and it is possible to use coarse pulverized coal, which cannot be used in conventional blast furnace operations, under normal operating conditions of oxygen blast furnaces. The object is to provide an operating method that increases the amount as much as possible, reduces the cost required for pulverization, and at the same time solves the difficulty of handling in furnace equipment and the like.

「発明の構成」 (問題点を解決するための手段) 前記の目的を達成するために、本発明者等は、 羽口から酸素濃度40%以上のガスを常温で吹き
込む操業において、 羽口もしくは羽口近傍から炉内に吹込まれる微
粉炭の内、+2mmの粒度の粗粉炭を5〜30%で最
大粒度5mmとすることを特徴とする高炉操業法、
を茲に提案する。
"Structure of the Invention" (Means for Solving the Problems) In order to achieve the above object, the present inventors have developed a method for injecting gas with an oxygen concentration of 40% or more from the tuyere at room temperature. A blast furnace operating method characterized in that 5 to 30% of the pulverized coal injected into the furnace from the vicinity of the tuyeres is coarse pulverized coal with a particle size of +2 mm to a maximum particle size of 5 mm;
I suggest it carefully.

この本法の採用により、酸素高炉の通常の操業
条件下においてかなりな量の粗粉炭の使用が可能
となり、石炭の粉砕に要する経費を節減し、且つ
取り扱い移送等が簡便となる。
Adoption of this method makes it possible to use a considerable amount of coarse pulverized coal under normal operating conditions of an oxygen blast furnace, reduces the cost required for pulverizing coal, and facilitates handling and transportation.

(作用) 本発明の適用される高炉は、羽口から酸素濃度
40%以上のガスを常温で吹き込み、且つシヤフト
から予熱ガスを吹き込んで操業する酸素高炉であ
る。
(Function) The blast furnace to which the present invention is applied has an oxygen concentration from the tuyere.
This is an oxygen blast furnace that operates by blowing 40% or more gas at room temperature and by blowing preheated gas from the shaft.

第2図は、縦軸に炉頂から羽口レベルまでの高
さ(位置)を、横軸には温度をとり酸素の富化率
毎の位置別の温度勾配を示したものである。
In FIG. 2, the vertical axis represents the height (position) from the top of the furnace to the tuyere level, and the horizontal axis represents temperature, showing the temperature gradient at each position for each oxygen enrichment rate.

この図面からも理解しうるように酸素富化率を
高める程羽口先温度が上昇し炉上部温度が低下す
ることがわかる。したがつて、酸素濃度40%以上
の吹き込みでは上部の熱が不足し、シヤフトから
の予熱ガスが必要となる。高炉操業上羽口先温度
が異常に上昇することは、鉱石やコークス中の
SiO2,Al2O3等が還元揮発し上部で凝縮し棚吊り
等の原因となるので、通常は炉頂ガス、水蒸気な
どを温度調節剤として使用するが、本発明におい
ては微粉炭をこれらの一部の代替として使用する
ことができる。通常の高炉では羽口先温度は送風
温度と酸素富化(数%)から2500℃程度が上限で
あるが酸素高炉の場合は温度調整剤の量を減らす
ことにより2600〜2700℃程度に上げることが可能
である。
As can be understood from this drawing, it can be seen that as the oxygen enrichment rate is increased, the tuyere tip temperature increases and the furnace upper temperature decreases. Therefore, when blowing with an oxygen concentration of 40% or more, there is insufficient heat in the upper part, and preheating gas from the shaft is required. An abnormal rise in the temperature at the tuyere tip during blast furnace operation is caused by the
Since SiO 2 , Al 2 O 3 , etc. are reduced and volatilized and condensed at the top, causing shelving, etc., furnace top gas, steam, etc. are normally used as temperature control agents, but in the present invention, pulverized coal is used as a temperature control agent. It can be used as a partial replacement for. In a normal blast furnace, the upper limit of the tuyere tip temperature is around 2500℃ due to the blast temperature and oxygen enrichment (several percent), but in the case of an oxygen blast furnace, it can be raised to around 2600-2700℃ by reducing the amount of temperature regulator. It is possible.

従つて2〜3mmの粗粒の微粉炭を吹き込んでも
瞬間的に揮発分が蒸発クラツキングされてガス化
し残存するチヤーも羽口先のO2濃度が高いので
瞬間的にガス化する。又、酸素高炉の羽口先の雰
囲気は通常高炉の羽口先より高温なため粗粒の石
炭でも内包するガス成分の急激な膨張により殆ん
どが爆発的に分裂するので完全に燃焼することに
なる。
Therefore, even if pulverized coal with coarse grains of 2 to 3 mm is injected, the volatile matter is instantaneously evaporated and cracked and gasified, and the remaining coal is also instantaneously gasified because the O 2 concentration at the tip of the tuyere is high. Additionally, the atmosphere at the tuyere tip of an oxygen blast furnace is usually higher than that of the blast furnace tuyere tip, so even coarse-grained coal will explode and most of it will explode due to the rapid expansion of the contained gas components, resulting in complete combustion. .

しかし乍ら、粗粉炭の使用が可能であつても単
位時間内に過大な量の吹き込みを行うことは、不
完全燃焼となり好ましくなく、発明者等の実験に
よれば2〜5mmの粗粉炭の通常操業時の添加割合
は吹き込まれる炭材総量の5〜30%が好ましく、
上限を超えての吹き込みは不完全燃焼の原因とな
る。下限の5%以下ではこの発明の目的とする経
済的効果が上がらない。また最大粒度が大き過ぎ
ると輸送系にトラブルを与えるので5mm以下とす
る必要がある。
However, even if it is possible to use coarse pulverized coal, injecting an excessive amount within a unit time will result in incomplete combustion, which is undesirable. The addition ratio during normal operation is preferably 5 to 30% of the total amount of carbon material injected.
Blowing in excess of the upper limit causes incomplete combustion. Below the lower limit of 5%, the economical effects aimed at by this invention will not be achieved. Also, if the maximum particle size is too large, it will cause trouble to the transportation system, so it needs to be 5 mm or less.

(実施例) 内容績2828m3の高炉で、出銑量7500T/日 酸
素330Nm3/T 羽口先温度調整ガス90Nm3/T
微粉炭300Kg/Tの条件下で従来微粉炭粒度200
メツシユ以下70%で羽口から吹き込みを行なつて
いたが、2〜5mm15%の第1図Cの中の最大粒度
構成の粗粉炭に切り換えて同一条件で吹きこんだ
ところ風圧が10%程度上昇し、炉頂ダストが15%
程度増えたが炉況に影響はなく連続操業が可能で
あつた。
(Example) A blast furnace with a capacity of 2828m3 , pig iron production rate 7500T/day, oxygen 330Nm3 /T, tuyere tip temperature adjustment gas 90Nm3 /T
Conventional pulverized coal particle size 200 under pulverized coal 300Kg/T condition
Blowing was performed from the tuyere at 70% below mesh, but when we switched to coarse powder coal with the maximum particle size composition in Figure 1 C of 2 to 5 mm 15% and blew under the same conditions, the wind pressure increased by about 10%. and furnace top dust is 15%
Although the temperature increased, the condition of the furnace was not affected and continuous operation was possible.

第1図Cは本発明で使用する粒度構成の例であ
る。
FIG. 1C is an example of a particle size configuration used in the present invention.

第2図は本発明を実施する酸素高炉操業の代表
的なフローの概略図である。高炉1に炉頂から装
入物が装入される。炉内ガスは炉頂清浄機構2を
経てガスホルダー3に送られるが途中分岐されて
ブースター4を通り予熱ガス発生装置5で高温の
ガスを生成しシヤフトに設けたガス吹込み口6か
ら炉内に吹き込まれる。又、一部はブースター4
を通つて羽口先温度調整ガスとして、羽口9より
炉内に吹込まれる。一方、酸素源7からは前記予
熱ガス発生装置5と羽口9へ酸素が送られるが、
通常はコークスの代替の一部として微粉炭貯槽8
からの微粉炭も併せて羽口9から炉内に吹き込ま
れる。
FIG. 2 is a schematic diagram of a typical flow of oxygen blast furnace operation in which the present invention is implemented. A charge is charged into the blast furnace 1 from the top of the furnace. The gas in the furnace is sent to the gas holder 3 via the furnace top cleaning mechanism 2, but is branched off midway through the booster 4, generates high-temperature gas in the preheating gas generator 5, and enters the furnace from the gas inlet 6 provided on the shaft. is blown into. Also, some are booster 4
The gas is blown into the furnace from the tuyere 9 as a tuyere tip temperature adjusting gas. On the other hand, oxygen is sent from the oxygen source 7 to the preheated gas generator 5 and the tuyere 9.
Pulverized coal storage tank8, usually as part of coke replacement
The pulverized coal from the furnace is also blown into the furnace through the tuyere 9.

「発明の効果」 以上詳述したように、本発明方法による場合に
は、通常の高炉においては使用不可能な粗粒の微
粉炭を大量に羽口もしくは羽口近傍から炉内に吹
き込むことが可能になるので、石炭粉砕に必要と
するランニングコストを大巾に引き下げることが
できる。
"Effects of the Invention" As detailed above, according to the method of the present invention, a large amount of coarse pulverized coal, which cannot be used in a normal blast furnace, can be injected into the furnace from the tuyere or the vicinity of the tuyere. This makes it possible to significantly reduce the running costs required for coal pulverization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術と本発明で使用する微粉炭の
粒度構成を示すものである。第2図は酸素濃度と
羽口先の温度の関係を示す図であり、第3図は本
発明の実施される高炉操業のフローの概要図であ
る。 1……高炉、2……炉頂ガス清浄機構、3……
ガスホルダー、4……ブースター、4′……ブー
スター、5……予熱ガス発生装置、6……ガス吹
込み口、7……酸素源、8……微粉炭貯槽、9…
…羽口。
FIG. 1 shows the particle size structure of pulverized coal used in the prior art and the present invention. FIG. 2 is a diagram showing the relationship between oxygen concentration and temperature at the tip of the tuyere, and FIG. 3 is a schematic diagram of the flow of blast furnace operation in which the present invention is implemented. 1... Blast furnace, 2... Furnace top gas cleaning mechanism, 3...
Gas holder, 4... Booster, 4'... Booster, 5... Preheating gas generator, 6... Gas inlet, 7... Oxygen source, 8... Pulverized coal storage tank, 9...
...tuyere.

Claims (1)

【特許請求の範囲】[Claims] 1 羽口から酸素濃度40%以上のガスを常温で吹
き込む操業において、羽口もしくは羽口近傍から
炉内に吹き込まれる微粉炭の内、+2mmの粗粉炭
を5〜30%で最大粒度5mmとすることを特徴とす
る高炉操業法。
1. In operations where gas with an oxygen concentration of 40% or more is injected from the tuyere at room temperature, of the pulverized coal that is injected into the furnace from the tuyere or near the tuyere, 5 to 30% coarse pulverized coal (+2mm) is used to give a maximum particle size of 5mm. A blast furnace operating method characterized by:
JP30913286A 1986-12-27 1986-12-27 Blast furnace operation method Granted JPS63166908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30913286A JPS63166908A (en) 1986-12-27 1986-12-27 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30913286A JPS63166908A (en) 1986-12-27 1986-12-27 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPS63166908A JPS63166908A (en) 1988-07-11
JPH0586444B2 true JPH0586444B2 (en) 1993-12-13

Family

ID=17989279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30913286A Granted JPS63166908A (en) 1986-12-27 1986-12-27 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JPS63166908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105107A1 (en) 2014-01-07 2015-07-16 新日鐵住金株式会社 Method for operating blast furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079677B2 (en) * 2014-03-27 2017-02-15 Jfeスチール株式会社 Blast furnace blowing pulverized coal, blast furnace blowing pulverized coal manufacturing method and blast furnace operating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105107A1 (en) 2014-01-07 2015-07-16 新日鐵住金株式会社 Method for operating blast furnace
US10106863B2 (en) 2014-01-07 2018-10-23 Nippon Steel & Sumitomo Metal Corporation Method for operation of blast furnace

Also Published As

Publication number Publication date
JPS63166908A (en) 1988-07-11

Similar Documents

Publication Publication Date Title
US8834599B2 (en) Method and device for operating a smelting reduction process
US4805880A (en) Fluidized bed arrangement for the production of molten pig iron and steel pre-products
JPS6227509A (en) Method for operating blast furnace
US4844737A (en) Method for operating a blast furnance by blowing pulverized coal
RU2395587C2 (en) Installation for production of melt iron
AU704141B2 (en) Process for the production of molten pig iron or molten steel pre-products and sponge iron and a plant for carrying out the process
US4985075A (en) Method for manufacturing chromium-bearing pig iron
EP0657550A1 (en) Method and apparatus for producing iron
JPH0586444B2 (en)
JPS5858206A (en) Controlling method for temperature of reducing gas in production of pig iron
EP0319966B1 (en) Method of smelting reduction of ores containing metal oxides
JP2881840B2 (en) Blast furnace tuyere powder injection method
US2824793A (en) Process for producing steel by high temperature gaseous reduction of iron oxide
JPS63171807A (en) Operation method for oxygen blast furnace
JPH0778251B2 (en) Direct iron making method using vertical furnace
JP3651443B2 (en) Blast furnace operation method
JPS6043403B2 (en) Blast furnace operation method using pulverized coal injection
JP2733566B2 (en) Blast furnace operation method
JPS63171809A (en) Control method for furnace heat in oxygen blast furnace
JPS63169310A (en) Blast furnace operation method
JP3590543B2 (en) How to inject iron-containing powder into the blast furnace
JPS6054948A (en) Method of treating gas generation and slag effectively
Ichikawa et al. The breakthrough ironmaking technologies combined with ENERGIRON, blast furnace and syngas
JPH0149776B2 (en)
JPH09194913A (en) Operation of blast furnace