JPS63166908A - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JPS63166908A
JPS63166908A JP30913286A JP30913286A JPS63166908A JP S63166908 A JPS63166908 A JP S63166908A JP 30913286 A JP30913286 A JP 30913286A JP 30913286 A JP30913286 A JP 30913286A JP S63166908 A JPS63166908 A JP S63166908A
Authority
JP
Japan
Prior art keywords
furnace
gas
coal
blast furnace
tuyeres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30913286A
Other languages
Japanese (ja)
Other versions
JPH0586444B2 (en
Inventor
Takashi Takebe
竹部 隆
Yojiro Yamaoka
山岡 洋次郎
Yotaro Ono
大野 陽太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP30913286A priority Critical patent/JPS63166908A/en
Publication of JPS63166908A publication Critical patent/JPS63166908A/en
Publication of JPH0586444B2 publication Critical patent/JPH0586444B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To save crushing cost of coal and to simplify the treatment, transportation, etc., by increasing using quantity of coarse powdery coal as much as possible under ordinary operating conditions of an oxygen blast furnace. CONSTITUTION:Charging material is charged into the blast furnace 1 from furnace top and furnace gas is fed to a gas holder 3 through furnace top cleaning mechanism 2 and branched on the way and passed through a booster 4, to generate high temp. gas by a preheating gas generator 5 and blow in the furnace from a blowing holes 6 arranged in a shaft part. A part of the furnace gas blown in the furnace from tuyeres 9 through a booster 4' as temp. adjusting gas in front of tuyeres 9. On the other hand, oxygen is fed to the above generator 5 and tuyeres 9 from an oxygen source 7, but ordinarily blown into the furnace from the tuyeres 9 together with fine powdered coal from a fine powdered storing vessel 8 as a part of the substitute for the coke. At this time, the above fine powdered coal containing 5-30% of the coarse powdery coal having +2mm grain size and 5mm max. grain size is used.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) この発明は、製鉄用高炉、特に酸素高炉において、羽口
から吹き込まれる微粉炭の粒度に特徴を有する高炉操業
方法に関するものである。
[Detailed Description of the Invention] "Objective of the Invention" (Industrial Application Field) This invention relates to a method of operating a blast furnace for iron-making, particularly an oxygen blast furnace, in which the particle size of pulverized coal injected from the tuyere is characterized. It is.

(従来の技術) 従来の高炉操業法は、若干の酸素富化は行なうものの、
生産性の高い実用高炉においては略全部が羽口からの高
温送風(空気)が主体をなしている。従って通常の高炉
においては、羽口もしくは羽口近傍から炉内に吹き込ま
れる微粉炭の量は通常50〜60kg/7程度であり、
その粒度構成は200メツシユ以下が70〜80%を占
め最大粒度0.5 mmが一般的に使用されている。し
かし乍ら、これ程の粒度までに石炭を粉砕するに要する
費用もかなりな金額に達する。そこで、近年微粉炭の中
でも比較的粗粒を使用する例がIron and St
eelEngineer、 1986年1月号に平均粒
度0.3〜0、5 ++n、’ 2 vm以下を3%程
度含むものとして高炉に使用された例が報告されている
(Conventional technology) Although the conventional blast furnace operation method slightly enriches oxygen,
In high-productivity practical blast furnaces, high-temperature blast (air) from the tuyeres is the main component. Therefore, in a normal blast furnace, the amount of pulverized coal injected into the furnace from the tuyere or the vicinity of the tuyere is usually about 50 to 60 kg/7.
70 to 80% of the particle size composition is 200 mesh or less, and a maximum particle size of 0.5 mm is generally used. However, the cost required to crush coal to such a particle size is considerable. Therefore, in recent years, an example of using relatively coarse grains of pulverized coal is Iron and St.
In the January 1986 issue of eelEngineer, an example of a material containing about 3% of particles having an average particle size of 0.3 to 0, 5 ++n, or less than '2 vm and used in a blast furnace is reported.

これは羽口先が2000℃以上もあるので高速の熱分解
時に自ら破裂することを°期待したものである。
Since the temperature at the tuyere tip is over 2,000°C, it was hoped that it would rupture on its own during high-speed thermal decomposition.

第1図のAは従来の微粉炭の粒度範囲。Bは前述の報文
の粒度範囲を示す。
A in Figure 1 shows the particle size range of conventional pulverized coal. B indicates the granularity range of the aforementioned report.

又、近年においては、高炉の生産性をより高める目的か
ら羽口から常温の酸素を吹き込む操業方法、例えば特開
昭60−159104号も提案され、又、送風の主体を
空気としないで酸素もしくは酸素と炉頂ガスとした特公
昭37−3356、特公昭52−32323、もしくは
石炭ガス化もしくは化学工業用ガスを得ることが主目的
で副次的に溶銑を製造する際に酸素を主体とする送風を
行ない微粉炭も使用された例として特公昭31−493
9、特公昭31−10755等もあるが微粉炭の粒度構
成の改良に言及したものはない。
In addition, in recent years, an operating method has been proposed in which oxygen at room temperature is blown into the blast furnace through the tuyeres, for example in JP-A-60-159104, for the purpose of further increasing the productivity of the blast furnace. Special Publication No. 37-3356, Special Publication No. 52-32323 using oxygen and furnace top gas, or oxygen as the main ingredient when producing hot metal as a secondary purpose with the main purpose of obtaining gas for coal gasification or chemical industry. As an example of blowing air and using pulverized coal,
9, Japanese Patent Publication No. 31-10755, etc., but none mentions the improvement of the particle size structure of pulverized coal.

(発明が解決しようとする問題点) 本発明は、このような現状に鑑み創案されたものであり
、酸素高炉の通常の操業条件下で、従来の高炉操業では
使用できなかった粗粉炭の使用量を可能な限り増大せし
め、粉砕に必要とされるコストを低減せしめると同時に
、炉前設備等におけるハンドリングの困難さを解決する
操業方法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention was devised in view of the current situation, and it is possible to use coarse pulverized coal, which cannot be used in conventional blast furnace operations, under normal operating conditions of oxygen blast furnaces. The object is to provide an operating method that increases the amount as much as possible, reduces the cost required for pulverization, and at the same time solves the difficulty of handling in furnace equipment and the like.

「発明の構成」 (問題点を解決するための手段) 前記の目的を達成するために、本発明者等は、羽口から
酸素濃度40%以上のガスを常温で吹き込む操業におい
て、 羽口もしぐは羽口近傍から炉内に吹込まれる微粉炭の内
、+211の粒度の粗粉炭を5〜30%で最大粒度5龍
とすることを特徴とする高炉操業法、を芸に提案する。
"Structure of the Invention" (Means for Solving the Problems) In order to achieve the above-mentioned object, the present inventors have devised a method for injecting gas with an oxygen concentration of 40% or more from the tuyeres at room temperature. Among the pulverized coal injected into the furnace from the vicinity of the tuyeres, we propose a blast furnace operating method characterized by using coarse pulverized coal with a particle size of +211 as 5 to 30%, with a maximum particle size of 5.

この本性の採用により、酸素高炉の通常の操業条件下に
おいてかなりな量の粗粉炭の使用が可能となり、石炭の
粉砕に要する経費を節減し、且つ取り扱い移送等が筒便
となる。
By adopting this property, it becomes possible to use a considerable amount of coarse powder coal under normal operating conditions of an oxygen blast furnace, which reduces the cost required for pulverizing the coal and makes handling and transportation convenient.

(作用) 本発明の通、用される高炉は、羽口から酸素濃度40%
以上のガスを常温で吹き込み、且つシャフトから予熱ガ
スを吹き込んで操業する酸素高炉である。
(Function) According to the present invention, the blast furnace used has an oxygen concentration of 40% from the tuyere.
This is an oxygen blast furnace that operates by blowing the above gases at room temperature and blowing preheated gas from the shaft.

第2図は、縦軸に炉頂から羽口レベルまでの高さく位置
)を、横軸には温度をとり酸素の富化率毎の位置側の温
度勾配を示したものである。
In FIG. 2, the vertical axis represents the height position from the top of the furnace to the tuyere level, and the horizontal axis represents temperature, showing the temperature gradient at each position for each oxygen enrichment rate.

この図面からも理解しうるように酸素富化率を高める程
羽口先温度が上昇し炉上部温度が低下することがわかる
。したがって、酸素濃度40%以上の吹き込みでは上部
の熱が不足し、シャフトからの予熱ガスが必要となる。
As can be understood from this figure, as the oxygen enrichment rate is increased, the temperature at the tuyere tip increases and the temperature at the upper part of the furnace decreases. Therefore, when blowing with an oxygen concentration of 40% or more, there is insufficient heat in the upper part, and preheating gas from the shaft is required.

高炉操業上羽口先温度が異常に上昇することは、鉱石や
コークス中のSing、 Alz(h等が還元揮発し上
部で凝縮し棚吊り等の原因となるので、通常は炉頂ガス
、水蒸気などを温度調節剤として使用するが、本発明に
おいては微粉炭をこれらの一部の代替として使用するこ
とができる。通常の高炉では羽口先温度は送風温度と酸
素富化(数%)から2500℃程度が上限であるが酸素
高炉の場合は温度調整剤の量を減らすことにより260
0〜2700℃程度に上げることが可能である。
An abnormal rise in the tuyere tip temperature during blast furnace operation is caused by reduction and volatilization of Sing, Alz (h, etc.) in the ore and coke and condensation at the top, causing shelving. is used as a temperature regulator, but in the present invention, pulverized coal can be used as a substitute for some of these.In a normal blast furnace, the temperature at the tuyere tip is 2500°C depending on the blast temperature and oxygen enrichment (several percent). However, in the case of an oxygen blast furnace, by reducing the amount of temperature regulator, the temperature can be reduced to 260
It is possible to raise the temperature to about 0 to 2700°C.

従って2〜31■の粗粒の微粉炭を吹き込んでも瞬間的
に揮発分が蒸発クランキングされてガス化し残存するチ
ャーも羽口先の0□濃度が高いので瞬間的にガス化する
。又、酸素高炉の羽口先の雰囲気は通常高炉の羽口先よ
り高温なため粗粒の石炭でも内包するガス成分の急激な
膨張により殆んどが爆発的に分裂するので完全に燃焼す
ることになる。
Therefore, even if pulverized coal with coarse grains of 2 to 31 cm is injected, the volatile matter is instantaneously evaporated and cranked and gasified, and the remaining char is also instantaneously gasified because the 0□ concentration at the tip of the tuyere is high. Additionally, the atmosphere at the tuyere tip of an oxygen blast furnace is usually higher than that of the blast furnace tuyere tip, so even coarse-grained coal will explode and most of it will explode due to the rapid expansion of the contained gas components, resulting in complete combustion. .

しかし乍ら、粗粉炭の使用が可能であっても単位時間内
に過大な量の吹き込みを行うことは、不完全燃焼となり
好ましくなく、発明者等の実験によれば2〜5mの粗粉
炭の通常操業時の添加割合は吹き込まれる炭材総量の5
〜30%が好ましく、上限を超えての吹き込みは不完全
燃焼の原因となる。下限の5%以下ではこの発明の目的
とする経済的効果が上がらない、また最大粒度が大き過
ぎると輸送系にトラブルを与えるので5In以下とする
必要がある。
However, even if it is possible to use coarse pulverized coal, blowing an excessive amount within a unit time will result in incomplete combustion, which is undesirable. The addition ratio during normal operation is 5% of the total amount of carbon material injected.
~30% is preferred; blowing in excess of the upper limit causes incomplete combustion. If it is less than the lower limit of 5%, the economic effect aimed at by this invention will not be achieved, and if the maximum particle size is too large, it will cause trouble to the transportation system, so it is necessary to make it less than 5In.

(実施例) 内容績2828nfの高炉で、出銑量7500Tノ日 
酸素330Nrrf/T  羽口先温度調整ガス9ON
n?/T  微粉炭300 kg/Tの条件下で従来微
粉炭粒度200メツシユ以下70%で羽口から吹き込み
を行なっていたが、2〜5u15%の第1図Cの中の最
大粒度構成の粗粉炭に切り換えて同一条件で吹きこんだ
ところ風圧が10%程度上昇し、炉頂ダストが15%程
度増えたが炉況に影響はなく連続操業が可能であった。
(Example) A blast furnace with a content of 2828nf produces 7500T of iron per day.
Oxygen 330Nrrf/T Tuyere tip temperature adjustment gas 9ON
n? /T Under the condition of pulverized coal 300 kg/T, blowing was performed from the tuyere with a pulverized coal particle size of 70% or less of 200 mesh. When the furnace was switched to the same condition and the air was blown under the same conditions, the wind pressure increased by about 10% and the amount of dust at the top of the furnace increased by about 15%, but the furnace conditions were not affected and continuous operation was possible.

第1図Cは本発明で使用する粒度構成の例である。FIG. 1C is an example of a particle size configuration used in the present invention.

第2図は本発明を実施する酸素高炉操業の代表的なフ、
ローの概略図である。高炉1に炉頂から装入物が装入さ
れる。炉内ガスは炉頂清浄機構2を経てガスホルダー3
に送られるが途中分岐されてブースター4を通り予熱ガ
ス発生装置5で高温のガスを生成しシャフトに設けたガ
ス吹込み口6から炉内に吹き込まれる。又、一部はブー
スター4′を通って羽口先温度調整ガスとして、羽口9
より炉内に吹込まれる。一方、酸素源7からは前記予熱
ガス発生装置5と羽口9へ酸素が送られるが、通常はコ
ークスの代替の一部として微粉炭貯槽8からの微粉炭も
併せて羽口9から炉内に吹き込まれる。
Figure 2 shows a typical flow of oxygen blast furnace operation in which the present invention is implemented.
FIG. A charge is charged into the blast furnace 1 from the top of the furnace. The gas inside the furnace passes through the furnace top cleaning mechanism 2 and then to the gas holder 3.
However, the gas is branched on the way, passes through a booster 4, generates high-temperature gas in a preheated gas generator 5, and is blown into the furnace from a gas inlet 6 provided on the shaft. In addition, a part passes through the booster 4' and is used as a tuyere tip temperature adjusting gas to be supplied to the tuyere 9.
It is blown into the furnace. On the other hand, oxygen is sent from the oxygen source 7 to the preheating gas generator 5 and the tuyere 9, but normally pulverized coal from the pulverized coal storage tank 8 is also sent from the tuyere 9 into the furnace as part of coke replacement. is blown into.

「発明の効果」 以上詳述したように、本発明方法による場合には、通常
の高炉においては使用不可能な粗粒の微粉炭を大量に羽
口もしくは羽口近傍から炉内に吹き込むことが可能にな
るので、石炭粉砕に必要とするランニングコストを大巾
に引き下げることができる。
"Effects of the Invention" As detailed above, according to the method of the present invention, a large amount of coarse pulverized coal, which cannot be used in a normal blast furnace, can be injected into the furnace from the tuyere or the vicinity of the tuyere. This makes it possible to significantly reduce the running costs required for coal pulverization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術と本発明で使用する微粉炭の粒度構成
を示すものである。 第2図は酸素濃度と羽口先の温度の関係を示す図であり
、第3図は本発明の実施される高炉操業のフローの概要
図である。
FIG. 1 shows the particle size structure of pulverized coal used in the prior art and the present invention. FIG. 2 is a diagram showing the relationship between oxygen concentration and temperature at the tip of the tuyere, and FIG. 3 is a schematic diagram of the flow of blast furnace operation in which the present invention is implemented.

Claims (1)

【特許請求の範囲】[Claims] 羽口から酸素濃度40%以上のガスを常温で吹き込む操
業において、羽口もしくは羽口近傍から炉内に吹き込ま
れる微粉炭の内、+2mmの粗粉炭を5〜30%で最大
粒度5mmとすることを特徴とする高炉操業法。
In operations where gas with an oxygen concentration of 40% or more is blown into the furnace from the tuyere at room temperature, 5 to 30% of the pulverized coal injected into the furnace from the tuyere or near the tuyere should have a maximum particle size of 5 mm. A blast furnace operating method characterized by:
JP30913286A 1986-12-27 1986-12-27 Blast furnace operation method Granted JPS63166908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30913286A JPS63166908A (en) 1986-12-27 1986-12-27 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30913286A JPS63166908A (en) 1986-12-27 1986-12-27 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPS63166908A true JPS63166908A (en) 1988-07-11
JPH0586444B2 JPH0586444B2 (en) 1993-12-13

Family

ID=17989279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30913286A Granted JPS63166908A (en) 1986-12-27 1986-12-27 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JPS63166908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187294A (en) * 2014-03-27 2015-10-29 Jfeスチール株式会社 Pulverized coal for injection into blast furnace, method for manufacturing the same, and blast furnace operating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6258039B2 (en) 2014-01-07 2018-01-10 新日鐵住金株式会社 Blast furnace operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187294A (en) * 2014-03-27 2015-10-29 Jfeスチール株式会社 Pulverized coal for injection into blast furnace, method for manufacturing the same, and blast furnace operating method

Also Published As

Publication number Publication date
JPH0586444B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
US9574247B2 (en) Method and device for operating a smelting reduction process
KR920004699B1 (en) Method for operating blast furnace
JPH0680167B2 (en) Method for producing carbon-containing molten iron from sponge iron
JPH11323413A (en) Reducing gas forming agent for refining metal
EP0657550A1 (en) Method and apparatus for producing iron
JPS63166908A (en) Blast furnace operation method
JPH08188811A (en) Method for melting scrap
JPS5858206A (en) Controlling method for temperature of reducing gas in production of pig iron
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JP2881840B2 (en) Blast furnace tuyere powder injection method
US2846301A (en) Processes of smelting finely divided metallic ore
JPS63171807A (en) Operation method for oxygen blast furnace
JP3651443B2 (en) Blast furnace operation method
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
JPH06172825A (en) Operation of blast furnace
JP3590543B2 (en) How to inject iron-containing powder into the blast furnace
JPS63169310A (en) Blast furnace operation method
JPS63171809A (en) Control method for furnace heat in oxygen blast furnace
US6767383B1 (en) Method for producing pig iron
JPS6054948A (en) Method of treating gas generation and slag effectively
JP3146066B2 (en) Method and apparatus for smelting reduction of steelmaking dust
JPS63166909A (en) Oxygen blast furnace operation method
JPH09194913A (en) Operation of blast furnace
JPS63166906A (en) Oxygen blast furnace operation method using low strength coke
JPH09209016A (en) Operation of iron scrap melting furnace