JPH0718313A - Operation of vertical furnace - Google Patents

Operation of vertical furnace

Info

Publication number
JPH0718313A
JPH0718313A JP19187393A JP19187393A JPH0718313A JP H0718313 A JPH0718313 A JP H0718313A JP 19187393 A JP19187393 A JP 19187393A JP 19187393 A JP19187393 A JP 19187393A JP H0718313 A JPH0718313 A JP H0718313A
Authority
JP
Japan
Prior art keywords
fine powder
gas
furnace
amount
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19187393A
Other languages
Japanese (ja)
Inventor
Takashi Sugiyama
喬 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19187393A priority Critical patent/JPH0718313A/en
Publication of JPH0718313A publication Critical patent/JPH0718313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep ventilation satisfactory in condition and to stably operate a furnace by adjusting grain diameter of fine powder, gas flowing rate, grain diameter of a packing layer, blowing rate of the fine powder, etc., in a vertical furnace and controlling the reducing value of a space ratio to the control value of below. CONSTITUTION:Into the vertical furnace 1 packed with the grains 4, the fine powder 6 from a fine powder blowing part 3 is blown together with the gas from a gas blowing part 2 to allow to react the grain 4 and fine powder 6 with gas. At this time, a holding up quantity rhok of the fine powder in the furnace is estimated by using the equation rhok=(mu<2>/4.436X10<-11>rhog.g)(Ug/ g-Dg)<1/2>)<-3.74>*(Dk/D<p>)<2.08>(Gko/Gg)<0.97>*10<7.9> (wherein, mu: gas viscosity, rhog: gas density, g: gravity acceleration, Ug: gas flowing velocity, Dp: grain diameter of grains in the packing layer, Dk: grain diameter of fine powder, Gko: mass velocity of the fine powder, Gg: mass velocity of the gas). Successively, the reduction DELTAepsilon of the space ratio is calculated by using the equation DELTAepsilon=epsilono(rhok/rhoko) (wherein, rhoko: the hold up quantity of the fine powder, epsilono: the space ratio of the packing layer). This DELTAepsilon is controlled to the control value alpha or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粒子が充填している充填
層にガスと微粉とが貫流するような竪型炉において炉内
の微粉の滞留量を予測し、かつその滞留量を制御するこ
とによって炉内の粒子とガスと微粉の反応を順調に維持
し、竪型炉を安定状態で操業する方法に関するものであ
る。本技術は高炉、ガス発生炉、酸化鉄還元用シャフト
炉等に応用が可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention predicts the retention amount of fine powder in a furnace in a vertical furnace in which gas and fine powder flow through a packed bed filled with particles, and controls the retention amount. Thus, the present invention relates to a method of maintaining the reaction of particles, gas and fine powder in the furnace smoothly, and operating the vertical furnace in a stable state. The present technology can be applied to a blast furnace, a gas generation furnace, a shaft furnace for iron oxide reduction, and the like.

【0002】[0002]

【従来の技術】充填塔内をガスと微粉とが貫流するよう
な工業炉においては操業条件によっては炉内に微粉が滞
留する。微粉の滞留は、炉内の通気性を悪化させ、ひい
てはガス流れが局部的な偏流を起こすことによって充填
層の昇温を阻害したり反応効率を低下させるのでその滞
留量を適正なレベルにコントロールすることが重要とな
る。微粉が極度に滞留した場合、そのときのガス流速、
吹き込み量、微粉の粒径を維持し続けた場合は充填粒子
の流動化ひいては吹きぬけにいたり、操業停止を余儀な
くされることもある。
2. Description of the Related Art In an industrial furnace in which gas and fine powder flow through a packed tower, fine powder stays in the furnace depending on the operating conditions. Accumulation of fine powder deteriorates the air permeability in the furnace, which in turn inhibits the temperature rise in the packed bed and lowers the reaction efficiency by causing a localized drift of the gas flow, so the amount of retention is controlled to an appropriate level. It becomes important to do. When the fine powder stays extremely, the gas flow rate at that time,
If the amount of air blown in and the particle size of the fine powder are continuously maintained, fluidization of the filled particles may occur, which may lead to blowout, or the operation may be stopped.

【0003】高炉を例にとると、近年高炉内への微粉炭
の吹き込み量が増大し、これに伴い高炉の燃焼ゾーンで
あるレースウェイで燃焼しない未燃チャーが上部にガス
とともに上昇する。またレースウェイ部で燃焼あるいは
摩耗によって発生したコークス粉も合わさって同様な挙
動を呈する。レースウェイからでた微粉は充填層内を固
気二相流として流れるが、充填層を構成するコークス粒
子の粒径や、ガスの流速、微粉の粒径や量によって微粉
の移動や蓄積挙動が異なることが考えられる。
Taking a blast furnace as an example, in recent years the amount of pulverized coal blown into the blast furnace has increased, and along with this, unburned char that does not burn in the raceway, which is the combustion zone of the blast furnace, rises with gas above. In addition, the coke powder generated by combustion or abrasion in the raceway part also exhibits the same behavior. The fine powder from the raceway flows as a solid-gas two-phase flow in the packed bed, but the movement and accumulation behavior of the fine powder depends on the particle size of the coke particles forming the packed bed, the gas flow rate, and the particle size and amount of the fine powder. It can be different.

【0004】炉の操業条件が与えられた時に微粉炭の充
填層内での蓄積量(ホールドアップ)を推定することが
できれば通気の異常に対して適切なアクションをとるこ
とができ、高炉の安定操業のために有効となるが、従来
の技術ではこのホールドアップの推定が困難であった。
また例えばピッチコークスを充填し、微粉炭と空気を羽
口から吹き込みCOを発生させるガス発生炉を貫流する
微粉や酸化鉄充填層の下部より還元ガスを吹き込む還元
用のシャフト炉において酸化鉄の還元粉化あるいは粒子
間摩耗によって発生する微粉においても上記と同様な問
題が生ずる。
If the accumulation amount (hold-up) of the pulverized coal in the packed bed can be estimated when the operating conditions of the furnace are given, appropriate action can be taken against abnormal ventilation, and the stability of the blast furnace can be improved. Although effective for operation, it is difficult to estimate this holdup with the conventional technology.
Further, for example, reduction of iron oxide in a reducing shaft furnace filled with pitch coke and blowing fine coal and air from the tuyere to flow CO through the gas generating furnace to generate CO and a reducing gas blown from the lower part of the iron oxide packed bed. The same problem as described above also occurs in fine powder generated by pulverization or abrasion between particles.

【0005】[0005]

【発明が解決しようとしている課題】本発明は上記のよ
うな問題を解決するために、微粉が大量に吹き込まれた
状況にあっても炉内部における通気を良好な状態に保
ち、炉内を常に活性状態に維持し、それによってガスや
固体の流通を順調に行なわせ、炉を安定に操業させる竪
型炉の操業方法を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention maintains good ventilation in the furnace even when a large amount of fine powder is blown into the furnace, so that the inside of the furnace is always maintained. It is an object of the present invention to provide a method for operating a vertical furnace, which maintains an active state, thereby allowing gas and solids to flow smoothly and stably operating the furnace.

【0006】[0006]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、竪型炉内の微粉のホールドアップ量
ρk を(1)式を用いて推定し、ついで(2)式を用い
て空間率の減少Δεを計算し、前記Δεが0.08以上
のある管理値α以上であれば微粉の粒径Dk 、ガス流速
g 、充填層の粒子径Dp 、微粉吹き込み量Gk0のいず
れか1種または2種以上を調節して(1)式から計算さ
れるρk を用いて再び(2)式を計算し、前記調節と計
算をくり返すことによりΔεをα以下に制御することを
特徴とする竪型炉の制御方法である。
Means for Solving the Problems The present invention is to solve the above-mentioned problems. The holdup amount ρ k of fine powder in a vertical furnace is estimated by using the equation (1), and then the equation (2) is calculated. The decrease Δε in the porosity is calculated by using, and if Δε is a control value α of 0.08 or more, the particle diameter D k of the fine powder, the gas flow rate U g , the particle diameter D p of the packed bed, and the fine powder injection By adjusting any one or two or more of the quantities G k0, the equation (2) is calculated again using ρ k calculated from the equation (1), and Δε is set to α by repeating the adjustment and calculation. It is a control method for a vertical furnace characterized by the following control.

【0007】 ρk =(μ2 /4.436×10-11 ρg ・g)(Ug /g・Dp1/2-3.74 *(Dk /Dp2.08(Gk0/Gg0.97*107.9 ……(1) Δε=ε0 ・(ρk /ρk0) ……(2) ただし、ρk :微粉のホールドアップ量(kg/m3
bed) μ :ガスの粘度 (kg/m・s) ρg :ガスの密度 (kg/m3 ) g :重力加速度 (m/s2 ) Ug :ガス流速 (m/s) Dp :充填層の粒子径 (m) Dk :微粉の粒径 (m) Gk0:微粉の炉内平均質量速度(吹き込み量)(kg/
2 ・s) Gg :ガスの炉内平均質量速度(kg/m2 ・s) Δε:空間率の減少 (−) ρk0:空間を完全に埋めた時の微粉のホールドアップ量
(kg/m3 −bed) ε0 :微粉がないときの充填層空間率(=0.45)
(−)
Ρ k = (μ 2 /4.436×10 -11 ρ g · g) (U g / g · D p ) 1/2 ) -3.74 * (D k / D p ) 2.08 (G k0 / G g ) 0.97 * 10 7.9 (1) Δε = ε 0 · (ρ k / ρ k0 ) ... (2) where ρ k : Hold-up amount of fine powder (kg / m 3
bed) μ: Gas viscosity (kg / m · s) ρ g : Gas density (kg / m 3 ) g: Gravitational acceleration (m / s 2 ) U g : Gas flow velocity (m / s) D p : Packing Particle diameter of layer (m) D k : Particle diameter of fine powder (m) G k0 : Average mass velocity (blowing amount) of fine powder in the furnace (kg /
m 2 · s) G g : Average mass velocity of gas in the furnace (kg / m 2 · s) Δε: Reduction of void ratio (−) ρ k0 : Hold-up amount of fine powder when the space is completely filled (kg) / M 3 -bed) ε 0 : Porosity of packed bed without fine powder (= 0.45)
(-)

【0008】[0008]

【作用】本発明の特徴はモデル実験によって充填層内の
微粉のホールドアップ量が充填層を構成するコークス粒
子等の粒径や、ガスの流速、微粉の粒径や量と深く関係
すること、またそれらの定量的関係を見いだした点にあ
る。すなわち、竪型炉内の微粉のホールドアップρk
前記(1)式を用いて推定し、ついで(2)式を用いて
空間率の減少Δεを計算する。そのΔεが0.08以上
のある管理値α以上であれば微粉の粒径Dk 、ガス流速
g 、充填層の粒子径Dp 、微粉吹き込み量Gk0のいず
れか1種または2種以上を調節して(1)式から計算さ
れるρk を用いて再び(2)式を計算し、これをくり返
すことによりΔεをα以下に制御することを特徴とす
る。ここで微粉とは500μm以下の粉体と定義する。
The feature of the present invention is that the hold-up amount of the fine powder in the packed bed is deeply related to the particle size of the coke particles or the like constituting the packed bed, the flow velocity of the gas, the particle size and the amount of the fine powder according to the model experiment, In addition, they have found the quantitative relationship between them. That is, the holdup ρ k of the fine powder in the vertical furnace is estimated by using the equation (1), and then the decrease Δε in the porosity is calculated by using the equation (2). If the Δε is equal to or more than a certain control value α of 0.08 or more, any one or more of the fine powder particle diameter D k , the gas flow rate U g , the packed bed particle diameter D p , and the fine powder blowing amount G k0. Is adjusted to calculate (2) again using ρ k calculated from (1), and by repeating this, Δε is controlled to be equal to or less than α. Here, the fine powder is defined as a powder of 500 μm or less.

【0009】微粉のホールドアップの増加は充填層内の
空間を微粉が埋める現象として整理される。充填層の空
間が健全な状態に保たれた時、その空間率ε0 は0.4
5近傍にある。この微粉が空間を埋めて存在した場合、
空間率の減少Δεは前記(2)式のように表せる。一
方、モデル実験によれば微粉の滞留によって充填層の空
間率が0.1低下したときに、そのときのガス流速、吹
き込み量、微粉の粒径を維持し続けた場合は充填粒子の
流動化ひいては吹きぬけにいたることが明らかになっ
た。
The increase in the holdup of the fine powder is arranged as a phenomenon in which the space in the packed bed is filled with the fine powder. When the space of the packed bed is kept in a healthy state, its porosity ε 0 is 0.4.
It is in the vicinity of 5. If this fine powder fills the space and exists,
The decrease in porosity Δε can be expressed as in the above equation (2). On the other hand, according to the model experiment, when the porosity of the packed bed was decreased by 0.1 due to the retention of the fine powder, the gas flow velocity, the blowing amount, and the particle size of the fine powder were kept fluidized at that time when the packed particle was fluidized. Eventually, it became clear that it was a blowout.

【0010】この現象を高炉を例にとって説明すると、
コークス充填層の空間が健全な状態に保たれた時の充填
層の空間率ε0 =0.45近傍の空間を微粉が完全に埋
めた場合、その重量ρk0は225kg/m3 −bedと
なる。モデル実験から導出された(1)式によれば、微
粉粒径Dk =80μmで高炉下部の平均ガス流量速Ug
=0.8m/sの場合、微粉のホールドアップはρk
50kg/m3 −bedとなる。この時の空間率の減少
Δεは(2)式より Δε=0.45×(50/225)=0.1 となりこのときの充填層空間率εは下記のようになる。 ε=ε0 −Δε=0.45−0.1=0.35
This phenomenon will be explained by taking a blast furnace as an example.
If the void ratio epsilon 0 = 0.45 vicinity of the space filling layer when the space of the coke packed layer was kept in a healthy state fines were completely filled, its weight [rho k0 is the 225 kg / m 3 -bed Become. According to the equation (1) derived from the model experiment, the average particle flow rate U g of the lower part of the blast furnace with the fine powder particle diameter D k = 80 μm
= 0.8 m / s, the hold-up of fine powder is ρ k =
It becomes 50 kg / m 3 -bed. The decrease Δε in the porosity at this time is Δε = 0.45 × (50/225) = 0.1 from the equation (2), and the packed bed porosity ε at this time is as follows. ε = ε 0 −Δε = 0.45−0.1 = 0.35

【0011】もしρk =50kg/m3 −bed以上で
あるとこの充填層は微粉によって流動化あるいは吹き抜
けに至ることになる。つまりこの場合(1)式によって
ρkをこの値(=50)以下に管理する必要がある。ρk
を下げるための制御の手段としては下記のものが挙げ
られる。 (1) 微粉粒径Dk を小さくする。 (2) ガス流速Ug を下げる。 (3) 充填層の粒子径Dp を上げる。 (4) 微粉吹き込み量を減少させ、炉内平均質量速度
k0を減少させる。
If ρ k = 50 kg / m 3 -bed or more, this packed bed will be fluidized or blown by fine powder. That is, in this case, it is necessary to manage ρ k to be equal to or less than this value (= 50) by the equation (1). ρ k
The following are examples of control means for lowering. (1) Decrease the fine powder particle diameter D k . (2) Lower the gas flow rate U g . (3) Increase the particle diameter D p of the packed bed. (4) The amount of fine powder blown is reduced to reduce the average mass velocity G k0 in the furnace.

【0012】以上の4つの選択肢はそれぞれの置かれて
いる条件すなわち生産量、微粉吹き込み条件、送風(ガ
ス吹き込み)条件などによって制約を受けるので状況に
応じて優先順位は変化する。なおUg に関してシャフト
炉やガス発生炉の場合、半径方向のガス流速分布は問題
となることはないが、高炉の場合には半径方向の通気抵
抗の分布を生じているので高炉内の正確な数値を把握す
ることがむずかしい。したがってここでは炉床平均ある
いは炉腹平均のガス流速が適用される。
The above four options are restricted by the conditions under which they are placed, that is, the production amount, the conditions for blowing fine powder, the conditions for blowing air (gas blowing), etc., so that the priority order changes depending on the situation. Regarding U g , in the case of a shaft furnace or a gas generating furnace, the gas flow velocity distribution in the radial direction does not pose a problem, but in the case of a blast furnace, since the distribution of ventilation resistance in the radial direction is generated, it is possible to obtain an accurate value in the blast furnace. It is difficult to grasp the figures. Therefore, here, the average gas velocity of the hearth or the average of the hearth is applied.

【0013】以下図面により本発明を説明する。図1は
本発明の系を示す説明図で1は充填層粒子中をガスと微
粉が移動する竪型炉で高炉、ガス発生炉、シャフト炉等
である。2はガス吹き込み部、3は微粉吹き込み部で微
粉粒径Dk で吹き込まれている。4は充填粒子であり平
均粒径Dp の粒状のコークスあるいは酸化鉄あるいはピ
ッチコークスが固定層あるいは移動層を形成している。
5は粒子排出部分である。高炉、ガス発生炉の場合は粒
子は燃焼によって消滅するためこの部分はない。
The present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing the system of the present invention, and 1 is a vertical furnace in which gas and fine powder move in packed bed particles, such as a blast furnace, a gas generation furnace, and a shaft furnace. Reference numeral 2 is a gas blowing portion, and 3 is a fine powder blowing portion, which is blown with a fine powder particle diameter D k . 4 is a packing particle, and a granular coke having an average particle diameter D p , iron oxide, or pitch coke forms a fixed layer or a moving layer.
5 is a part for discharging particles. In the case of blast furnaces and gas generating furnaces, this part does not exist because particles are extinguished by combustion.

【0014】6は充填層に滞留量ρk で滞留している微
粉を表している。微粉としてはコークス粉、酸化鉄粉、
微粉炭から変成したチャー、フラックス等である。微粉
の滞留形態としては充填層を移動している動的なホール
ドアップ、充填層に補促されて止まっている静的ホール
ドアップの両者からなっている。
Reference numeral 6 represents fine powder retained in the packed bed at a retention amount ρ k . As fine powder, coke powder, iron oxide powder,
Chars, fluxes, etc. that have been transformed from pulverized coal. The retention mode of the fine powder consists of both a dynamic holdup moving through the packed bed and a static holdup stopped by being promoted by the packed bed.

【0015】ガスは炉の断面平均速度Ug で下から上へ
移動しており、微粉は断面平均質量速度Gk0でガスとと
もに移動している。微粉粒径Dk は燃焼によって変化す
るものは炉内相当の粒径が適用される。
The gas is moving from the bottom to the top at the sectional average velocity U g of the furnace, and the fine powder is moving together with the gas at the sectional average mass velocity G k0 . As for the fine powder particle diameter D k, the particle diameter corresponding to the inside of the furnace is applied to the fine powder particle diameter D k which changes due to combustion.

【0016】図2は本発明の概要を示す説明図である。
微粉のホールドアップを左右する操業因子は微粉吹き込
み量Gk0、ガス流速Ug 、充填層の粒子径Dp 、微粉粒
径Dk であり、11は微粉吹き込み量Gk0の調節機構、
12はガス流速Ug の調節機構、13は充填層の粒子径
p の調節機構、14は微粉粒径Dk の調節機構であ
る。15は微粉ホールドアップρk の演算機構でガスの
物性、11、12、13、14の操業パラメータを用い
て(1)式より計算される。16は充填層の空間率減少
Δεを求める演算機構であり、15の微粉ホールドアッ
プρk から(2)式を用いて計算される。
FIG. 2 is an explanatory view showing the outline of the present invention.
The operation factors that influence the holdup of the fine powder are the fine powder blowing amount G k0 , the gas flow rate U g , the particle diameter D p of the packed bed, and the fine powder particle diameter D k , and 11 is a mechanism for adjusting the fine powder blowing amount G k0 .
Reference numeral 12 is an adjusting mechanism of the gas flow rate U g , 13 is an adjusting mechanism of the particle diameter D p of the packed bed, and 14 is an adjusting mechanism of the fine powder particle diameter D k . Reference numeral 15 is a fine powder holdup ρ k calculation mechanism, which is calculated from equation (1) using the physical properties of the gas and the operating parameters 11, 12, 13, and 14. Reference numeral 16 denotes a calculation mechanism for obtaining the porosity reduction Δε of the packed bed, which is calculated from the fine powder holdup ρ k of 15 using the equation (2).

【0017】17は空間率の減少Δεが設定された値α
を超えているか否かを判定する判定機構および状況表示
機構、および警報発生機構である。通常このαは0.1
が設定されるが、ケースによってこの値は変化するので
0.08以上のある値と規定されている。0.08未満
では空間率εがガスを順調に貫流させる正常な状態に保
たれているとみなされる。各パラメータ値および判定状
況はモニターされている。そして判定されたΔεがα以
下であれば操業継続の指示、α以上であれば警報を発生
して最適なアクションの種類、アクション量を指示す
る。
Reference numeral 17 is a value α for which the reduction Δε of the porosity is set.
A judgment mechanism, a status display mechanism, and an alarm generation mechanism that determine whether or not the value exceeds. Usually this α is 0.1
Is set, but since this value changes depending on the case, it is defined as a certain value of 0.08 or more. When it is less than 0.08, it is considered that the porosity ε is kept in a normal state in which the gas smoothly flows through. Each parameter value and judgment status are monitored. If the determined Δε is less than or equal to α, an instruction to continue the operation is given, and if α or more is given, an alarm is issued and the optimum action type and action amount are instructed.

【0018】微粉吹き込み量11の制御は例えばホッパ
ーから切り出す粉体の流量制御機構、ガス流速12の制
御は例えば送風機の回転数制御、充填層粒子径13の制
御は例えば装入するコークスの平均粒度調節、微粉粒子
径14の制御は例えば破砕機の粉砕粒度管理によって実
現できる。
The fine powder blowing amount 11 is controlled, for example, by a flow rate control mechanism of the powder cut out from the hopper, the gas flow velocity 12 is controlled by, for example, the rotation speed of the blower, and the packed bed particle diameter 13 is controlled by, for example, the average particle size of the coke charged. The adjustment and control of the fine powder particle diameter 14 can be realized by, for example, controlling the crushed particle size of the crusher.

【0019】[0019]

【実施例】以下にこの発明の実施例を示す。図3は高炉
において微粉のホールドアップをコントロールした一例
を示す。背景としては微粉炭の吹込量を増加させたいと
いうニーズがある。
EXAMPLES Examples of the present invention will be shown below. FIG. 3 shows an example of controlling holdup of fine powder in a blast furnace. As a background, there is a need to increase the amount of pulverized coal injected.

【0020】ステップ(1)では銑鉄t当たりの微粉炭
吹き込み量は60kg/tで操業されていた。この時の
炉内平均質量速度Gk0は0.027、計算ホールドアッ
プ値ρk =35.5kg/m3 −bedでありΔε=
0.071であった。管理値α=1.0であったので安
全側で操業されていたことになる。
In step (1), the amount of pulverized coal blown per t of pig iron was 60 kg / t. At this time, the average mass velocity G k0 in the furnace is 0.027, the calculated holdup value ρ k = 35.5 kg / m 3 -bed, and Δε =
It was 0.071. Since the control value α was 1.0, it means that the operation was on the safe side.

【0021】ステップ(2)では銑鉄t当たりの微粉炭
吹き込み量(PCR)=100kg/tで操業する計画
であった。微粉炭吹き込み量が増えると、Gk0の増加に
よりホールドアップが増え、Δεが管理値α=0.1を
超え、Δε=0.117と計算されたのでステップ
(3)では微粉炭粒径Dk を80μmから60μmに下
げる操作をおこなった。Δεは0.068まで低下し、
安全側で操業することが可能になった。
In the step (2), it was planned to operate at a pulverized coal injection rate (PCR) per 100 t of pig iron = 100 kg / t. When the amount of pulverized coal injected increases, the hold-up increases due to an increase in G k0 , Δε exceeds the control value α = 0.1, and Δε = 0.117 was calculated. Therefore, in step (3), the pulverized coal particle size D The operation of lowering k from 80 μm to 60 μm was performed. Δε decreased to 0.068,
It became possible to operate on the safe side.

【0022】ステップ(4)では高炉の減産を余儀なく
され、平均ガス流速Ug が1.00m/sから0.95
m/sまで低下した。Ug の低下によりΔεが0.11
1まで上昇して管理値を超えた。そこでこのケースで
は、ステップ(5)で銑鉄t当たりの微粉炭吹き込み量
(PCR)を100kg/tから80kg/tまで下げ
たところGk0は0.0457から0.0366に変化
し、安全側への操業へ移行した。
In step (4), the production of the blast furnace was forced to be reduced, and the average gas flow rate U g was changed from 1.00 m / s to 0.95.
It decreased to m / s. Δε is 0.11 due to the decrease in U g
It rose to 1 and exceeded the control value. Therefore, in this case, when the pulverized coal injection amount (PCR) per pig iron t was reduced from 100 kg / t to 80 kg / t in step (5), G k0 changed from 0.0457 to 0.0366, and the safety side was reached. Moved to.

【0023】以上の手順は理解の簡単のために示したも
ので、実際にはこれらの手順は事前予測−制御として行
なわれるので本発明のコントロール下にあればΔεはα
の管理値を超えることはなく常に安全サイドで操業する
ことができる。
The above-mentioned procedures are shown for the sake of easy understanding, and in reality, since these procedures are performed as pre-prediction-control, Δε is α when controlled by the present invention.
It does not exceed the control value of and can always operate on the safe side.

【0024】充填粒子径Dp に対してはDp の上昇率1
0%に対してΔεを10%減少させる効果をもつ。Δε
が0.109まで上昇したので平均コークス粒径を45
mmから50mmまで変化させたところ、Δεが0.9
8まで低下した。このDp の効果は直接効果としては操
業の制御範囲のなかでは小さいが半径方向のガス流速分
布を制御する手段として副次効果をもつ。
For the packed particle diameter D p , the rate of increase of D p is 1
It has an effect of reducing Δε by 10% with respect to 0%. Δε
Has risen to 0.109, the average coke grain size has been increased to 45
When changed from mm to 50 mm, Δε is 0.9
It dropped to 8. The effect of D p is small as a direct effect within the control range of the operation, but has a secondary effect as a means for controlling the gas flow velocity distribution in the radial direction.

【0025】[0025]

【発明の効果】本発明の方法によれば竪型炉の微粉滞留
挙動を定量的に把握でき、空間率の減少Δεの管理を通
じて微粉の過大な滞留防止を計ることが出来るという点
で価値がある。その結果通気性の悪化に伴って充填層の
流動化あるいは吹き抜けを事前に把握することができ、
そのことがアクションの遅れを防止することができると
いう点で革新的な技術である。
EFFECTS OF THE INVENTION According to the method of the present invention, the fine powder retention behavior of a vertical furnace can be quantitatively grasped, and excessive retention of fine powder can be prevented by controlling the decrease in porosity Δε. is there. As a result, the fluidization or blow-through of the packed bed can be grasped in advance as the air permeability deteriorates.
This is an innovative technology in that it can prevent delay in action.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の系を示す説明図FIG. 1 is an explanatory diagram showing a system of the present invention.

【図2】本発明の原理を示す構成図FIG. 2 is a block diagram showing the principle of the present invention.

【図3】本発明により高炉においてホールドアップの制
御を行なった実施例を示すグラフ
FIG. 3 is a graph showing an example in which holdup control is performed in a blast furnace according to the present invention.

【符号の説明】[Explanation of symbols]

1 竪型炉 2 ガス吹き込み部 3 微粉吹き込み部 4 充填粒子 5 粒子排出部 6 微粉 1 Vertical furnace 2 Gas blowing part 3 Fine powder blowing part 4 Filled particles 5 Particle discharging part 6 Fine powder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 竪型炉内の微粉のホールドアップ量ρk
を(1)式を用いて推定し、ついで(2)式を用いて空
間率の減少Δεを計算し、前記Δεが0.08以上のあ
る管理値α以上であれば微粉の粒径Dk 、ガス流速U
g 、充填層の粒子径Dp 、微粉吹き込み量Gk0のいずれ
か1種または2種以上を調節して(1)式から計算され
るρk を用いて再び(2)式を計算し、前記調節と計算
をくり返すことによりΔεをα以下に制御することを特
徴とする竪型炉の制御方法。 ρk =(μ2 /4.436×10-11 ρg ・g)(Ug /g・Dp1/2-3.74 *(Dk /Dp2.08(Gk0/Gg0.97*107.9 ……(1) Δε=ε0 ・(ρk /ρk0) ……(2) ただし、ρk :微粉のホールドアップ量(kg/m3
bed) μ :ガスの粘度 (kg/m・s) ρg :ガスの密度 (kg/m3 ) g :重力加速度 (m/s2 ) Ug :ガス流速 (m/s) Dp :充填層の粒子径 (m) Dk :微粉の粒径 (m) Gk0:微粉の炉内平均質量速度(吹き込み量)(kg/
2 ・s) Gg :ガスの炉内平均質量速度(kg/m2 ・s) Δε:空間率の減少 (−) ρk0:空間を完全に埋めた時の微粉のホールドアップ量
(kg/m3 −bed) ε0 :微粉がないときの充填層空間率(=0.45)
(−)
1. A holdup amount ρ k of fine powder in a vertical furnace.
Is calculated using the equation (1), and then the decrease Δε in the porosity is calculated using the equation (2). If the Δε is a control value α of 0.08 or more, the particle diameter D k of the fine powder is calculated. , Gas velocity U
g , the particle diameter D p of the packed bed, and the fine powder blowing amount G k0 are adjusted one or more kinds, and the formula (2) is calculated again using ρ k calculated from the formula (1), A method for controlling a vertical furnace, wherein Δε is controlled to be equal to or less than α by repeating the adjustment and calculation. ρ k = (μ 2 /4.436×10 -11 ρ g · g) (U g / g · D p ) 1/2 ) -3.74 * (D k / D p ) 2.08 (G k0 / G g ). 0.97 * 10 7.9 (1) Δε = ε 0 · (ρ k / ρ k0 ) …… (2) where ρ k : Hold-up amount of fine powder (kg / m 3
bed) μ: Gas viscosity (kg / m · s) ρ g : Gas density (kg / m 3 ) g: Gravitational acceleration (m / s 2 ) U g : Gas flow velocity (m / s) D p : Packing Particle diameter of layer (m) D k : Particle diameter of fine powder (m) G k0 : Average mass velocity (blowing amount) of fine powder in the furnace (kg /
m 2 · s) G g : Average mass velocity of gas in the furnace (kg / m 2 · s) Δε: Reduction of void ratio (−) ρ k0 : Hold-up amount of fine powder when the space is completely filled (kg) / M 3 -bed) ε 0 : Porosity of packed bed without fine powder (= 0.45)
(-)
JP19187393A 1993-07-07 1993-07-07 Operation of vertical furnace Pending JPH0718313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19187393A JPH0718313A (en) 1993-07-07 1993-07-07 Operation of vertical furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19187393A JPH0718313A (en) 1993-07-07 1993-07-07 Operation of vertical furnace

Publications (1)

Publication Number Publication Date
JPH0718313A true JPH0718313A (en) 1995-01-20

Family

ID=16281899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19187393A Pending JPH0718313A (en) 1993-07-07 1993-07-07 Operation of vertical furnace

Country Status (1)

Country Link
JP (1) JPH0718313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933246A (en) * 1995-07-17 1997-02-07 Nanno Kensetsu Kk Apparatus for measuring position in tunnel and tubular body driving apparatus
US8636382B2 (en) 2009-06-25 2014-01-28 Sharp Kabushiki Kaisha Light source apparatus, image display apparatus and television receiving apparatus
US8646951B2 (en) 2009-10-26 2014-02-11 Wooree Lighting Co., Ltd. Illuminating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933246A (en) * 1995-07-17 1997-02-07 Nanno Kensetsu Kk Apparatus for measuring position in tunnel and tubular body driving apparatus
US8636382B2 (en) 2009-06-25 2014-01-28 Sharp Kabushiki Kaisha Light source apparatus, image display apparatus and television receiving apparatus
US8646951B2 (en) 2009-10-26 2014-02-11 Wooree Lighting Co., Ltd. Illuminating apparatus

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP5034189B2 (en) Raw material charging method to blast furnace
JPH0718313A (en) Operation of vertical furnace
US4963186A (en) Method for operating blast furnace by adding solid reducing agent
JP3039354B2 (en) Blast furnace operation method
JPS63140006A (en) Method for charging raw material into blast furnace
JP3700457B2 (en) Blast furnace operation method
JP2000178615A (en) Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace
JP4778351B2 (en) Blast furnace operation method
WO2022176518A1 (en) Method for charging raw material into blast furnace
JP3284908B2 (en) Blast furnace operation method
JP3485787B2 (en) How to charge raw materials for blast furnace
JP2931497B2 (en) Blast furnace operation method
JPS5920412A (en) Inside swiveling chute for top charger of bell-less furnace
JP3700458B2 (en) Low Si hot metal manufacturing method
JPH11269513A (en) Charging of charging material into center part of blast furnace
JP2933468B2 (en) Method of charging molded coke into blast furnace
JP2000199005A (en) Method for controlling center gas flow in blast furnace
JPH05179324A (en) Operating method for blast furnace
JPS6331523B2 (en)
JPH08134517A (en) Operation of blast furnace
JP2011111631A (en) Method for operating blast furnace
JPH058244B2 (en)
RU2147037C1 (en) Process of blast-furnace melting
JPS6314808A (en) Raw material charging method for bell-less type blast furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010410