JPH0663037B2 - Method for producing grain-oriented electrical steel sheet with low iron loss - Google Patents

Method for producing grain-oriented electrical steel sheet with low iron loss

Info

Publication number
JPH0663037B2
JPH0663037B2 JP62314833A JP31483387A JPH0663037B2 JP H0663037 B2 JPH0663037 B2 JP H0663037B2 JP 62314833 A JP62314833 A JP 62314833A JP 31483387 A JP31483387 A JP 31483387A JP H0663037 B2 JPH0663037 B2 JP H0663037B2
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
electrical steel
grain
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62314833A
Other languages
Japanese (ja)
Other versions
JPH01156426A (en
Inventor
哲 井出
政広 山本
博司 西阪
晃 坂井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62314833A priority Critical patent/JPH0663037B2/en
Publication of JPH01156426A publication Critical patent/JPH01156426A/en
Publication of JPH0663037B2 publication Critical patent/JPH0663037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄損の低い方向性電磁鋼板の製造方法に関す
る。
The present invention relates to a method for producing a grain-oriented electrical steel sheet with low iron loss.

〔従来の技術〕[Conventional technology]

通常、方向性電磁鋼板は、Si:4%以下を含有する珪素
鋼素材を熱間圧延し、必要に応じて熱延板焼鈍し、1回
又は中間焼鈍をはさんで2回以上の冷間圧延工程によ
り、最終仕上厚みの冷延板を得、次に脱炭焼鈍を行つた
後、MgOを主成分とする焼鈍分離剤を塗布し、仕上焼鈍
を施してゴス方位をもつた2次再結晶粒を発現させ、更
にS,Nなどの不純物を除去するとともに、グラス皮膜
を生成させて製造される。さらに必要に応じて、平坦化
焼鈍及び絶縁コーティング処理が施される。
Usually, grain-oriented electrical steel sheets are obtained by hot rolling a silicon steel material containing Si: 4% or less, annealing the hot-rolled sheet if necessary, and cold-rolling it once or twice with intermediate annealing. A cold-rolled sheet with a final finished thickness is obtained by the rolling process, and then decarburization annealing is performed, and then an annealing separating agent containing MgO as a main component is applied, and finish annealing is performed to obtain a secondary regrind having a Goss orientation. It is manufactured by expressing crystal grains, removing impurities such as S and N, and forming a glass film. Further, if necessary, flattening annealing and insulating coating treatment are performed.

ところで方向性電磁鋼板においては、省エネルギーの観
点から鉄損特性を改善することが強く要望されており、
鉄損特性を改善する検討がなされ種々の方法が提案され
ている。
By the way, in the grain-oriented electrical steel sheet, it is strongly demanded to improve the iron loss characteristics from the viewpoint of energy saving,
Studies have been conducted to improve the iron loss characteristics, and various methods have been proposed.

方向性電磁鋼板の鉄損特性を改善する方法の一つとして
鋼板の表面に微小疵や歪を付与する方法が知られてい
る。例えば特公昭58-5968号公報がある。これは最終仕
上焼鈍後の一方向性電磁鋼板の表面に小球等を押圧して
深さ5μ以下のへこみを形成して線状の微小ひずみを付
与することで磁区細分化を行い鉄損を改善させるもので
ある。これによると、鉄損が極めて低い材料が得られ
る。しかし、その後例えば、巻鉄心を製造するさいの歪
取焼鈍が行なわれると鉄損改善効果が消失する問題があ
る。
As one of the methods for improving the core loss characteristics of grain-oriented electrical steel sheets, a method of imparting microscopic flaws or strains to the surface of the steel sheet is known. For example, there is Japanese Patent Publication No. 58-5968. This is because the small spheres etc. are pressed on the surface of the unidirectional electrical steel sheet after the final finish annealing to form a dent with a depth of 5μ or less and a minute linear strain is applied to subdivide the magnetic domain to reduce iron loss. To improve. According to this, a material having extremely low iron loss can be obtained. However, there is a problem that the iron loss improving effect disappears when the stress relief annealing is performed thereafter, for example, when manufacturing the wound core.

このような問題のない磁区細分化法が検討され提案され
ている。例えば特開昭56-130454号公報では仕上焼鈍ず
みの方向性電磁鋼板に、ナイフ、カミソリ刃、金剛砂、
歯車ロール、ショット、レーザーなどで線状の複雑ひず
みを与え、次いで700℃以上の温度に加熱して、ひず
み導入領域に微細再結晶粒群を生成させ鉄損の低下が図
られている。
A magnetic domain subdivision method that does not have such a problem has been studied and proposed. For example, in JP-A-56-130454, finish-annealed grain-oriented electrical steel sheet, knife, razor blade, hard sand,
A linear complicated strain is given by a gear roll, a shot, a laser, etc., and then heated to a temperature of 700 ° C. or higher to generate a group of fine recrystallized grains in a strain introduction region to reduce iron loss.

また、特開昭61-117218号公報には仕上焼鈍済み方向性
電磁鋼板の表面に圧延方向に対し直角から45°の範囲
で歯形ロールにて90〜220kg/m2の荷重をかけ、溝
形疵を付与した後、750℃以上で熱処理することによ
り低鉄損方向性電磁鋼板を製造する方法が記載されてい
る。
Further, JP-A-61-117218 discloses that a surface of a grain-finished grain-oriented electrical steel sheet is subjected to a load of 90 to 220 kg / m 2 by a tooth profile roll within a range of 45 ° from a right angle to the rolling direction to form a groove shape. It describes a method for producing a low iron loss grain-oriented electrical steel sheet by applying a flaw and then heat-treating at 750 ° C. or higher.

これらによると、歪取焼鈍がその後に施されても、鉄損
改善効果は晶質しない磁区細分化が行なわれ、それなり
の作用効果があり磁気特性の改善に寄与している。
According to these, even if the stress relief annealing is subsequently performed, the iron loss improving effect is such that the magnetic domain is subdivided so that the iron loss improving effect is not crystallized, and it has a certain effect and contributes to the improvement of the magnetic characteristics.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、方向性電磁鋼板の磁気特性向上については、
もうこれで十分というのはなく、さらなる向上がユーザ
ー等から要望される。また、磁区細分化の方法について
も可及的低コストで、かつ鋼板の板幅方向全般にわたり
安定して、微小歪を付与することが重要である。
By the way, regarding the improvement of magnetic properties of grain-oriented electrical steel,
This is not enough anymore, and users are demanding further improvement. In addition, it is important for the method of subdividing the magnetic domains to impart a minute strain at the lowest possible cost and stably over the entire width direction of the steel sheet.

本発明は歪取焼鈍により鉄損改善効果が失しなわれない
磁区細分化がなされ、鉄損の低い方向性電磁鋼板を、安
定してかつ安価に製造することを目的とする。
An object of the present invention is to stably and inexpensively manufacture a grain-oriented electrical steel sheet having a low iron loss, in which magnetic domain subdivision in which the iron loss improving effect is not lost by strain relief annealing is performed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者達は前記目的を達成すべく種々の実験を行なっ
た結果、プレスにより方向性電磁鋼板の板面に対して垂
直向き荷重のみの力で圧縮線状歪を間隔をおいて形成す
ると、歪は板厚方向に強く導入され、その後の焼鈍で磁
区細分化作用が強く現出し、従来法と同一荷重で歪を付
与した場合にくらべて鉄損の低下が著しいことを見出し
た。また、歪付与に要する力が小さくてよいから、作業
性がよく、かつ安定して行なえる。
As a result of performing various experiments to achieve the above-mentioned objects, the present inventors formed a compression linear strain at intervals with a force of only a load in a direction perpendicular to the plate surface of the grain-oriented electrical steel sheet by pressing, It was found that the strain is strongly introduced in the plate thickness direction, the magnetic domain refinement action appears strongly in the subsequent annealing, and the iron loss is significantly reduced as compared with the case where the strain is applied under the same load as the conventional method. Further, since the force required to impart the strain may be small, workability is good and stable operation can be performed.

以下に、本発明について詳細に説明する。The present invention will be described in detail below.

本発明は、仕上焼鈍の前または後の方向性電磁鋼板につ
いて、プレスにより圧縮線状歪を間隔をおいて付与する
が、該方向性電磁鋼板は鋼成分および圧縮線状歪付与ま
での製造条件は特定する必要はない。すなわち例えばイ
ンヒビターとしてAlN,MnS,MnSe,BN,Cu2S等が適宜用いら
れる。また必要に応じてCu,Sn,Cr,Ni,Mo,Sb,W等の元素
が含有され、熱間圧延し、焼鈍して1回、または中間焼
鈍工程をはさんで2回以上の冷間圧延により最終板厚と
し、脱炭焼鈍し、焼鈍分離剤を塗布して仕上焼鈍され
る。
The present invention, for the grain-oriented electrical steel sheet before or after finish annealing, applies a compression linear strain at intervals with a press, but the grain-oriented electrical steel sheet is a steel component and manufacturing conditions until the compression linear strain is applied. Need not be specified. That is, for example, AlN, MnS, MnSe, BN, Cu 2 S or the like is appropriately used as the inhibitor. In addition, if necessary, elements such as Cu, Sn, Cr, Ni, Mo, Sb, W are contained, and hot rolled and annealed once or two or more times with an intermediate annealing step between cold It is rolled to a final thickness, decarburized and annealed, and an annealing separator is applied to finish annealing.

この一例では、仕上焼鈍された方向性電磁鋼板に圧縮歪
付与を行なった場合を述べる。
In this example, a case where compressive strain is applied to the finish-annealed grain-oriented electrical steel sheet will be described.

方向性電磁鋼板は第1図に示すようなプレス装置で圧縮
線状歪が付与される。図面において、Sは方向性電磁鋼
板で矢印方向に通板される。1はプレス本体で、その下
部には通板方向に対してほぼ直交している突起歯2が間
隔をおいて設けられている。該突起歯2は進退駆動装置
3の作用により通板中の方向性電磁鋼板Sに高速で進退
し、板面に対して垂直向き荷重を与え圧縮線状歪を形成
させる。4は圧下力制御機構であり、圧下荷重を制御す
る。5は金型、6は受台である。また7は送りロールで
ある。
Compressive linear strain is applied to the grain-oriented electrical steel sheet by a pressing device as shown in FIG. In the drawings, S is a grain-oriented electrical steel sheet which is threaded in the direction of the arrow. Reference numeral 1 is a press body, and projecting teeth 2 which are substantially orthogonal to the sheet passing direction are provided at a lower portion of the press body at intervals. The projecting teeth 2 advance and retreat at high speed with respect to the grain-oriented electrical steel sheet S in the passing plate by the action of the advancing / retreating drive device 3 and apply a vertical load to the plate surface to form a compression linear strain. Reference numeral 4 denotes a rolling force control mechanism, which controls the rolling load. Reference numeral 5 is a mold, and 6 is a pedestal. Further, 7 is a feed roll.

ところで、プレスにより突起歯2にて方向性電磁鋼板S
に板面に対して垂直向きのみの荷重で、圧縮線状歪8を
付与したものは第2図に示すように、その歪部8−1は
板厚方向に集中して強く導入されることをつきとめた。
By the way, the grain-oriented electrical steel sheet S is pressed by the protruding teeth 2 by pressing.
As shown in FIG. 2, the strained portion 8-1 is concentrated and strongly introduced in the plate thickness direction by applying a compressive linear strain 8 with a load only in the direction perpendicular to the plate surface. I found him.

その圧下力荷重を変化させて5mm間隔で圧縮線状歪を付
与し、次いで焼鈍して、鉄損特性を調査した。なお、試
験材はSiを3.20%含有し、板厚0.220mmの仕上
焼鈍ずみの方向性電磁鋼板である。その結果を第3図
に、段付ロールで線状歪を同じ間隔で付与したものとと
もに示す。
The rolling force load was changed to apply a compressive linear strain at 5 mm intervals, and then annealing was performed to investigate the iron loss characteristics. The test material is a grain-finished grain-oriented electrical steel sheet containing 3.20% Si and having a thickness of 0.220 mm. The results are shown in FIG. 3 together with the stepwise rolls having linear strains applied at the same intervals.

この図から明らかなように、圧縮線状歪を付与したもの
は圧下荷重は小さくして磁区細分化作用が奏せられ鉄損
が低いことが知見された。
As is clear from this figure, it was found that those to which the compressive linear strain was applied exhibited a magnetic domain refining action with a reduced rolling load and a low iron loss.

またプレスにより圧縮線状歪を付与する場合、突起歯2
を間隔をおいて複数個設けたもので行なうと、方向性電
磁鋼板Sは、同時に複数個の突起歯2で圧縮荷重をうけ
るので、拘束された状態で歪が付与される。このため
に、鋼板に形状変化が生じないとともに、板幅全般にわ
たって一様に圧縮線状歪が形成される。線状歪の深さは
5μm超であることが必要である。線状歪の深さが5μ
m以下であると、焼鈍によって歪が消失してしまい、線
状歪部に新たな再結晶粒は生成しない。
When a compressive linear strain is applied by pressing, the protruding teeth 2
When a plurality of the grain-oriented electrical steel sheets S are provided at intervals, the grain-oriented electrical steel sheet S is subjected to a compressive load by the plurality of projecting teeth 2 at the same time, so that strain is applied in a restrained state. For this reason, the shape of the steel sheet does not change, and the compressive linear strain is uniformly formed over the entire width of the sheet. The depth of linear strain needs to be more than 5 μm. Depth of linear strain is 5μ
When it is m or less, the strain disappears by annealing, and new recrystallized grains are not generated in the linearly strained portion.

圧縮線状歪は間隔をおいて付与されるが、その間隔が狭
くなると磁区の細分化効果が少なくなるとともに、磁束
密度を低下させるので1mm以上とする。一方その間隔が
広くなり過ぎるとこの場合も磁区の細分化効果が少なく
なるので30mm以下とする。
The compressive linear strain is applied at intervals, but if the intervals are narrowed, the effect of subdividing the magnetic domains is reduced, and the magnetic flux density is reduced, so it is set to 1 mm or more. On the other hand, if the distance is too wide, the effect of subdividing the magnetic domains is reduced in this case as well, so the distance is set to 30 mm or less.

圧縮線状歪の向きは、方向性電磁鋼板の圧延方向に対し
て90度から45度の向きが望ましく、その歪の幅は1
0〜300μmとすることが好ましい。
The direction of the compressive linear strain is preferably 90 to 45 degrees with respect to the rolling direction of the grain-oriented electrical steel sheet, and the strain width is 1
The thickness is preferably 0 to 300 μm.

また圧縮線状歪を付与するための荷重は、作業性または
プレス装置の寿命の長期化等の面から3〜20kg/mmが
好ましい。
Further, the load for imparting the compressive linear strain is preferably 3 to 20 kg / mm from the viewpoint of workability or prolongation of the life of the press machine.

圧縮線状歪を付与した後には、750℃以上で焼鈍す
る。この焼鈍により圧縮線状歪部に板厚方向に向つて新
たな再結晶粒が生成し、磁区の細分化が行なわれる。こ
のためには740℃以上で行なう必要がある。この焼鈍
は、絶縁被膜コーティング液を鋼板に塗布し焼付ける焼
鈍と兼用して行なうことができる。
After applying the compressive linear strain, annealing is performed at 750 ° C. or higher. By this annealing, new recrystallized grains are generated in the compression linear strain portion in the plate thickness direction, and the magnetic domains are subdivided. For this purpose, it is necessary to carry out at 740 ° C. or higher. This annealing can be performed in combination with the annealing in which the insulating coating solution is applied to the steel sheet and baked.

仕上焼鈍の前に圧縮線状歪を付与する場合は、最終板厚
に冷間圧延後、脱炭焼鈍された鋼板に行うことが望まし
い。この場合にも同様な作用効果がある。
When a compressive linear strain is applied before finish annealing, it is desirable to perform decarburization-annealed steel sheet after cold rolling to the final sheet thickness. In this case as well, the same operational effect is obtained.

〔実施例〕〔Example〕

以下実施例を説明する。 Examples will be described below.

実施例1 重量%でC:0.083、Si:3.27、Mn:0.07
6、Al:0.028、S:0.021、Cu:0.15、
Sn:0.15残部鉄からなる珪素鋼スラブを周知の方法
によって熱間圧延−焼鈍−冷間圧延を経て0.220mm
厚の鋼板を得た。
Example 1 C: 0.083, Si: 3.27, Mn: 0.07 by weight%
6, Al: 0.028, S: 0.021, Cu: 0.15,
Sn: 0.15 A silicon steel slab consisting of the balance iron is subjected to hot rolling-annealing-cold rolling by a well-known method and then 0.220 mm.
A thick steel plate was obtained.

次いで更に周知の脱炭焼鈍−焼鈍分離剤塗布−最終仕上
焼鈍の各工程を実施した。得られた鋼板について鋼板圧
延方向に対し直交して突起歯を5mm間隔で20個設けた
プレスにより圧下力11kg/mmにて、圧縮線状歪を付与
した。
Next, the well-known decarburization annealing-annealing separation agent application-final finishing annealing steps were carried out. A compressive linear strain was applied to the obtained steel sheet by a press provided with 20 projecting teeth at intervals of 5 mm perpendicularly to the rolling direction of the steel sheet with a rolling force of 11 kg / mm.

次いで、焼鈍を800℃×2時間で行ない「処理後」の
供試材とした。また比較のため仕上焼鈍後ヒートフラッ
トニング焼鈍を800℃で行ない「未処理」の供試材と
した。それぞれの磁気特性を測定し、その結果を第1表
に示す。W17/50は鉄損(W/kg)、B10は磁束密度
(T)である。
Then, annealing was performed at 800 ° C. for 2 hours to obtain a “after treated” sample material. For comparison, heat flattening annealing after finish annealing was performed at 800 ° C. to obtain an “untreated” test material. The respective magnetic properties were measured, and the results are shown in Table 1. W 17/50 is iron loss (W / kg), and B 10 is magnetic flux density (T).

実施例2 重量%でC:0.082、Si:3.25、Mn:0.07
4、Al:0.027、S:0.022、Cu:0.10、
Sn:0.08残部鉄からなる珪素鋼スラブを周知の方法
によって熱間圧延−焼鈍−冷間圧延を経て0.220mm
厚の鋼板を得た。
Example 2 C: 0.082, Si: 3.25, Mn: 0.07 by weight%
4, Al: 0.027, S: 0.022, Cu: 0.10.
Sn: 0.08 A silicon steel slab consisting of the balance iron is hot-rolled-annealed-cold-rolled by a known method to 0.220 mm.
A thick steel plate was obtained.

次いで、更に周知の脱炭焼鈍を行なった。Then, further well-known decarburization annealing was performed.

その後、鋼板圧延方向に対し直交して突起歯を5mm間隔
で20個設けたプレスにより圧下力6kg/mmにて圧縮線
状歪を付与した。
Thereafter, a compression linear strain was applied by a pressing force of 6 kg / mm, which was provided with 20 projecting teeth at intervals of 5 mm orthogonal to the rolling direction of the steel sheet.

次いで焼鈍分離材を塗布し1200℃で仕上焼鈍をし、その
後、絶縁皮膜コーティング液を塗布し絶縁皮膜焼付け処
理とヒートフラツトニングを兼ねて焼鈍を880℃で行
ない、「処理後」の供試材とした。また、比較のため
に、前記プレスによく圧縮線状歪を付与することなく、
脱炭焼鈍の後、前述の仕上焼鈍と皮膜焼付け処理とヒー
トフラツトニングの兼用の焼鈍を行ない、「未処理」の
供試材とした。それぞれ磁気特性を測定し、その結果を
第2表に示す。W17/50は鉄損(W/kg)、B10は磁束
密度(T)である。
Then, an annealing separator is applied and finish annealing is performed at 1200 ° C, then an insulating film coating solution is applied and annealing is performed at 880 ° C for both insulating film baking treatment and heat flattening. And Further, for comparison, without giving a compressive linear strain to the press well,
After decarburization annealing, the above-mentioned finish annealing, film baking treatment and heat flattening annealing were performed together to obtain an "untreated" sample material. The magnetic properties were measured, and the results are shown in Table 2. W 17/50 is iron loss (W / kg), and B 10 is magnetic flux density (T).

(発明の効果) 以上の実施例からも明らかなように、本発明によると鉄
損の低い方向性電磁鋼板が安定して、かつ低コストで製
造される。
(Effects of the Invention) As is clear from the above examples, according to the present invention, the grain-oriented electrical steel sheet with low iron loss can be manufactured stably and at low cost.

また得られた方向性電磁鋼板は、その後に、巻鉄心の製
造のさい施される歪取焼鈍が行なわれても鉄損の劣化は
全く生じない。
Further, the obtained grain-oriented electrical steel sheet is not deteriorated in iron loss at all even if it is subsequently subjected to strain relief annealing which is carried out during the production of the wound core.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例において圧縮線状歪を付与す
るためのプレスを示す図、第2図は本発明の作用を説明
するための圧縮線状歪を示す図、第3図は本発明におけ
る一実験例での、鉄損値と圧縮線状歪付与の圧下荷重の
関係を示す図である。
FIG. 1 is a diagram showing a press for imparting a compressive linear strain in one embodiment of the present invention, FIG. 2 is a diagram showing the compressive linear strain for explaining the operation of the present invention, and FIG. It is a figure which shows the relationship between the iron loss value and the rolling load which gives a compressive linear strain in one experimental example in this invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】方向性電磁鋼板にプレスにより板面に対し
て垂直向きの荷重のみで、深さ5μm超の圧縮線状歪を
1〜30mmの間隔で形成し、その後焼鈍して圧縮線状歪
部に新たな再結晶粒を生成させることを特徴とする鉄損
の低い方向性電磁鋼板の製造方法。
1. A linear compression sheet having a depth of more than 5 μm is formed at intervals of 1 to 30 mm on a grain-oriented electrical steel sheet by pressing only in a direction perpendicular to the sheet surface, and then annealed to obtain a compression linear sheet. A method for producing a grain-oriented electrical steel sheet with low iron loss, which comprises generating new recrystallized grains in a strained portion.
JP62314833A 1987-12-12 1987-12-12 Method for producing grain-oriented electrical steel sheet with low iron loss Expired - Lifetime JPH0663037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314833A JPH0663037B2 (en) 1987-12-12 1987-12-12 Method for producing grain-oriented electrical steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314833A JPH0663037B2 (en) 1987-12-12 1987-12-12 Method for producing grain-oriented electrical steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH01156426A JPH01156426A (en) 1989-06-20
JPH0663037B2 true JPH0663037B2 (en) 1994-08-17

Family

ID=18058147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314833A Expired - Lifetime JPH0663037B2 (en) 1987-12-12 1987-12-12 Method for producing grain-oriented electrical steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JPH0663037B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060163B2 (en) 2016-01-22 2021-07-13 Posco Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor
US11254994B2 (en) 2016-12-23 2022-02-22 Posco Method for refining magnetic domain of grain-oriented electrical steel plate and device therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04343205A (en) * 1991-05-20 1992-11-30 Kenichi Arai Magnetic plate and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060163B2 (en) 2016-01-22 2021-07-13 Posco Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor
US11254994B2 (en) 2016-12-23 2022-02-22 Posco Method for refining magnetic domain of grain-oriented electrical steel plate and device therefor

Also Published As

Publication number Publication date
JPH01156426A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
JP5610084B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US10431359B2 (en) Method for producing grain-oriented electrical steel sheet
US11459633B2 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP2012126980A (en) Electromagnetic steel sheet and method for manufacturing the same
JPS62240714A (en) Production of electrical steel sheet having excellent magnetic characteristic
JPH0663037B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JPS61139679A (en) Production of grain oriented electrical steel sheet having low iron loss
JPH0623410B2 (en) Method for manufacturing non-oriented electric iron plate with high magnetic flux density
JP7414145B2 (en) Method for producing grain-oriented electrical steel sheets and hot-rolled steel sheets for grain-oriented electrical steel sheets
JPH05105956A (en) Production of grain-oriented silicon steel sheet having uniform magnetic property in sheet-width direction
JP2003034821A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic-flux density having no undercoat film
JPH0733547B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JPH08269554A (en) Production of mirror-finished grain-oriented silicon steel sheet reduced in iron loss
JPH02294427A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPS6257689B2 (en)
JPH0631395A (en) Production of thin cast slab for non-oriented silicon steel sheet
JP3338238B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JP2919290B2 (en) Method for producing hot rolled silicon steel sheet with excellent surface properties
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JPS62151521A (en) Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH1030125A (en) Production of grain oriented silicon steel sheet
JPH01100223A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and low iron loss

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 14