JPH0623410B2 - Method for manufacturing non-oriented electric iron plate with high magnetic flux density - Google Patents

Method for manufacturing non-oriented electric iron plate with high magnetic flux density

Info

Publication number
JPH0623410B2
JPH0623410B2 JP59115765A JP11576584A JPH0623410B2 JP H0623410 B2 JPH0623410 B2 JP H0623410B2 JP 59115765 A JP59115765 A JP 59115765A JP 11576584 A JP11576584 A JP 11576584A JP H0623410 B2 JPH0623410 B2 JP H0623410B2
Authority
JP
Japan
Prior art keywords
temperature
hot
rolling
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59115765A
Other languages
Japanese (ja)
Other versions
JPS60258414A (en
Inventor
一郎 小久保
伸吾 野村
征行 宮原
洋一郎 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59115765A priority Critical patent/JPH0623410B2/en
Publication of JPS60258414A publication Critical patent/JPS60258414A/en
Publication of JPH0623410B2 publication Critical patent/JPH0623410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、無方向性電気鉄板の製造方法に関し、詳しく
は、特に鉄損が低く、磁束密度の高い無方向性電気鉄板
の製造方法に関する。
The present invention relates to a method for manufacturing a non-oriented electric iron sheet, and more particularly to a method for manufacturing a non-oriented electric iron sheet with low iron loss and high magnetic flux density.

無方向性電気鉄板は、モーター等の回転機や、小型変圧
器、安定器等の静止器における鉄心として使用されてい
るが、これらの機器の高効率化及び小型軽量化のため
に、最近、鉄損が小さく、磁束密度が高い無方向性電気
鉄板が要求されるに至つている。
Non-directional electric iron plates are used as iron cores in rotating machines such as motors and stationary units such as small transformers and ballasts. Recently, in order to improve the efficiency and reduce the size and weight of these devices, There has been a demand for a non-oriented electric iron plate with low iron loss and high magnetic flux density.

一般に、無方向性電気鉄板は、所定の化学組成を有する
鋼片を熱間圧延し、酸洗後、冷間圧延し、焼純し、所要
の表面処理を施して製造されており、鉄損を小さくする
には、最終の焼純工程において結晶粒径を大きくする必
要があることは既によく知られている。このように最終
の焼鈍工程において結晶粒径を大きくするために、従来
より、第1の方法として熱間圧延をフエライト・オース
テナイト域で終了した後に高温で巻取る方法、第2の方
法として熱延板を焼鈍する方法、第3の方法として熱延
板に室温で僅かな歪を付与した後に焼鈍する方法等が提
案されている。しかし、第1の方法によれば結晶粒径が
尚小さいために、磁気特性が十分でなく、第2及び第3
の方法によれば、熱間圧延後に焼鈍するために、工程数
が増加すると共に、製造費用が高価となるのを避けられ
ない。
Generally, a non-oriented electrical iron sheet is produced by hot rolling a steel slab having a predetermined chemical composition, pickling, cold rolling, refining, and subjecting it to the required surface treatment. It is already well known that in order to reduce the grain size, it is necessary to increase the crystal grain size in the final refining step. As described above, in order to increase the grain size in the final annealing step, conventionally, as a first method, hot rolling is finished in the ferrite-austenite region and then rolled at a high temperature, and as a second method, hot rolling is performed. A method of annealing a plate and a third method of applying a slight strain to a hot rolled sheet at room temperature and then annealing the hot rolled sheet have been proposed. However, according to the first method, since the crystal grain size is still small, the magnetic characteristics are not sufficient, and the second and third
According to the method (1), since annealing is performed after hot rolling, the number of steps is increased and the manufacturing cost is inevitably high.

本発明者らは、無方向性電気鉄板の製造における上記し
た問題を解決するために鋭意研究した結果、所定の化学
組成を有する鋼片について、熱間圧延条件と巻取温度を
規制すると共に、熱間圧延後、巻取る間に熱延板に所定
量の塑性歪を付与し、巻取後に冷間圧延及び焼鈍を施こ
すという従来とは異なる方法によって粗大な結晶粒径を
得、かくして、鉄損が小さく、且つ、磁束密度が高い無
方向性電気鉄板を得ることができることを見出して、本
発明に至つたものである。
The present inventors have conducted extensive studies to solve the above-mentioned problems in the production of non-oriented electrical iron sheets, for steel slabs having a predetermined chemical composition, while controlling the hot rolling conditions and winding temperature, After hot rolling, a predetermined amount of plastic strain is applied to the hot rolled plate during winding, and a coarse crystal grain size is obtained by a method different from the conventional method of performing cold rolling and annealing after winding, thus, The present invention has been accomplished by finding that it is possible to obtain a non-oriented electric iron plate having a low iron loss and a high magnetic flux density.

本発明による無方向性電気鉄板の製造方法は、重量%で C 0.03%以下、 Si又はSiとAlとの合計量 2.0%以下、 Mn 1.0%以下、 P 0.1%以下、 残部鉄及び不可避的不純物よりなる銅片を熱間圧延する
に際して、Ar3 変態温度を越える温度で熱間圧延を終了
後、巻取るまでの間に、Ar1 変態温度以下の温度で3〜
30%の塑性歪を導入し、700℃以上の温度で巻取
り、次いで、冷間圧延した後、焼純することを特徴。
The manufacturing method of the non-oriented electrical iron sheet according to the present invention is as follows: C 0.03% or less by weight%, total amount of Si or Si and Al 2.0% or less, Mn 1.0% or less, P 0.1% Hereinafter, when hot-rolling a copper piece composed of the balance iron and unavoidable impurities, after hot-rolling at a temperature higher than the Ar 3 transformation temperature and before winding, the temperature of the Ar 1 transformation temperature is not higher than 3 ~
It is characterized by introducing a plastic strain of 30%, winding at a temperature of 700 ° C. or higher, then cold rolling, and then refining.

先ず、本発明による方法において使用する鋼材の化学成
分組成について説明する。
First, the chemical composition of the steel material used in the method according to the present invention will be described.

Cは、磁気特性に大きな影響を与える元素であり、鋼材
がこれを多量に含有するときは、鉄損、磁束密度等の磁
気特性が大きく劣化するようになるので、含有量は0.
03%以下とする。特に好ましくは、磁気特性の一層の
向上を図るために、C含有量は0.015%以下とす
る。
C is an element that greatly affects the magnetic properties, and when the steel material contains a large amount of it, the magnetic properties such as iron loss and magnetic flux density are greatly deteriorated, so the content is 0.
It should be 03% or less. Particularly preferably, the C content is 0.015% or less in order to further improve the magnetic properties.

Siは、鋼の固有抵抗を増加させ、低鉄損を得るために
重要な元素でありAlはSiと同様の効果を有すると同
時に結晶粒成長性を向上させる作用をも有する元素であ
る。しかし、Si、Al共にフエライト・オーステナイ
ト変態温度を上昇させる性質があり、しかも、Si又は
SiとAlとの合計量が2.0%を越えると、オーステ
ナイト域が存在しなくなるので、本発明においてはオー
ステナイト域で熱間圧延を終了するために、Si又はS
iとAlとの合計量は2.0%以下とする。尚、Siに
ついては、得られる電気鉄板の渦電流損を低下させるた
めに0.2%以上を添加することが好ましい。
Si is an important element for increasing the specific resistance of steel and obtaining a low iron loss, and Al is an element which has the same effect as Si and at the same time has the effect of improving the crystal grain growth. However, both Si and Al have the property of raising the ferrite-austenite transformation temperature, and when the total amount of Si or Si and Al exceeds 2.0%, the austenite region does not exist, so in the present invention. To finish hot rolling in the austenite region, Si or S
The total amount of i and Al is 2.0% or less. Note that Si is preferably added in an amount of 0.2% or more in order to reduce the eddy current loss of the obtained electric iron plate.

Mnは、熱間脆性を抑制するために含有させるが、1.
0%を越えると磁気特性に悪影響を及ぼすと共に、本発
明にかかる方法による極低C鋼の場合には製鋼作業が困
難になる。従つて、Mn含有量は1.0%以下とする。
下限量は製鋼作業性から好ましくは0.1%である。
Mn is contained to suppress hot embrittlement, but 1.
If it exceeds 0%, the magnetic properties are adversely affected, and in the case of the ultra low C steel by the method according to the present invention, the steelmaking work becomes difficult. Therefore, the Mn content is 1.0% or less.
The lower limit is preferably 0.1% in terms of workability in steelmaking.

Pは、鋼硬度を上昇させることにより、打抜性を向上さ
せる元素であり、好ましくは0.015%以上を添加す
るが、過多に含有させるときは、心材積層後の溶接時に
割れ発生の原因となるので、Pの含有量の上限は0.1
%とする。
P is an element that improves punchability by increasing steel hardness, and is preferably added in an amount of 0.015% or more. However, when it is contained in excess, it causes cracking during welding after core material lamination. Therefore, the upper limit of the P content is 0.1
%.

次に、本発明の方法を説明する。Next, the method of the present invention will be described.

本発明により無方向性電気鉄板の製造方法は、上に説明
した化学組成を有する鋼片を素材とし、これを熱間圧延
するに際して、Ar3 変態温度以上の温度で熱間圧延を終
了し、巻取るまでの間に、Ar1 変態温度以下で3〜30
%の塑性歪を導入し、700℃以上の温度で巻取り、か
くして、熱延板の結晶粒を粗大化することにより、従来
よりもすぐれた磁気特性、特に、高い磁束密度度を有す
る無方向性電気鉄板を得るものである。
The method for producing a non-oriented electrical iron sheet according to the present invention uses a steel piece having the above-described chemical composition as a material, and when hot rolling this, finish the hot rolling at a temperature of Ar 3 transformation temperature or higher, 3 to 30 below the Ar 1 transformation temperature before winding
% Plastic strain, and winding at a temperature of 700 ° C. or higher, thus coarsening the crystal grains of the hot-rolled sheet, thereby providing magnetic properties superior to conventional ones, in particular, non-direction having a high magnetic flux density. This is to obtain a sex electric iron plate.

即ち、本発明の方法においては、熱間圧延の中間段階で
フエライト細粒組織を得るために、Ar3 変態温度以上の
温度で熱間圧延を終了する必要があり、かくして、組織
がフエライト細粒組織である熱延板に熱間状態において
塑性歪を導入し、この歪を駆動力として、高温巻取時の
自己焼鈍効果によつて、所謂歪粒成長を完了させる。詳
細には、オーステナイト域で熱間圧延を終了後、オース
テナイト・フエライト変態を完了させることによって、
均一微細な変態フエライト組織を得ると共に、更にこの
直後に塑性歪を導入し、次いで、高温巻取を行なうこと
により歪粒成長を完了させるので、従来の方法と異なつ
て、最終成品の磁気特性に有利な集合組織を形成する粗
大粒を得ることができるのである。
That is, in the method of the present invention, in order to obtain a fine ferrite fine grain structure in the intermediate stage of hot rolling, it is necessary to finish the hot rolling at a temperature of Ar 3 transformation temperature or higher, and thus, the structure is fine grain fine grain. A so-called strain grain growth is completed by introducing a plastic strain into the hot-rolled sheet which is a structure in a hot state and using this strain as a driving force by the self-annealing effect at the time of high-temperature winding. In detail, after completing the hot rolling in the austenite region, by completing the austenite-ferrite transformation,
In addition to obtaining a uniform and fine transformed ferrite structure, plastic strain is introduced immediately after this, and strain grain growth is completed by performing high temperature winding, so the magnetic properties of the final product differ from the conventional method. It is possible to obtain coarse grains that form an advantageous texture.

熱間圧延終了後に熱延板に導入する歪量は、3〜30%
の範囲である。歪量が3%未満では高温巻取り後の結晶
粒粗大化が困難であり、一方、30%を越えるときは、
得られる結晶粒が却つて細かくなるからである。特に、
磁気特性の点からは、5〜15%とするのが好ましい。
The amount of strain introduced into the hot rolled sheet after completion of hot rolling is 3 to 30%.
Is the range. If the strain amount is less than 3%, it is difficult to coarsen the crystal grains after high-temperature winding, while if it exceeds 30%,
This is because the crystal grains obtained are rather fine. In particular,
From the viewpoint of magnetic properties, it is preferably 5 to 15%.

上記の塑性歪を導入するには、圧延による方法、レベラ
ーによる方法、引張張力による方法等いずれの方法もを
採用することができ、特に、制限されない。
To introduce the above plastic strain, any method such as rolling method, leveler method, and tensile tension method can be adopted and is not particularly limited.

このようにして熱延板に組成歪を導入した後、巻取り時
に自己焼鈍効果を十分に発揮させ、歪粒成長を完了させ
るためには、巻取温度はできるだけ高温であることが好
ましく、本発明においては、これを700℃以上とす
る。巻取温度が700℃未満では結晶粒の粗大化が不十
分であるからである。
After introducing the compositional strain to the hot-rolled sheet in this manner, the self-annealing effect is sufficiently exerted during winding, and in order to complete the strained grain growth, the winding temperature is preferably as high as possible. In the invention, this is 700 ° C. or higher. This is because if the winding temperature is lower than 700 ° C., the coarsening of crystal grains is insufficient.

上記のような高温巻取り後の冷間圧延及び焼鈍は、従来
の通常の方法によることができ、冷間圧延については、
単一回でもよく、或いは中間焼鈍を挟んで冷間圧延を2
回行なつてもよい。また、必要に応じて、連続鍛造、直
送圧延、スラブ低温加熱等の工程を採用することもでき
る。尚、最終焼鈍は、箱焼鈍、連続焼鈍のいずれでもよ
いが、高い磁束密度を得るには、連続焼鈍による急速加
熱を行なうことが好ましい。
Cold rolling and annealing after high-temperature winding as described above can be performed by a conventional ordinary method, and for cold rolling,
It may be done only once, or two cold-rolls with intermediate annealing in between.
It may be repeated. If necessary, steps such as continuous forging, direct feed rolling, and low temperature heating of the slab can be adopted. The final annealing may be either box annealing or continuous annealing, but rapid heating by continuous annealing is preferable to obtain a high magnetic flux density.

以上のように、本発明の方法によれば、所定の化学組成
を有する鋼片について、熱間圧延条件と巻取温度を規制
すると共に、熱間圧延後、高温巻取りする間に熱延板に
所定量の塑性歪を付与して、自己焼鈍効果により歪粒成
長を完了させるので、粗大粒であり、且つ、磁気特性に
有利な集合組織を得て、磁気特性にすぐれた無方向性電
気鉄板を得ることができる。
As described above, according to the method of the present invention, for a steel slab having a predetermined chemical composition, the hot rolling conditions and the winding temperature are regulated, and after hot rolling, the hot rolled sheet is hot-rolled. A certain amount of plastic strain is applied to the alloy to complete the strained grain growth by the self-annealing effect, so that a coarse grained grain and an advantageous texture for the magnetic property are obtained, and the non-directional electrical property excellent for the magnetic property is obtained. You can get an iron plate.

実施例1 C 0.01%、 Si 0.25%、 Mn 0.25%、 P 0.025%及び Al 0.002% の化学成分組成を有する鋼スラブを表に示すように、オ
ーステナイト域で熱間圧延を終了後、フエライト域で3
〜60%の圧下率で2.0mmの熱延板に圧延し、740
℃で巻取つた。また、比較のために、熱間圧延終了後、
フエライト域での圧延をすることなしに740℃で巻取
つて、板厚2.0mmの熱延板を得た。これらの熱延板の
結晶粒度と上記圧下率との関係を第1図に示す。
Example 1 A steel slab having the chemical composition of 0.01% C, 0.25% Si, 0.25% Mn, 0.025% P and 0.002% Al was prepared in the austenite region as shown in the table. After finishing hot rolling, 3 in the ferrite area
Rolled to a hot rolled sheet of 2.0 mm with a rolling reduction of -60% and 740
It was wound up at ℃. Also, for comparison, after hot rolling,
It was wound at 740 ° C. without rolling in the ferrite region to obtain a hot rolled sheet having a sheet thickness of 2.0 mm. FIG. 1 shows the relationship between the grain size of these hot-rolled sheets and the reduction ratio.

第1図から明らかなように、フエライト域での圧下率が
3%よりも小さいときは、結晶粒の粗大化が完了せず、
混粒組織となる。しかし、本発明に従つて、フエライト
域での圧下率を3〜30%の範囲とするとき、整粗粒が
得られ、特に、圧下率が3〜15%の範囲にあるときに
極端な粗粒が得られる。
As is clear from FIG. 1, when the reduction ratio in the ferrite region is less than 3%, the coarsening of the crystal grains is not completed,
It has a mixed grain structure. However, according to the present invention, when the rolling reduction in the ferrite region is in the range of 3 to 30%, coarse coarse particles are obtained, and particularly when the rolling reduction is in the range of 3 to 15%, an extremely coarse grain is obtained. Grains are obtained.

実施例2 実施例1と同じ化学組成を有する鋼スラブを表に示す条
件にて処理し、板厚2.0mmの冷間圧延前素材を得た。
Example 2 A steel slab having the same chemical composition as in Example 1 was treated under the conditions shown in the table to obtain a material before cold rolling having a plate thickness of 2.0 mm.

比較法aは、オーステナイト域で仕上た熱間圧延板、比
較法bはオーステナイト・フエライト域で仕上げた熱間
圧延板である。比較法cは熱間圧延終了後、従来より知
られている方法に従つて、歪粒成長処理を施こすため
に、室温で7%の冷間圧延をし、次いで、750℃の温
度で2時間焼鈍して、冷間圧延前素材とした。これらに
対して、本発明法dでは熱間圧延終了後、フエライト域
で10%の圧延を施し、740℃で巻取つて、冷間圧延
前素材とした。これらの冷間圧延前素材の組織を光学顕
微鏡(100倍)にて第2図に示す。
Comparative method a is a hot rolled sheet finished in the austenite region, and comparative method b is a hot rolled sheet finished in the austenite / ferrite region. Comparative method c is 7% cold rolling at room temperature and then 2 ° C. at 750 ° C. in order to perform strain grain growth treatment according to a conventionally known method after hot rolling is completed. It was annealed for a period of time to obtain a material before cold rolling. On the other hand, in the method d of the present invention, after the hot rolling was completed, 10% rolling was performed in the ferrite region and wound at 740 ° C. to obtain a material before cold rolling. The structures of these materials before cold rolling are shown in FIG. 2 under an optical microscope (100 times).

このようにして得た各冷間圧延前素材を酸洗し、板厚
0.5mmに冷間圧延し、850℃の温度で1.5分間焼
鈍して、無方向性電気鉄板を得た。これらの磁気特性を
表に示す。比較法a及びbによれば、得られる無方向性
の電気鉄板は鉄損が大きく、磁束密度が小さい。このよ
うな比較法a及びbによる無方向性電気鉄板が磁気特性
に劣ることは、第2図にみられるように、その冷間圧延
前の組織における結晶粒径が小さいことと対応してい
る。
Each pre-cold-rolling material thus obtained was pickled, cold-rolled to a plate thickness of 0.5 mm, and annealed at a temperature of 850 ° C. for 1.5 minutes to obtain a non-oriented electric iron plate. These magnetic properties are shown in the table. According to the comparative methods a and b, the obtained non-oriented electric iron plate has a large iron loss and a small magnetic flux density. The inferior magnetic properties of the non-oriented electrical iron sheets produced by the comparative methods a and b correspond to the small crystal grain size in the microstructure before cold rolling, as shown in FIG. .

従来の歪粒成長処理を施す比較法cによれば、第1図に
みられるように、冷間圧延前の結晶粒径が大きいことと
も関連して、磁気特性の比較的良好な電気鉄板が得られ
るが、本発明法dによれば、冷間圧延前の結晶粒径が著
しく粗大化しており、磁気特性の一層改善された無方向
性電気鉄板を得ることができる。このことは、熱間圧延
終了後に熱間で導入した歪による粗大結晶粒組織が、上
記歪粒成長処理による組織よりも、磁気特性に対して有
利に使用するかたであるとみられる。
According to the comparative method c in which the conventional strained grain growth process is performed, as shown in FIG. 1, an electric iron plate having relatively good magnetic properties is associated with the large grain size before cold rolling. Although obtained, according to the method d of the present invention, the crystal grain size before cold rolling is remarkably coarsened, and a non-oriented electric iron plate having further improved magnetic properties can be obtained. This seems to be the way to use the coarse crystal grain structure due to the strain introduced hot after the end of hot rolling more favorably for the magnetic properties than the structure due to the strain grain growth treatment.

実施例3 C 0.01%、 Si 1.5%、 Mn 0.20%、 P 0.01%及び Al 0.001% の化学組成を有する鋼スラブを表に示す条件で板厚2.
0mmの熱延板とし、これを酸洗後、板厚0.5mmに冷間
圧延し、次いで、850℃の温度で1.5分間焼鈍し
て、無方向性電気鉄板を得た。これら の磁気特性を表に示す。
Example 3 A steel slab having a chemical composition of 0.01% C, 1.5% Si, 0.20% Mn, 0.01% P and 0.001% Al was prepared under the conditions shown in the table and the plate thickness was 2.
A 0 mm hot rolled sheet was pickled, cold rolled to a sheet thickness of 0.5 mm, and then annealed at a temperature of 850 ° C. for 1.5 minutes to obtain a non-oriented electric iron sheet. these The magnetic properties of are shown in the table.

尚、比較法eによる熱延板はオーステナイト域仕上、比
較法fによる熱延板はフエライト・オーステナイト域仕
上であつて、いずれも巻取り温度は800℃である。本
発明法gによる熱延板は熱間圧延終了後、フエライト域
で10%の圧下率で圧延し、800℃で巻取つたもので
ある。
The hot-rolled sheet according to the comparative method e had an austenite finish, and the hot-rolled sheet according to the comparative method f had a ferrite-austenite finish. The coiling temperature was 800 ° C in both cases. The hot-rolled sheet according to the method g of the present invention is obtained by rolling at a reduction rate of 10% in the ferrite region after completion of hot rolling and winding at 800 ° C.

本発明法による無方向性電気鉄板が鉄損、磁束密度共に
すぐれていることが明らかである。
It is clear that the non-oriented electric iron plate produced by the method of the present invention has excellent core loss and magnetic flux density.

【図面の簡単な説明】[Brief description of drawings]

第1図は熱間圧延終了後、フエライト域での塑性歪の圧
下率と粒度番号との関係を示すグラフ、第2図は実施例
2における冷間圧延前の組織を示す顕微鏡写真(100
倍)であつて、(a)、(b)及び(c)は比較法を、(d)は本発
明法を示す。
FIG. 1 is a graph showing the relationship between the rolling reduction of plastic strain in the ferrite region after the hot rolling and the grain size number, and FIG. 2 is a micrograph showing the structure before cold rolling in Example 2 (100
(A), (b) and (c) show the comparative method, and (d) shows the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で C 0.03%以下、 Si又はSiとAlとの合計量 2.0%以下、 Mn 1.0%以下、 P 0.1%以下、 残部鉄及び不可避的不純物よりなる鋼片を熱間圧延する
に際して、Ar3 変態温度を越える温度で熱間圧延を終了
後、巻取るまでの間に、Ar1 変態温度以下の温度で3〜
30%の塑性歪を導入し、700℃以上の温度で巻取
り、次いで、冷間圧延した後、焼純することを特徴とす
る磁束密度の高い無方向性電気鉄板の製造方法。
1. A weight percentage of C 0.03% or less, a total amount of Si or Si and Al 2.0% or less, Mn 1.0% or less, P 0.1% or less, balance iron and unavoidable impurities. When hot rolling a steel slab consisting of 3 to 3 at a temperature not higher than the Ar 1 transformation temperature after the hot rolling is finished at a temperature exceeding the Ar 3 transformation temperature and before winding.
A method for producing a non-oriented electrical iron sheet having a high magnetic flux density, which comprises introducing a plastic strain of 30%, winding at a temperature of 700 ° C. or higher, followed by cold rolling and then refining.
JP59115765A 1984-06-05 1984-06-05 Method for manufacturing non-oriented electric iron plate with high magnetic flux density Expired - Lifetime JPH0623410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59115765A JPH0623410B2 (en) 1984-06-05 1984-06-05 Method for manufacturing non-oriented electric iron plate with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59115765A JPH0623410B2 (en) 1984-06-05 1984-06-05 Method for manufacturing non-oriented electric iron plate with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPS60258414A JPS60258414A (en) 1985-12-20
JPH0623410B2 true JPH0623410B2 (en) 1994-03-30

Family

ID=14670490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59115765A Expired - Lifetime JPH0623410B2 (en) 1984-06-05 1984-06-05 Method for manufacturing non-oriented electric iron plate with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH0623410B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284016A (en) * 1986-05-31 1987-12-09 Nippon Steel Corp Production of non-oriented electrical steel sheet having excellent electromagnetic characteristic
JP3333794B2 (en) * 1994-09-29 2002-10-15 川崎製鉄株式会社 Manufacturing method of non-oriented electrical steel sheet
KR100340503B1 (en) * 1997-10-24 2002-07-18 이구택 A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR100395100B1 (en) * 1998-06-16 2003-10-17 주식회사 포스코 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR100544584B1 (en) * 2001-12-22 2006-01-24 주식회사 포스코 Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
US20060131299A1 (en) * 2004-12-20 2006-06-22 Inductotherm, Corp. Electric induction impeder
KR100797895B1 (en) 2006-12-22 2008-01-24 성진경 Method of forming cube-on-face texture on surface, method of manufacturing non-oriented electrical steel sheets using the same and non-oriented electrical steel sheets manufactured by using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855210A (en) * 1981-09-28 1983-04-01 Nitto Electric Ind Co Ltd Kneading method of resin powder material and kneader used thereof
JPS5974222A (en) * 1982-10-19 1984-04-26 Kawasaki Steel Corp Production of non-directional electrical steel sheet having excellent electromagnetic characteristic

Also Published As

Publication number Publication date
JPS60258414A (en) 1985-12-20

Similar Documents

Publication Publication Date Title
JP5529418B2 (en) Method for producing non-oriented electrical steel sheet
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
WO2014049770A1 (en) Process for producing grain-oriented electromagnetic steel sheet
KR100771253B1 (en) Method for producing non grain-oriented electric sheets
JPH05171280A (en) Production of nonoriented silicon steel sheet having superior magnetic property and excellent in external surface appearance
JPH0623410B2 (en) Method for manufacturing non-oriented electric iron plate with high magnetic flux density
JP2003049250A (en) Grain-oriented electrical steel sheet with excellent bendability, and its manufacturing method
JP3644039B2 (en) Method for producing non-oriented electrical steel sheet
JPH0814015B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and surface properties and method for producing the same
JPH0733547B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JP3737558B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH10251752A (en) Production of hot rolled silicon steel plate excellent in magnetic property
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP2870817B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JPH04107216A (en) Production of nonoriented silicon steel sheet
JP3337117B2 (en) Semi-process non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same
JP3020810B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH09228005A (en) Non-oriented silicon steel sheet of high magnetic flux density and low core loss excellent in heat conductivity, and its manufacture
JPH0331420A (en) Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JP4239351B2 (en) Non-oriented electrical steel sheet
JPH0257125B2 (en)
JPH07300619A (en) Production of nonoriented silicon steel sheet