JPH02294427A - Production of grain-oriented silicon steel sheet reduced in iron loss - Google Patents

Production of grain-oriented silicon steel sheet reduced in iron loss

Info

Publication number
JPH02294427A
JPH02294427A JP1112881A JP11288189A JPH02294427A JP H02294427 A JPH02294427 A JP H02294427A JP 1112881 A JP1112881 A JP 1112881A JP 11288189 A JP11288189 A JP 11288189A JP H02294427 A JPH02294427 A JP H02294427A
Authority
JP
Japan
Prior art keywords
grain
steel sheet
annealing
iron loss
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1112881A
Other languages
Japanese (ja)
Inventor
Satoru Ide
井出 哲
Masahiro Yamamoto
政広 山本
Hiroshi Nishizaka
西阪 博司
Akira Sakaida
晃 坂井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1112881A priority Critical patent/JPH02294427A/en
Publication of JPH02294427A publication Critical patent/JPH02294427A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H8/00Rolling metal of indefinite length in repetitive shapes specially designed for the manufacture of particular objects, e.g. checkered sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/024Forging or pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To stably obtain a superior grain-oriented silicon steel sheet reduced in iron loss and free from deterioration in iron loss even if subjected to subsequent stress relief annealing by providing, by means of a pressing device, compressive linear scratches at the prescribed spaces to a cold rolled grain-oriented silicon steel sheet in a direction perpendicular to the sheet surface and then applying decarburizing annealing and finish annealing to the above sheet. CONSTITUTION:Projecting press teeth 2 are allowed to advance and retreat at high speed against a cold rolled grain-oriented silicon steel sheet S in the course of passing by the action of an advance and retreat driving device 3 of a press main body 1 in which the above projecting press teeth 2 orthogonal to the passing direction of the above cold rolled grain-oriented silicon steel sheet S are provided at spaces to apply vertical load to the sheet surface, by which compressive linear scratches are formed at 1-30mm spaces. Subsequently, decarburizing annealing is applied to the above steel, and, after a separation agent at annealing is applied to the above sheet, finish annealing is carried out.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉄損の低い方向性電磁鋼板の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing grain-oriented electrical steel sheets with low core loss.

(従来の技術) 通常、方向性電磁鋼板は、Sl:4%以下を含脊する珪
素鋼素材を熱間圧延し、必要に応じて熱延板焼鈍し、1
回又は中間焼鈍をはさんで2回以上の冷間圧延工程によ
り、最終仕上厚みの冷延板を得、次に脱炭焼鈍を行った
後、MgOを主成分とする焼鈍分離剤を塗布し、仕上焼
鈍を施してゴス方位をもった2次再結晶粒を発現させ、
更にS,Nなどの不純物を除去するとともに、グラス被
膜を生成させて製造される。さらに必要に応じて、平坦
化焼鈍及び絶縁コーティング処理が施される。
(Prior art) Normally, a grain-oriented electrical steel sheet is produced by hot rolling a silicon steel material containing 4% or less of Sl and annealing the hot rolled sheet as necessary.
A cold-rolled sheet with the final finish thickness is obtained through two or more cold rolling processes with two or more intermediate annealing steps in between, and then decarburization annealing is performed, and then an annealing separator containing MgO as the main component is applied. , final annealing is performed to develop secondary recrystallized grains with Goss orientation,
Furthermore, it is manufactured by removing impurities such as S and N, and forming a glass coating. Furthermore, flattening annealing and insulation coating treatment are performed as necessary.

ところで方向性電磁鋼板においては、省エネルギーの観
点から鉄損特性を改善することが強く要望されており、
鉄損特性を改善する検討がなされ種々の方法が提案され
ている。
By the way, in grain-oriented electrical steel sheets, there is a strong desire to improve iron loss characteristics from the perspective of energy conservation.
Studies have been conducted to improve iron loss characteristics, and various methods have been proposed.

方向性電磁鋼板の鉄損特性を改善する方法の一つとして
鋼板の表面に微小疵や歪を付与する方法が知られている
。例えば特公昭5g − 5968号公報がある。これ
は最終仕上焼鈍後の一方向性電磁鋼板の表面に小球等を
押圧して深さ5μ以下のへこみを形成して、線状の微小
ひずみを付与することで磁区細分化を行い鉄損を改苫さ
せるものである。
As one of the methods for improving the core loss characteristics of grain-oriented electrical steel sheets, it is known to add micro-flaws or distortions to the surface of the steel sheets. For example, there is Japanese Patent Publication No. Sho 5g-5968. This is done by pressing small balls etc. on the surface of the unidirectional electrical steel sheet after final finish annealing to form indentations with a depth of 5μ or less and applying linear microstrain to refine the magnetic domains and cause iron loss. It is a falsification of.

これによると、鉄損が極めて低い材料が得られる。According to this, a material with extremely low iron loss can be obtained.

しかし、その後例えば、巻鉄心を製造するさいの歪取焼
鈍が行われると鉄損改善効果が消失する問題がある。
However, there is a problem in that the iron loss improvement effect disappears if, for example, strain relief annealing is subsequently performed during manufacturing of the wound core.

このような問題のない磁区細分化法が検討され提案され
ている。例えば特開昭56− 130454号公報では
仕上焼鈍ずみの方向性電磁鋼板に、ナイフ、カミソリ刃
、金剛砂、歯車ロール、ショット、レーザーなどで線状
の複雑ひずみを与え、次いで700℃以上の温度に加熱
して、ひずみ導入領域に微細再結晶粒群を生成させ鉄損
の低下が図られている。
Magnetic domain refining methods that do not have such problems have been studied and proposed. For example, in JP-A-56-130454, a finish annealed grain-oriented electrical steel sheet is subjected to complex linear strain using a knife, razor blade, diamond sand, gear roll, shot, laser, etc., and then heated to a temperature of 700°C or higher. Heating is used to generate fine recrystallized grain groups in the strain-introduced region to reduce iron loss.

また、特開昭131 − 117218号公報には仕上
焼鈍済み方向性電磁鋼仮の表面に、圧延方向に対し直角
から45°の範囲で歯形ロールにて90〜220 kg
/mJの荷重をかけ、溝形疵を付与した後、750’C
以上で熱処理することにより、低鉄損方向性電磁鋼板を
製造する方法が記載されている。
Furthermore, in Japanese Patent Application Laid-open No. 131-117218, 90 to 220 kg of finish-annealed grain-oriented electrical steel is coated with a toothed roll in a range of 45 degrees from perpendicular to the rolling direction.
After applying a load of /mJ and creating groove-shaped flaws, it was heated to 750'C.
A method for manufacturing a grain-oriented electrical steel sheet with low core loss by performing the heat treatment as described above is described.

これらによると、歪取焼鈍がその後に施されても、鉄損
改善効果は消失しない磁区細分化が行われ、それなりの
作用効果があり磁気特性の改善に寄与している。
According to these, even if strain relief annealing is performed afterward, the iron loss improving effect is not lost, and magnetic domain refinement is performed, which has a certain effect and contributes to improving the magnetic properties.

さらに、仕上焼鈍前の鋼板に線状疵を導入する鉄損の低
減法が、特開昭59 − 197520号公報で提案さ
れている。これはナイフ刃先、レーザー、放電加工、電
子ビームで線状疵を、幅3oo!M以下、深さl00u
n以下、間隔1龍以上にて圧延方向に直角な方向に入れ
、その後、仕上焼鈍し、鉄損の低下を図るものである。
Furthermore, a method for reducing iron loss by introducing linear flaws into a steel sheet before final annealing has been proposed in Japanese Patent Application Laid-Open No. 197520/1983. This uses a knife edge, laser, electric discharge machining, and electron beam to create linear scratches with a width of 3oo! M or less, depth l00u
The steel sheets are rolled in a direction perpendicular to the rolling direction with a spacing of 1 or more, and then finish annealed to reduce iron loss.

これによってもそれなりの作用効果が得られるであろう
This will also provide some effect.

ところで、歪取焼鈍にて鉄損低減効果が消失しない磁区
細分化を行うには、歪の大きい線状疵を局部的に鋼板へ
間隔をおいて付与することが重要であるが、仕上焼鈍後
の方向性電磁鋼板は、焼鈍時のコイル内の温度偏差、と
くに加熱および冷却速度差により、中膨れ、側歪などの
形状不良が生じ、前記線状疵を鋼板全幅にわたって工業
的に安定して付与することが難しい。
By the way, in order to perform magnetic domain refining in which the iron loss reduction effect does not disappear during strain relief annealing, it is important to locally apply linear flaws with large strain at intervals to the steel sheet. In grain-oriented electrical steel sheets, temperature deviations within the coil during annealing, especially differences in heating and cooling rates, cause shape defects such as center bulges and side distortions, and the linear flaws can be industrially stabilized over the entire width of the steel sheet. Difficult to grant.

また鋼板表面にはセラミックス状のグラス被膜が形成さ
れているので、線状疵付与装置例えば歯車ロールや、ダ
イヤモンド等の高硬度物質を埋設した微小突起ロールは
、摩耗が激しく歪取焼鈍で鉄損低減効果が消失しない前
記線状疵を、方向性電磁鋼板に長期間にわたり付与する
ことが難しい。
In addition, since a ceramic-like glass coating is formed on the surface of the steel sheet, linear flaw imparting devices such as gear rolls and micro-projection rolls embedded with high hardness materials such as diamonds are subject to severe wear and iron loss during strain relief annealing. It is difficult to provide the above-mentioned linear flaws, whose reduction effect does not disappear, to grain-oriented electrical steel sheets over a long period of time.

また、仕上焼鈍前、特に冷延板の方向性電磁鋼板は、非
常に硬化しているから、前記歯車ロールや微小突起ロー
ルは摩耗しやすく、前記線状疵を付与できる鋼板の量は
少なく、ロール出先や微小突起の研摩を頻繁に行う必要
が生じ、また新品との取替を要し、作業性、生産性が劣
化し、さらにコスト高を招く等の問題がある。
In addition, before final annealing, grain-oriented electrical steel sheets, especially cold-rolled sheets, are extremely hardened, so the gear rolls and micro-protrusion rolls are easily worn, and the amount of steel sheet that can be provided with the linear flaws is small. It is necessary to frequently polish the tip of the roll and minute protrusions, and it is also necessary to replace the roll with a new one, resulting in problems such as deterioration of workability and productivity, and further increase in cost.

また、レーザーによる処理の場合、レーザー光線の鋼板
に対する吸収率が、仕上げ焼鈍後の表面に被膜の付いた
鋼板に処理する場合に比べ、冷延後の鋼板に処理する場
合は約1/4と小さくなるため、大容量のレーザー照射
設備が必要となる。
In addition, in the case of laser treatment, the absorption rate of the laser beam to the steel plate is about 1/4 smaller when treating the steel plate after cold rolling than when treating the steel plate with a coating on the surface after finish annealing. Therefore, large-capacity laser irradiation equipment is required.

その他の、ナイフ、カミソリ刃等は工業的でな失しない
磁区細分化する線状疵の付与が、多量の鋼板に、かつそ
の全幅にわたって工業的に容易に行え、鉄損の低い方向
性電磁鋼板を安定してかつ(〒,%苛,%−νζ(!’
?%I21性電磁鋼板の冷延板にブレスにより板而に対
して垂直向きの荷重を瞬時に付加して、圧縮線状疵を鋼
板の片面または両面に1〜30關の間隔で付与し、その
後脱炭焼鈍し、仕上焼鈍することを特徴とする鉄損の低
い方向性電磁鋼板の製造方法にある。
Other types of knives, razor blades, etc. are grain-oriented electrical steel sheets with low iron loss, which can be industrially and easily applied to a large number of steel sheets and over the entire width of the steel sheet by applying linear flaws that subdivide magnetic domains without loss. stably and (〒, %, %−νζ(!'
? A load perpendicular to the plate is instantaneously applied to a cold-rolled %I21 electrical steel plate using a press to create compression linear flaws on one or both sides of the steel plate at intervals of 1 to 30 degrees, and then A method for producing a grain-oriented electrical steel sheet with low iron loss characterized by decarburization annealing and finish annealing.

以下に、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明者達は歪取焼鈍により、鉄損低減効果が消失しな
い磁区細分化を行う線状疵の工業的にすぐれた形成につ
いて研究実験を行った。
The present inventors conducted research experiments on the industrially superior formation of linear flaws that perform magnetic domain refining without eliminating the iron loss reduction effect by strain relief annealing.

その結果、プレスにより方向性電磁鋼板に、板面に対し
て垂直向きの荷重のみを高速にて負荷すると、歪度が大
きくて、かつ局部的に板厚方向に集中する圧縮線状疵が
形成されることを究明した。
As a result, when a grain-oriented electrical steel sheet is subjected to a high-speed load perpendicular to the sheet surface using a press, compression linear flaws with large strain and locally concentrated in the thickness direction are formed. We have determined that this is the case.

さらに圧縮線状疵は方向性電磁鋼板が冷延板であるとき
に、プレスにより形成すると、その形成作業はブレス歯
物の摩耗が少なくて、多量の方向性電磁鋼板に対して行
なえ、がっその圧縮線状疵は板厚方向にシャープとなり
、この特長と当該疵部分にその後の仕上焼鈍で形成され
るグラス披膜が形成されることの相乗作用により、鉄損
が低く、歪取焼鈍されてもその効果は消失しない方向性
電磁鋼板が得られることを見出した。
Furthermore, if compression linear flaws are formed by pressing when the grain-oriented electrical steel sheet is a cold-rolled sheet, the forming operation causes less wear on the press teeth, and can be performed on a large quantity of grain-oriented electrical steel sheets. The compression linear flaw becomes sharp in the plate thickness direction, and due to the synergistic effect of this feature and the formation of a glass film in the flawed area during the subsequent finish annealing, iron loss is low and strain relief annealing is possible. It has been found that a grain-oriented electrical steel sheet can be obtained that does not lose its effect even if the effect is not lost.

この方法によれば、ブレス歯物は直線加工のみで製作で
き、材質として超硬材が使用できるので、冷延後の方向
性電磁鋼板に歪度が大きくてシャープな圧縮線状疵を導
入することができる。又衝撃力を伴うので疵導入に要す
る力が小さくてよいから、作業性が良くかつ安定して行
なえる。
According to this method, the brace teeth can be manufactured only by straight line machining, and carbide can be used as the material, so sharp compression linear flaws with large distortion can be introduced into the grain-oriented electrical steel sheet after cold rolling. be able to. In addition, since impact force is involved, the force required to introduce the flaw can be small, so workability is good and the process can be carried out stably.

本発明は、冷延後の方向性電磁鋼板についてプレスによ
り圧縮線状疵を間隔をおいて付与するが、該方向性電磁
鋼板は鋼成分および圧縮線状疵付与までの製造条件は特
定する必要はない。
In the present invention, compression linear flaws are applied at intervals to a grain-oriented electrical steel sheet after cold rolling by pressing, but it is necessary to specify the steel composition and manufacturing conditions until the formation of compression linear flaws in the grain-oriented electrical steel sheet. There isn't.

すなわち例えばインヒビターとしてAfi N,MnS
,MnSe,BN,Cu2S等が適宜用いられる。また
必要に応じてCu,Sn,Cr,Ni ,Mo,Sb,
W等の元素が含有され、熱間圧延し、焼鈍して1回また
は中間焼鈍工程をはさんで2回以上の冷間圧延により最
終板厚とされる。
That is, for example, Afi N, MnS as an inhibitor.
, MnSe, BN, Cu2S, etc. are used as appropriate. In addition, Cu, Sn, Cr, Ni, Mo, Sb,
It contains elements such as W, and is hot-rolled, annealed, and cold-rolled once or twice or more with an intermediate annealing step in between to obtain the final thickness.

その後、第1図に示すようなプレス装置で圧縮線状疵が
付与される。図面においては方向性電磁鋼板の冷延板で
矢印方向に通板される。1はプレス本体で、その下部に
は通板方向に対してほぼ直交している突起したブレス歯
物2が間隔をおいて設けられている。
Thereafter, compression linear flaws are applied using a press device as shown in FIG. In the drawing, a cold-rolled grain-oriented electrical steel sheet is threaded in the direction of the arrow. Reference numeral 1 denotes a press body, and at the bottom thereof, protruding press teeth 2 that are substantially orthogonal to the sheet passing direction are provided at intervals.

該プレス歯物2は進退駆動装置3の作用により通板中の
方向性電磁鋼冷延板Sに高速で進退し、板面に対して垂
直向き荷重を与え、圧縮線状疵を形成させる。
The press tooth 2 advances and retreats at high speed against the grain-oriented cold-rolled electrical steel sheet S during sheet passing by the action of the advance/retreat drive device 3, applies a load perpendicular to the sheet surface, and forms compression linear flaws.

ブレス歯物2は方向性電磁鋼板冷延板Sに前記圧縮線状
疵を、長期にわたって安定して形成でき、またそれが摩
耗した場合の研摩が容易であるように、歯先形状は第2
図に示す如く、直線歯状2−1にし、その断面はくさび
状にすることが好ましい。
The brace tooth 2 has a second tooth tip shape so that the compression linear flaw can be stably formed on the cold-rolled grain-oriented electrical steel plate S over a long period of time, and it can be easily polished when it wears out.
As shown in the figure, it is preferable to have a straight tooth shape 2-1 and a wedge-shaped cross section.

また、プレス歯物2は超硬金属、セラミック等の超硬材
で製作することが望ましいが、その歯先形状が前記のよ
うであるから、その製作は容易である。4は圧下力制御
機構であり、圧下荷重を制御する。5は金型、6は受台
、7は送りロールである。
Further, it is preferable that the press tooth 2 is made of a super hard material such as a super hard metal or ceramic, but since the shape of the tooth tip is as described above, the production is easy. 4 is a rolling force control mechanism, which controls the rolling load. 5 is a mold, 6 is a pedestal, and 7 is a feed roll.

圧縮線状疵を付与された鋼板は、この後脱炭焼鈍し、焼
鈍分離剤を塗布した後仕上げ焼鈍される。
The steel plate provided with compression linear flaws is then decarburized and annealed, coated with an annealing separator, and then finish annealed.

ところで、方向性電磁鋼冷延板Sにプレスにより形成さ
れた圧縮線状疵Aは、第3図に示すように、歯車ロール
により形成された線状疵Bに比べ、板厚方向にシャープ
であるため、鉄損が確実に低減し、かつ安定している。
By the way, as shown in Fig. 3, the compression linear flaws A formed on the grain-oriented electrical steel cold-rolled sheet S by pressing are sharper in the thickness direction than the linear flaws B formed by gear rolls. Therefore, iron loss is reliably reduced and stable.

また鋼板表面にグラス被膜がなく、かつ潤滑が容易であ
るため、圧縮線状疵を形成するさいブレス歯物2の摩耗
が少なく、多量の方向性電磁鋼冷延板に、歪取焼鈍で鉄
損低減効果が無くならない前記圧縮線状疵を安定して形
成できる。
In addition, since there is no glass coating on the surface of the steel sheet and lubrication is easy, there is less wear on the press teeth 2 when forming compression linear flaws, and a large amount of cold-rolled grain-oriented electrical steel sheet is coated with iron by strain relief annealing. The compression linear flaw can be stably formed without losing its loss reduction effect.

本発明による方向性電磁鋼冷延板に、プレスにより5m
m間隔で圧延方向直交方向に圧縮線状疵を形成し、次い
で脱炭焼鈍し、MgOを主成分とする焼鈍分離剤を塗布
し、1200℃で仕上焼鈍し、得られた方向性電磁鋼板
の鉄損特性を調査した。
A grain-oriented electrical steel cold-rolled plate according to the present invention was pressed to a length of 5 m.
Compression linear flaws are formed in the direction orthogonal to the rolling direction at m intervals, then decarburized annealed, coated with an annealing separator containing MgO as the main component, and finish annealed at 1200°C. The iron loss characteristics were investigated.

またその後、900℃で歪取焼鈍を行って鉄損特性を調
べ、その結果を第4図に示す。
After that, strain relief annealing was performed at 900° C. to examine iron loss characteristics, and the results are shown in FIG.

比較例は1200℃で仕上焼鈍された方向性電磁鋼板に
レーザー照射により、10mm間隔で圧延方向直交方向
に微小疵を付与したものである。
The comparative example is a grain-oriented electrical steel sheet that has been finish annealed at 1200° C., and is provided with micro-flaws at 10 mm intervals in a direction orthogonal to the rolling direction by laser irradiation.

なお試験材はS1を3.2796含有し、板厚が0.2
3m+sの方向性電磁鋼板である。
The test material contained 3.2796 S1 and had a thickness of 0.2
It is a 3m+s grain-oriented electrical steel sheet.

第4図から認められるように、本発明によると歪取焼鈍
を行っても鉄損の劣化はなく低鉄損材が得られる。
As can be seen from FIG. 4, according to the present invention, even when strain relief annealing is performed, there is no deterioration in iron loss and a low iron loss material can be obtained.

またプレスにより圧縮線状疵を付与する場合、ブレス歯
物2を間隔をおいて複数個設けたもので行うと、方向性
電磁鋼冷延板Sは、同時に複数個のプレス歯物2で圧縮
荷重をうけるので、拘束された状態で歪が付与される。
In addition, when applying compression linear flaws by pressing, if a plurality of press teeth 2 are provided at intervals, the grain-oriented electrical steel cold-rolled sheet S is simultaneously compressed by a plurality of press teeth 2. Since it is subjected to a load, strain is applied in a restrained state.

このために、鋼板に形状変化が生じることはなく、板幅
全般にわたって一様に圧縮線状疵が形成される。
For this reason, no shape change occurs in the steel plate, and compression linear flaws are uniformly formed over the entire width of the plate.

圧縮線状疵は間隔をおいて付与されるが、その間隔が狭
くなると磁区の細分化効果が少なくなるとともに、磁束
密度を低下させるので1IDI1以上とする。一方その
間隔が広くなり過ぎるとこの場合も磁区の細分化効果が
少なくなるので30n++*以下とする。
The compression linear flaws are applied at intervals, and if the intervals become narrower, the effect of subdividing the magnetic domains will be reduced and the magnetic flux density will be lowered, so it is set to 1IDI1 or more. On the other hand, if the interval becomes too wide, the effect of subdividing the magnetic domains will be reduced in this case as well, so it is set to 30n++* or less.

圧縮線状疵の向きは、方向性電磁鋼板の圧延方向に対し
て90″から45″の向きが望ましく、その歪の幅は5
〜300−とすることが好ましい。
The direction of the compression linear flaw is preferably 90" to 45" with respect to the rolling direction of the grain-oriented electrical steel sheet, and the width of the strain is 5
It is preferable to set it to 300-.

また圧縮線状疵を付与するための荷重は、作業性または
プレス装置の寿命の長期化等の面から3 〜30kg/
 1111が好ましい。
In addition, the load for applying compression linear flaws is 3 to 30 kg/kg from the viewpoint of workability and prolonging the life of the press equipment.
1111 is preferred.

なお、圧縮線状疵を形成後に、前述のように脱炭焼鈍し
、仕上焼鈍されるが、その後に、絶縁被膜コーティング
液を鋼板に塗布し、絶縁被膜を形成することも勿論でき
る。
Note that after forming the compression linear flaws, decarburization annealing and final annealing are performed as described above, but it is of course possible to apply an insulating film coating liquid to the steel plate after that to form an insulating film.

(実 施 例) 重量%でC : 0.083 、S i:3.10、M
n:0.07B ,A47 :0.028 、S :0
.021 , Cu :0.08SSn :0.lO残
部鉄からなる珪素鋼スラブを周知の方法によって熱間圧
延一焼鈍一冷間圧延を経て0.2201m厚の鋼板を得
た。
(Example) C: 0.083, Si: 3.10, M in weight%
n: 0.07B, A47: 0.028, S: 0
.. 021, Cu:0.08SSn:0. A silicon steel slab consisting of lO balance iron was hot rolled, annealed, and cold rolled by a well-known method to obtain a steel plate with a thickness of 0.2201 m.

得られた方向性電磁鋼冷延板について鋼板圧延方法に対
し、直交して突起歯を7ms間隔で20個設けたプレス
により圧縮線状疵を付与した。
Compression linear flaws were applied to the obtained grain-oriented electrical steel cold-rolled sheet using a press in which 20 protruding teeth were provided at 7 ms intervals perpendicular to the steel sheet rolling method.

次いで更に周知の脱炭焼鈍一焼鈍分離剤塗布最終仕上焼
鈍の各工程を実施した。得られた鋼板を「処理後」の供
試祠とした。さらに一部の鋼板について焼鈍を800℃
×2時間で行い、「歪取焼鈍後」の供試材とした。また
比較のため同一の鋼成分の珪素鋼スラブを用いて、冷延
板で圧縮線状疵を形成せず、以後の処理は同様にして仕
上焼鈍し、「未処理」の供試材とした。またその鋼板に
ついて、レーザーをlOm+s間隔で圧延方向直交方向
に照射し、「レーザー処理後」の供試材とし、さらに歪
取焼鈍を800℃で2時間施し、「レーザー処理一歪取
焼鈍後」の倶試材とした。
Next, the well-known steps of decarburization annealing, annealing, application of a separating agent, and final finish annealing were performed. The obtained steel plate was used as a test shrine "after treatment". Furthermore, some steel plates are annealed at 800℃.
x 2 hours, and the test material was obtained as "after strain relief annealing". For comparison, a silicon steel slab with the same steel composition was used, and the cold-rolled plate did not form any compression linear flaws, and the subsequent treatments were finish annealed in the same manner as the "untreated" test material. . In addition, the steel plate was irradiated with a laser in a direction perpendicular to the rolling direction at intervals of lOm+s to obtain a "after laser treatment" test material, and was further subjected to strain relief annealing at 800°C for 2 hours to obtain a "after laser treatment and strain relief annealing". It was used as a sample material.

これらの鉄損(W    ’)と磁束密度(B8)17
/50 の測定結果を第1表に示す。
These iron loss (W') and magnetic flux density (B8)17
/50 measurement results are shown in Table 1.

(発明の効果) 本発明によると鉄損が低くかっ歪取焼鈍をその後に施さ
れても、鉄損の劣化がない極めてすぐれた方向性電磁鋼
板が安定して得られる。
(Effects of the Invention) According to the present invention, it is possible to stably obtain an extremely excellent grain-oriented electrical steel sheet with low iron loss and no deterioration in iron loss even if it is subsequently subjected to strain relief annealing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例において、圧縮線状疵を形成
するプレス装置の説明図、第2図は一実施例におけるプ
レス歯物の斜視図、第3図はo).(ロ)は一実施例に
おける圧縮線状疵の断面形状の説明図、第4図は一実施
例における鉄損の耐歪取焼鈍を示す図表である。 代 理 人  弁理士  茶野木 立 夫第2図 第3図
Fig. 1 is an explanatory diagram of a press device for forming compressed linear flaws in one embodiment of the present invention, Fig. 2 is a perspective view of a press tooth in one embodiment, and Fig. 3 is an o). (B) is an explanatory diagram of the cross-sectional shape of a compression linear flaw in one embodiment, and FIG. 4 is a chart showing stress relief annealing for iron loss in one embodiment. Agent Patent Attorney Tatsuo Chanoki Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 方向性電磁鋼板の冷延板に、プレスにより板面に対し垂
直向きの荷重を高速にて負荷して、圧縮線状疵を1〜3
0mmの間隔で形成し、その後脱炭焼鈍し、仕上焼鈍す
ることを特徴とする鉄損の低い方向性電磁鋼板の製造方
法。
A load perpendicular to the plate surface is applied at high speed to a cold-rolled grain-oriented electrical steel sheet using a press to create 1 to 3 compression linear flaws.
A method for producing a grain-oriented electrical steel sheet with low iron loss, characterized by forming the steel sheet at intervals of 0 mm, followed by decarburization annealing and final annealing.
JP1112881A 1989-05-02 1989-05-02 Production of grain-oriented silicon steel sheet reduced in iron loss Pending JPH02294427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112881A JPH02294427A (en) 1989-05-02 1989-05-02 Production of grain-oriented silicon steel sheet reduced in iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112881A JPH02294427A (en) 1989-05-02 1989-05-02 Production of grain-oriented silicon steel sheet reduced in iron loss

Publications (1)

Publication Number Publication Date
JPH02294427A true JPH02294427A (en) 1990-12-05

Family

ID=14597863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112881A Pending JPH02294427A (en) 1989-05-02 1989-05-02 Production of grain-oriented silicon steel sheet reduced in iron loss

Country Status (1)

Country Link
JP (1) JPH02294427A (en)

Similar Documents

Publication Publication Date Title
JP7331800B2 (en) Oriented electrical steel sheet
JPH0717960B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPS61149433A (en) Method and apparatus for reducing iron loss in crystal grainorientation type silicon steel
JP2814437B2 (en) Method for manufacturing oriented silicon steel sheet with excellent surface properties
KR100345723B1 (en) Method for manufacturing a grain oriented electrical steel sheet having a low magnetostriction and manufacturing apparaturs used therein
US5123977A (en) Method and apparatus for refining the domain structure of electrical steels by local hot deformation and product thereof
US3490956A (en) Method of producing ferritic stainless steel
US5080326A (en) Method and apparatus for refining the domain structure of electrical steels by local hot deformation and product thereof
JPH02294427A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
US4964922A (en) Method for domain refinement of oriented silicon steel by low pressure abrasion scribing
JPH0663037B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JPH01225A (en) Manufacturing method of high tensile strength non-oriented electrical steel sheet
JPH05105956A (en) Production of grain-oriented silicon steel sheet having uniform magnetic property in sheet-width direction
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP7414145B2 (en) Method for producing grain-oriented electrical steel sheets and hot-rolled steel sheets for grain-oriented electrical steel sheets
JPH09268322A (en) Production of grain oriented silicon steel sheet with ultralow iron loss
JP3051237B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JPH0631395A (en) Production of thin cast slab for non-oriented silicon steel sheet
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JPH0327629B2 (en)
JPH08269554A (en) Production of mirror-finished grain-oriented silicon steel sheet reduced in iron loss
WO2022186300A1 (en) Method for producing grain-oriented electrical steel sheet
KR920004949B1 (en) Making process for the electic steel plate
JPH07216522A (en) Production of titanium sheet excellent in surface characteristic