JPH0661648A - Multilayer wiring board - Google Patents
Multilayer wiring boardInfo
- Publication number
- JPH0661648A JPH0661648A JP21145792A JP21145792A JPH0661648A JP H0661648 A JPH0661648 A JP H0661648A JP 21145792 A JP21145792 A JP 21145792A JP 21145792 A JP21145792 A JP 21145792A JP H0661648 A JPH0661648 A JP H0661648A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- wiring
- layer
- substrate
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、配線基板に係り、半導
体デバイスの実装密度を向上させるのに好適な多層配線
基板に関するものである。特に、例えば、電子計算機な
ど、電子デバイスの実装密度がその製品の優劣を大きく
左右する電子装置に利用されるBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring board, and more particularly to a multilayer wiring board suitable for improving the mounting density of semiconductor devices. In particular, it is used in electronic devices such as electronic calculators, where the packaging density of electronic devices greatly affects the superiority of the product.
【0002】[0002]
【従来の技術】従来の大形計算機など、処理速度の向上
が強く要求される電子装置では、LSI等能動素子の高
速化と素子間接続距離の短縮が装置の性能を向上させる
のに大きな問題であった。このような背景から高密度の
配線を有するLSI搭載基板の技術も、より高速信号の
伝送に適した微細な高密度配線を形成できる多層配線基
板に関する手法の導入が検討された。2. Description of the Related Art In an electronic device such as a conventional large-scale computer which is strongly required to have an improved processing speed, the speeding up of active elements such as LSI and the shortening of the connection distance between elements are major problems for improving the performance of the device. Met. From such a background, as for the technology of the LSI mounting board having high-density wiring, introduction of a method relating to a multilayer wiring board capable of forming fine high-density wiring suitable for higher-speed signal transmission was considered.
【0003】例えば、セラミック多層基板上に、主に有
機物を絶縁層とした薄膜多層配線を形成した基板が提案
されるに至っている。これに関連するものとしては、例
えば、特開昭59−117197号公報記載の技術が知
られている。また、厚膜薄膜混成多層配線基板において
両膜間の接続にメタルパッドを形成した基板も提案され
るに至っている。これに関連するものとしては、例え
ば、特開昭60−148191号公報記載の技術が知ら
れている。これらの多層配線基板は、配線の多層化が容
易なグリ−ンシ−ト法によるセラミック多層基板技術と
配線の微細化が容易な薄膜技術とを併用することにより
配線の高密度化を達成しようとするものである。For example, there has been proposed a substrate in which thin film multilayer wiring mainly composed of an organic material as an insulating layer is formed on a ceramic multilayer substrate. As a technique related to this, for example, the technique described in JP-A-59-117197 is known. In addition, a thick-film thin-film hybrid multilayer wiring board in which a metal pad is formed for connection between both films has been proposed. As a technique related to this, for example, the technique described in JP-A-60-148191 is known. In these multilayer wiring boards, it is attempted to achieve high wiring density by combining ceramic multilayer board technology by the green sheet method, which facilitates multilayer wiring, and thin film technology, which facilitates fine wiring. To do.
【0004】このような従来の技術においては、次のよ
うな欠点があった。セラミック多層基板は、焼結時、導
体材料とセラミックとの収縮率の不一致,成形時の不均
一等により0.1mm/25mm程度の反りを生ずるの
が通常であり、この反りが基板上に形成できる薄膜配線
パターンの微細度に制限を与える。The conventional technique has the following drawbacks. In a ceramic multilayer substrate, a warp of about 0.1 mm / 25 mm is usually generated due to a mismatch of contraction rates between a conductor material and a ceramic during sintering, nonuniformity during molding, and the like, and this warp is formed on the substrate. This limits the fineness of the thin film wiring pattern that can be formed.
【0005】また、セラミック多層基板の原料は、数μ
mから10μmの大きさの粒子の粉末よりなるため、そ
の製品の表面に粒子径とほぼ同等の凹凸が生じるのは避
けがたい。また、セラミック多層基板は、絶縁層となる
セラミック粉末部と導電層となる金属粉末部とを成形し
て同時焼結されるが、この両粉末部間の接着性を確保
し、かつ、焼結収縮量の整合化を図るため、セラミック
ス粉末部に数%から10%のガラス成分を混入させるの
が通常である。これは溶融ガラスによる液相焼結により
セラミックスの組成を緻密化するためである。しかし、
この液相焼結によりセラミックス焼結体内には成形時の
空孔を生ずる。この空孔はその表面を研削しても完全に
除去できず残留が避け難い。このため、セラミックス基
板表面には残留空孔による凹みが生ずる。この凹みも、
スパッタ,蒸着等により形成した薄膜に欠陥を生じさ
せ、薄膜配線パターンの微細化における障害となる。こ
のように、反りや凹みのあるセラミックス基板表面に、
配線の微細化が容易な有機物を絶縁層とする薄膜技術を
併用しても、配線の高密度化を達成できない。The raw material of the ceramic multilayer substrate is several μm.
Since it is made of powder of particles having a size of m to 10 μm, it is unavoidable that the surface of the product has irregularities substantially equal to the particle diameter. In addition, the ceramic multilayer substrate is formed by simultaneously forming a ceramic powder part to be an insulating layer and a metal powder part to be a conductive layer and simultaneously sintering them. In order to match the shrinkage amount, it is usual to mix several percent to 10% of glass component into the ceramic powder portion. This is because the composition of ceramics is densified by liquid phase sintering with molten glass. But,
Due to this liquid phase sintering, voids are formed in the ceramic sintered body during molding. These holes cannot be completely removed even if the surface is ground, and it is unavoidable that they remain. For this reason, the surface of the ceramic substrate is dented by the residual holes. This dent is also
This causes defects in the thin film formed by sputtering, vapor deposition, etc., which becomes an obstacle to the miniaturization of the thin film wiring pattern. In this way, on the ceramic substrate surface with warpage and dents,
Even if the thin film technology using an organic material as an insulating layer, which is easy to miniaturize the wiring, is used together, the density of the wiring cannot be increased.
【0006】[0006]
【発明が解決しようとする課題】上記従来の技術では、
上述のセラミック多層基板が焼結時反りを生ずることに
ついては、次の如き問題を有していた。すなわち、薄膜
配線パターンは、ホトリゾグラフィ技術により形成され
るが、パターン露光装置の焦点深度の関係上露光面の平
坦度でパターン精度が決定される。上記の反りの発生は
パターンの高精度化の妨げとなる。SUMMARY OF THE INVENTION In the above conventional technique,
The occurrence of warpage during sintering of the above-mentioned ceramic multilayer substrate has the following problems. That is, although the thin film wiring pattern is formed by the photolithography technique, the pattern accuracy is determined by the flatness of the exposure surface due to the depth of focus of the pattern exposure apparatus. The occurrence of the warp hinders the accuracy of the pattern from increasing.
【0007】さらに、従来、焼結時に生ずるセラミック
多層基板の原料粒子径とほぼ同等の凹凸を生ずることや
成形時の空孔の残留による凹みが発生することにあって
は、スパッタ,蒸着等により形成した薄膜に欠陥を生じ
させ、これが薄膜配線パターンの微細化における障害と
なるという問題があった。Further, in the past, when unevenness almost equal to the raw material particle diameter of the ceramic multilayer substrate produced at the time of sintering and dents due to the remaining pores at the time of molding were generated, sputtering, vapor deposition, etc. There has been a problem that defects are generated in the formed thin film, which becomes an obstacle to miniaturization of the thin film wiring pattern.
【0008】本発明は、上記従来技術の問題点を解決す
るためになされたもので、焼結時に生ずるセラミック多
層基板の反りを除去し、露光面を平坦とし、パターン精
度を高精度化し、配線を高密度化し、また、粒子である
ために表面に生ずる凹凸,残留空孔による凹みを取り去
り、薄膜配線パターンを微細化し、配線を高微細化する
ことにより、LSI等の電子部品が搭載でき、LSI間
を接続する配線長を著しく低減するものである。すなわ
ち、本発明は、セラミック多層、薄膜多層混成基板にお
けるセラミック,薄膜界面の適正な構造を有する多層配
線基板を提供するものである。The present invention has been made in order to solve the above-mentioned problems of the prior art. It removes the warp of the ceramic multi-layer substrate that occurs during sintering, flattens the exposed surface, improves the pattern accuracy, and wiring. In addition, by densifying the surface, removing the irregularities that occur on the surface due to the particles, and the recesses due to residual holes, making the thin film wiring pattern finer and making the wiring finer, electronic parts such as LSI can be mounted, The wiring length for connecting the LSIs is significantly reduced. That is, the present invention provides a multilayer wiring board having an appropriate structure of ceramic / thin film interfaces in a ceramic multilayer / thin film multilayer hybrid substrate.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、本発明の構成は、基板の厚さ方向の表裏面間を接続
する内層配線を有するセラミック基板上に薄膜配線パタ
−ンを形成してなる多層配線基板に、少なくとも薄膜が
形成される側の前記セラミック基板上に研削により削除
されても配線機能を保持しうるような厚さに形成され導
体パタ−ンを備えたスル−ホ−ルパタ−ンと、このスル
−ホ−ルパタ−ンを平面研削し前記導体パタ−ンを露出
し、露出した該導体パタ−ン上にあとのガラス層形成の
際酸化しない金属で被覆した金属被膜層を設けたもので
ある。さらに、ガラス層を少なくとも前記金属被膜層を
含む前記セラミック基板表面の全面に被覆し、被覆後該
ガラス層を平面研削により、前記金属被膜層を露出させ
たものである。In order to achieve the above object, the structure of the present invention forms a thin film wiring pattern on a ceramic substrate having inner layer wiring for connecting front and back surfaces in the thickness direction of the substrate. In the multilayer wiring board having the above-mentioned structure, a through hole having a conductor pattern formed at least on the side of the ceramic substrate on which a thin film is to be formed is formed so as to maintain the wiring function even if it is removed by grinding. -A metal pattern coated with a metal that does not oxidize during the subsequent glass layer formation on the exposed conductor pattern by exposing the conductor pattern to surface grinding of the conductor pattern and the through hole pattern. A coating layer is provided. Furthermore, a glass layer is coated on the entire surface of the ceramic substrate including at least the metal coating layer, and after the coating, the glass layer is surface-ground to expose the metal coating layer.
【0010】上記セラミック基板の前記導体パタ−ンの
少なくともパッド材料は、高融点,高温強さを有するタ
ングステンまたはモリブデンもしくはこれらの複合材料
を用い、金属被膜層は少なくとも金を用いて形成するも
のである。上記導体パタ−ンの少なくともパッド材料は
耐熱性の良い銅を用い、金属被膜層はニッケルおよび金
の二重構造にし形成するものである。露出させた金属被
膜層を有するガラス層は、微細な欠陥を徐去するため、
ガラスの軟化温度で熱処理を行い、軟化ガラス層を形成
するものである。At least the pad material of the conductor pattern of the ceramic substrate is made of tungsten or molybdenum having a high melting point and high temperature strength or a composite material thereof, and the metal coating layer is made of at least gold. is there. At least the pad material of the conductor pattern is made of copper having good heat resistance, and the metal coating layer is formed to have a double structure of nickel and gold. The glass layer having the exposed metal coating layer gradually removes fine defects,
Heat treatment is performed at the softening temperature of the glass to form a softened glass layer.
【0011】[0011]
【作用】上記各技術的手段の働きは次のとおりである。
本発明の構成によれば、セラミック多層配線基板の薄膜
配線パタ−ンが形成される側に導体パタ−ンを含むスル
−ホ−ルパタ−ンを設け、このスル−ホ−ルパタ−ンの
厚さを焼結後研削により平坦化されても配線機能を保持
できるような厚みにしたので、研削により、導体パタ−
ンを露出し焼結時の反りが除去され、露光面を平坦化す
る。これにより、薄膜形成時の露光工程でのパターン解
像度が向上して微細パターンの形成が可能となる。The function of each of the above technical means is as follows.
According to the structure of the present invention, the through hole pattern including the conductor pattern is provided on the side of the ceramic multilayer wiring substrate where the thin film wiring pattern is formed, and the thickness of this through hole pattern is increased. Since the thickness is set so that the wiring function can be maintained even if it is flattened by grinding after sintering, the conductor pattern can be ground by grinding.
The exposed surface is removed and the warpage during sintering is removed, and the exposed surface is flattened. As a result, the pattern resolution in the exposure process at the time of forming the thin film is improved, and the fine pattern can be formed.
【0012】また、平坦化されたスル−ホ−ルパタ−ン
の露出した導体パタ−ン上を、ガラス層形成のとき、酸
化しない金属の皮膜層で覆い、さらに、この金属皮膜層
を内部欠陥のないガラス層で被覆し強化するので、表面
を研削することにより、粒子の大きさによる表面の凹
凸,成形時に生じるボイドによる凹みが除去され薄膜配
線パタ−ンの高歩留まり化が達成される。Further, the exposed conductor pattern of the flattened through-hole pattern is covered with a metal film layer which is not oxidized during the formation of the glass layer, and the metal film layer is further affected by internal defects. Since the surface is ground and reinforced, the surface is ground to remove the surface irregularities due to the size of the particles and the cavities due to the voids generated at the time of molding, thereby achieving a high yield of the thin film wiring pattern.
【0013】導体パタ−ン上の導電パッドを少なくとも
タングステンまたはモリブデンもしくはこれらの複合材
料を使用し、金属被膜層として少なくとも金を使用する
と、この金とこれらの導電パッド金属との拡散が行なわ
れる。なお、金にニッケル等を重ね多層化しても同様に
拡散が行なわれ、良好な接合状態が得られる。また、導
体パタ−ンの導電パッドは耐熱性の良い銅を用い、金属
被膜層はニッケルおよび金の二重構造にすると、銅と金
との拡散速度をニッケルが抑制し、良好な接合が行なわ
れる。ガラス層は、ガラスの軟化温度で熱処理を施し、
軟化ガラス層とすると微細な欠陥が徐去される。The use of at least tungsten or molybdenum or composites thereof for the conductive pads on the conductor pattern and at least gold for the metallization layer results in diffusion of the gold and these conductive pad metals. In addition, even if nickel or the like is overlaid on gold to form a multilayer, diffusion is similarly performed, and a good bonded state can be obtained. Further, when the conductive pad of the conductor pattern is made of copper having good heat resistance and the metal coating layer has a double structure of nickel and gold, nickel suppresses the diffusion rate of copper and gold, and good bonding is performed. Be done. The glass layer is heat-treated at the softening temperature of the glass,
With the softened glass layer, fine defects are gradually removed.
【0014】[0014]
【実施例】以下本発明の各実施例を図1を参照して説明
する。 〔実施例 1〕図1(a)は本発明の一実施例に係る多
層配線基板の断面図であり、図1(b)は本発明の一実
施例に係る多層配線基板の製造工程図である。本発明の
多層配線基板は、基板の厚さ方向の表裏面間を接続する
内層配線を有するセラミック基板上に薄膜配線パタ−ン
を形成してなる多層配線基板上に、少なくとも薄膜が形
成される側の前記セラミック基板表面には、研削により
削除されても配線機能を保持しうるような厚さを有する
導体パタ−ンを備えたスル−ホ−ルパタ−ンを形成し、
このスル−ホ−ルパタ−ンを平面研削して導体パタ−ン
を露出させ、該露出させた導体パタ−ン上をあとのガラ
ス層形成の際、酸化しない金属で覆った金属被膜層を設
け、さらに、少なくとも前記金属被膜層を含む前記セラ
ミック基板表面の全面に形成し、平面研削により該金属
被膜層を露出させたガラス層とを備えたものである。Embodiments of the present invention will be described below with reference to FIG. [Embodiment 1] FIG. 1A is a sectional view of a multilayer wiring board according to an embodiment of the present invention, and FIG. 1B is a manufacturing process diagram of the multilayer wiring board according to an embodiment of the present invention. is there. In the multilayer wiring board of the present invention, at least a thin film is formed on a multilayer wiring board formed by forming a thin film wiring pattern on a ceramic substrate having inner layer wiring for connecting front and back surfaces in the thickness direction of the board. On the surface of the ceramic substrate on the side, a through-hole pattern having a conductor pattern having a thickness capable of retaining the wiring function even if it is removed by grinding is formed,
This through-hole pattern is ground to expose the conductor pattern, and a metal coating layer covered with a metal that does not oxidize is formed on the exposed conductor pattern when a glass layer is formed later. And a glass layer formed on the entire surface of the ceramic substrate including at least the metal coating layer and having the metal coating layer exposed by surface grinding.
【0015】図1(a)において、1はセラミック多層
配線基板、2はセラミック多層配線基板のスルーホール
パタ−ン、3はセラミック多層配線基板の導体パタ−
ン、4はセラミック多層配線基板の入出力ピンパッド、
5はセラミックの成形時に生ずるボイド、6は研削後に
残る原料粒子による凹凸または残留空孔による凹みに起
因する表面凹部(以下、凹みという)、7はスルーホー
ルパターン上の金属被膜層、8はガラス層、10aは薄
膜配線パターンの導体パ−タン、10bは薄膜配線パタ
ーンの絶縁部である。In FIG. 1A, 1 is a ceramic multilayer wiring board, 2 is a through hole pattern of the ceramic multilayer wiring board, and 3 is a conductor pattern of the ceramic multilayer wiring board.
Input and output pin pads of ceramic multilayer wiring board,
Reference numeral 5 is a void generated during the molding of ceramics, 6 is a surface recess (hereinafter referred to as a recess) caused by unevenness due to raw material particles remaining after grinding or recesses due to residual holes, 7 is a metal coating layer on a through-hole pattern, and 8 is glass. Layers 10a are conductor patterns of the thin film wiring pattern, and 10b are insulating portions of the thin film wiring pattern.
【0016】図1(b)において、101は導体パ−タ
ン3を有するスルーホールパターン2を備えたセラミッ
ク多層配線基板1を形成する工程、102は形成された
スルーホールパターン2を研削し平坦化し導体パ−タン
3を露出する工程、103は導体パ−タン3上に金属被
膜層7を覆い、スルーホールパターン2上全面にガラス
層8とを形成する工程、104はガラス層8を研削し金
属皮膜層7を露出する工程、105は前記セラミック多
層配線基板1上に薄膜配線パターン10a,10bを形
成する工程である。In FIG. 1B, 101 is a step of forming a ceramic multilayer wiring substrate 1 having a through hole pattern 2 having a conductor pattern 3, and 102 is a flattening process by grinding the formed through hole pattern 2. The step of exposing the conductor pattern 3, the step 103 of covering the metal pattern layer 7 on the conductor pattern 3 and the step of forming the glass layer 8 on the entire surface of the through hole pattern 2, and the step 104 of grinding the glass layer 8 Step 105 is a step of exposing the metal film layer 7, and step 105 is a step of forming the thin film wiring patterns 10a and 10b on the ceramic multilayer wiring board 1.
【0017】以下、具体的数値例を挙げて製造工程と併
せて実施例を説明する。セラミック多層配線基板1は、
その薄膜形成面側に厚さ約1mmのスルーホールパター
ン2のみを形成し、その下部には多層配線層を形成す
る。また、この裏面には、セラミック多層配線基板1の
入出力ピンパッド4が設けられ、この入出力ピンパッド
4はセラミック多層配線基板1の導体パターン3と接続
されている。このようなセラミック多層配線基板1を以
下の工程で形成した。Hereinafter, examples will be described together with manufacturing steps by giving concrete numerical examples. The ceramic multilayer wiring board 1 is
Only the through-hole pattern 2 having a thickness of about 1 mm is formed on the thin film formation surface side, and a multilayer wiring layer is formed below the through-hole pattern 2. Input / output pin pads 4 of the ceramic multilayer wiring board 1 are provided on the back surface, and the input / output pin pads 4 are connected to the conductor patterns 3 of the ceramic multilayer wiring board 1. Such a ceramic multilayer wiring board 1 was formed by the following steps.
【0018】図1(a)において図1(b)の101の
工程を説明する。まず、アルミナ粉末とアルミナ・シリ
カ・マグネシア系ガラス粉末を重量比9:1混合し、こ
れにポリビニールブチラールおよび可塑剤を加え、ドク
ターブレード法により0.3mm厚さのグリーンシート
を成形する。このグリーンシートにパンチングにより所
定の位置に0.15mmφのスルーホールパターン2を
形成し、スルーホールパターン2に印刷法によりタング
ステン粉末を充填したのち、同様の印刷法によりタング
ステンペーストを用いて所定の導体パターン3を形成す
る。The step 101 in FIG. 1B will be described with reference to FIG. First, alumina powder and alumina-silica-magnesia glass powder are mixed in a weight ratio of 9: 1, polyvinyl butyral and a plasticizer are added thereto, and a green sheet having a thickness of 0.3 mm is formed by a doctor blade method. A 0.15 mmφ through hole pattern 2 is formed at a predetermined position on this green sheet by punching, the through hole pattern 2 is filled with tungsten powder by a printing method, and then a predetermined conductor is formed using a tungsten paste by the same printing method. Pattern 3 is formed.
【0019】以上の処理を施した150mm×150m
mのグリーンシートを所定の枚数重ね合せ圧着すること
により多層配線構造を実現した。この場合、薄膜形成面
側のグリーンシート4枚は、タングステン粉末の充填や
タングステンペーストを用いて所定の導体パターン3の
形成をおこなわず、スルーホールパターン2の空孔のみ
が形成されたものを使用する。圧着された多層配線構造
をもつグリーンシートは、N2,H2の混合ガス雰囲気で
1600℃、2時間の熱処理を行い焼結させ、セラミッ
ク多層配線基板1を完成させた。150 mm × 150 m subjected to the above treatment
A multilayer wiring structure was realized by stacking and pressing a predetermined number of m green sheets. In this case, the four green sheets on the thin film formation surface side are used in which only the holes of the through-hole pattern 2 are formed without filling the tungsten powder or forming the predetermined conductor pattern 3 using the tungsten paste. To do. The pressure-bonded green sheet having the multilayer wiring structure was heat-treated at 1600 ° C. for 2 hours in a mixed gas atmosphere of N 2 and H 2 and sintered to complete the ceramic multilayer wiring board 1.
【0020】図1(a)において図1(b)の102の
工程を説明する。焼結後の前記セラミック多層配線基板
1は、薄膜形成面側で0.15mm〜0.8mmの反り
を有していた。次にこの基板1の薄膜形成面側を、ダイ
ヤモンド粉を用いた平面研削により、表面の反りおよび
うねりが20μm以下となるよう研削した。このとき、
基板1表面のスルーホールパターン2の空孔のみで形成
された部分だけが研削されることとなり、多層配線の機
能には影響しない。この研削により、基板1の表面は、
基板1のセラミック材表面と研削によって露出したスル
ーホールパターン2のタングステン導体パターン3によ
り構成される。この基板1のセラミック材表面には、焼
結時に生じたボイド5が研削により露出し、大ささ5μ
m〜20μmφの凹みが約100個/mm2の割合で発
生した。The step 102 in FIG. 1B will be described with reference to FIG. The ceramic multilayer wiring board 1 after sintering had a warp of 0.15 mm to 0.8 mm on the thin film formation surface side. Next, the thin film formation surface side of this substrate 1 was ground by surface grinding using diamond powder so that the surface warp and waviness were 20 μm or less. At this time,
Only the portion of the through-hole pattern 2 formed on the surface of the substrate 1 formed by the holes is ground, and the function of the multilayer wiring is not affected. By this grinding, the surface of the substrate 1 is
It is composed of the surface of the ceramic material of the substrate 1 and the tungsten conductor pattern 3 of the through hole pattern 2 exposed by grinding. On the surface of the ceramic material of the substrate 1, voids 5 generated during sintering are exposed by grinding, and the size is 5 μm.
Depressions of m to 20 μmφ were generated at a rate of about 100 / mm 2 .
【0021】図1(a)において図1(b)の103の
工程を説明する。前記102の工程により、露出したセ
ラミック多層配線基板1の表面のスルーホールパターン
2には、その無電解鍍金により金めっき膜を約5μmの
厚さで積層し金属皮膜層7を形成する。無電解鍍金法と
したのは、積層金属膜にピンホ−ルがなく厚さが一定と
なるからである。図1(a)において図1(b)の10
4の工程を説明する。酸化ホウ素、シリカを主成分とす
る多種類のガラス材料から熱膨張係数が45〜55×1
0~7/℃の組成の材料を選択し、この粉末をペースト化
する。The step 103 in FIG. 1B will be described with reference to FIG. In the step 102, a metal plating layer 7 is formed on the exposed through-hole pattern 2 of the ceramic multilayer wiring substrate 1 by electroless plating with a gold plating film having a thickness of about 5 μm. The electroless plating method is used because the laminated metal film has no pinhole and has a constant thickness. In FIG. 1A, 10 of FIG.
Step 4 will be described. The thermal expansion coefficient is 45 to 55 × 1 from many kinds of glass materials containing boron oxide and silica as main components.
A material having a composition of 0 to 7 / ° C. is selected, and this powder is made into a paste.
【0022】ペースト化した材料をスクリーン印刷法
で、セラミック多層配線基板1の薄膜形成面側の全面
に、厚さ30μmの被膜を形成したのち、N2雰囲気下
で1000〜1100℃の温度で4時間の熱処理を施
す。この熱処理によりガラスは軟化し、前記基板1の表
面の凹み6に充填されると同時に、ガラス絶縁層8に内
包する気泡も消滅する。また、その厚さは約15μmに
まで収縮した。ガラス層8形成後、前記基板1の表面を
先に形成した金めっき膜が露出するまで、二度目の平面
研削を行われ、セラミック多層配線基板1を完成され
る。この完成された基板1表面は、5μmφ以上の凸凹
欠陥が0.01個/cm2程度にまで低減し、微細薄膜
配線パターン10の形成に良好な状態を示している。The paste material is screen-printed to form a 30 μm thick coating film on the entire surface of the ceramic multilayer wiring substrate 1 on which the thin film is to be formed, and then the paste is formed in a N 2 atmosphere at a temperature of 1000 to 1100 ° C. for 4 hours. Heat treatment for an hour. By this heat treatment, the glass softens and fills the recesses 6 on the surface of the substrate 1, and at the same time, the bubbles contained in the glass insulating layer 8 disappear. Further, the thickness thereof contracted to about 15 μm. After the glass layer 8 is formed, the second surface grinding is performed until the gold plating film previously formed on the surface of the substrate 1 is exposed to complete the ceramic multilayer wiring substrate 1. The surface of the completed substrate 1 has the number of uneven defects of 5 μmφ or more reduced to about 0.01 / cm 2 and shows a favorable state for forming the fine thin film wiring pattern 10.
【0023】図1(a)において図1(b)の105の
工程を説明する。まず基板1表面に、Cr/Al/Cr
(各々0.1μm,5μm,0.1μm厚さ)の膜をス
パッタリングにより作製し、フォトエッチングにより、
セラミック基板焼結時、収縮バラツキにより生ずるスル
ーホール位置のズレを吸収できる大きさの接続用円形金
属パッド10cを各スルーホール2に対応する位置に形
成した。その後、ポリイミド系有機材料のワニスを滴下
し、セラミック多層配線基板1に均一に被膜させる。そ
の厚さは硬化後10μm厚さとなるようにする。熱処理
硬化後、ポリイミド系有機材料膜表面には、基板1表面
の凹凸に起因した凹凸が生ずるが、本実施例の基板で
は、径5μmφ以上、深さ2μm以上の凹部はみられな
かった。The step 105 in FIG. 1B will be described with reference to FIG. First, on the surface of the substrate 1, Cr / Al / Cr
Films (0.1 μm, 5 μm, 0.1 μm thick) are formed by sputtering, and photoetching is performed.
Circular metal pads 10c for connection having a size capable of absorbing the displacement of the positions of the through holes caused by shrinkage variation during sintering of the ceramic substrate were formed at the positions corresponding to the respective through holes 2. Thereafter, a varnish of a polyimide-based organic material is dropped to coat the ceramic multilayer wiring board 1 uniformly. The thickness is set to 10 μm after curing. After heat treatment and curing, irregularities due to irregularities on the surface of the substrate 1 were formed on the surface of the polyimide-based organic material film, but in the substrate of this example, no concave portion having a diameter of 5 μmφ or more and a depth of 2 μm or more was observed.
【0024】有機材料膜硬化後、フォトエッチングによ
り、有機硬化膜に、径30μmのスルーホール2を形成
した。この時のスルーホール径は±2μmの高精度が得
られた。基板表面の研削工程を入れない従来基板では、
この径の値が±20μm程度となり、実用的にはスルー
ホールの微細化は径50μmまでが限界であった。以
後、有機膜上に基板1の表面と同様な膜構成にて配線を
形成し、スルーホール形成を繰り返し、所望の層数の薄
膜多層配線パタ−ンを形成した。この場合、配線幅は5
μm程度の微細化まで可能であり、配線層10層を形成
したセラミック多層配線基板1において、基板の表面の
凹凸,反りに起因した配線の断線,配線間短絡は認めら
れなかった。After the organic material film was cured, a through hole 2 having a diameter of 30 μm was formed in the organic cured film by photoetching. A high accuracy of ± 2 μm was obtained for the through hole diameter at this time. With conventional boards that do not include the grinding process of the board surface,
The value of this diameter was about ± 20 μm, and practically, the miniaturization of through holes was limited to a diameter of 50 μm. After that, wiring was formed on the organic film with the same film structure as that of the surface of the substrate 1, and through-hole formation was repeated to form a thin film multilayer wiring pattern having a desired number of layers. In this case, the wiring width is 5
It is possible to reduce the size to about μm, and in the ceramic multilayer wiring substrate 1 in which 10 wiring layers are formed, unevenness of the surface of the substrate, disconnection of wiring due to warpage, and short circuit between wirings were not observed.
【0025】〔実施例 2〕本発明の他の実施例を説明
する。〔実施例 1〕における図1(a)の図1(b)
の103工程において、表面研削により、露出させたス
ルーホールパターン2上の導体タングステンパターン3
を覆う金属皮膜層7として、ニッケル5μm厚さと無電
解金めっき3μm厚さとの二重構造とし、その他の部分
の工程は同一とした。この場合、ガラス層8の熱処理工
程で、ニッケルとタングステンおよび金とタングステン
との間に拡散が生じ、前記めっき膜7と導体タングステ
ンパターン3上のパッド間との接続引っ張り強度で1ス
ルーホールパッドあたり1kg以上の値が得られた。一
方、前記熱処理工程で、ニッケル・金拡散層中のニッケ
ルの酸化が認められたが、ガラス絶縁層8の研削時に、
前記金めっき層7を1μm以上研削することとすれば、
導体タングステンパターン3上のパッドと薄膜配線パタ
ーン10との間にオ−ミック接合が得られた。[Embodiment 2] Another embodiment of the present invention will be described. FIG. 1B of FIG. 1A in [Example 1]
103 step, the conductor tungsten pattern 3 on the through hole pattern 2 exposed by surface grinding
As the metal coating layer 7 for covering, a double structure of nickel 5 μm thickness and electroless gold plating 3 μm thickness was adopted, and the other steps were the same. In this case, in the heat treatment process of the glass layer 8, diffusion occurs between nickel and tungsten and between gold and tungsten, and the connection tensile strength between the plating film 7 and the pads on the conductive tungsten pattern 3 is 1 per through-hole pad. Values over 1 kg were obtained. On the other hand, in the heat treatment step, oxidation of nickel in the nickel / gold diffusion layer was recognized, but when grinding the glass insulating layer 8,
If the gold plating layer 7 is ground by 1 μm or more,
An ohmic contact was obtained between the pad on the conductive tungsten pattern 3 and the thin film wiring pattern 10.
【0026】〔実施例 3〕本発明のさらに他の実施例
を説明する。〔実施例 1〕における図1(a)の図1
(b)の101工程において、セラミック基板材料とし
て、ムライト粉末とアルミナ,シリカ,マグネシア系ガ
ラス粉末とを重量比で7:3の割合で混合し、〔実施例
1〕と同様にスルーホールパターン2形成、導体パタ
ーン3形成、薄膜形成面研削処理、薄膜パターン10形
成を行い、同様な結果を得た。本実施例の基板では、セ
ラミックの誘電率が〔実施例 1〕の約9に対し6以下
となり、基板1のセラミック部での信号伝播速度を30
%向上させることが出来た。[Embodiment 3] Still another embodiment of the present invention will be described. FIG. 1 of FIG. 1A in [Example 1]
In step 101 (b), mullite powder and alumina, silica, magnesia glass powder were mixed as a ceramic substrate material in a weight ratio of 7: 3, and the through hole pattern 2 was formed in the same manner as in [Example 1]. Formation, conductor pattern 3 formation, thin film formation surface grinding treatment, and thin film pattern 10 formation were performed, and similar results were obtained. In the substrate of the present embodiment, the dielectric constant of the ceramic is 6 or less as compared with about 9 in [Example 1], and the signal propagation speed in the ceramic portion of the substrate 1 is 30.
I was able to improve it.
【0027】〔実施例 4〕本発明のさらに他の実施例
を説明する。〔実施例 1〕における図1(a)の図1
(b)の101工程において、セラミック基板材料とし
てアルミナ粉末とホウ硅酸系ガラス粉末とを重量比で
5:5の割合に混合し、〔実施例 1〕と同様にグリー
ンシート成形、スルーホールパターン2形成を行った
後、銅粉末ペーストを用いスルーホールを充填、導体パ
ターン3の形成を行い、圧着することにより多層配線構
造を実現した。このあと、N2雰囲気中、900℃、1
時間で熱処理し焼結した。該基板は〔実施例1〕と同様
の0.15mm〜0.8mmの反りを示した。焼結後、
〔実施例 1〕と同様な平面研削を行い、〔実施例
1〕における図1(a)の図1(b)の103工程にお
いては、スルーホールパターン2上の導体パターン3を
覆う金属皮膜層7として、ニッケル5μm厚さ,金3μ
m厚さの二重構造のめっき膜を形成した。[Embodiment 4] Still another embodiment of the present invention will be described. FIG. 1 of FIG. 1A in [Example 1]
In step 101 of (b), alumina powder and borosilicate glass powder were mixed as a ceramic substrate material in a weight ratio of 5: 5, and green sheet molding and through hole pattern were performed in the same manner as in [Example 1]. After forming 2, the through hole was filled with a copper powder paste, the conductor pattern 3 was formed, and pressure bonding was performed to realize a multilayer wiring structure. After this, in a N 2 atmosphere, 900 ° C., 1
Heat treated and sintered for hours. The substrate showed the same warp of 0.15 mm to 0.8 mm as in [Example 1]. After sintering,
The same surface grinding as in [Example 1] was performed, and [Example
1] in step 103 of FIG. 1A, the metal film layer 7 covering the conductor pattern 3 on the through-hole pattern 2 has a nickel film thickness of 5 μm and a gold film thickness of 3 μm.
A double-structured plating film having a thickness of m was formed.
【0028】このあと、〔実施例 1〕における図1
(a)の図1(b)の104工程においては、基板材料
として用いたアルミナ粉末とアルミナ・シリカ・マグネ
シア系ガラス粉末ガラスより低温で軟化するホウ硅酸系
ガラス粉末を用い、〔実施例1〕と同様に基板表面にガ
ラス層8を形成した。この時の熱処理は800℃、8時
間施した。この熱処理時に、銅,ニッケル、金の各々の
間に相互拡散を生ずるが、金属皮膜層7として金のみを
用いると、金が導体パターン3の銅への急速な拡散が生
じ、基板1表面よりめっきで形成した金の突出が無くな
るため、のちの研削時にガラス層8を残存させたまま、
金属皮膜層7である金めっき層を露出させることが不可
能となる。以後、〔実施例 1〕と同様に薄膜配線パタ
ーン10を施して基板を完成させた。本実施例によれ
ば、セラミック基板中の配線抵抗を低減できるため、セ
ラミック基板内での信号レベルの低下を防止できる。After that, as shown in FIG.
In the step 104 of FIG. 1B of FIG. 1A, a borosilicate glass powder that softens at a lower temperature than the alumina powder used as the substrate material and the alumina-silica-magnesia glass powder glass is used. ], The glass layer 8 was formed on the substrate surface. The heat treatment at this time was performed at 800 ° C. for 8 hours. At the time of this heat treatment, mutual diffusion occurs between copper, nickel and gold, but if only gold is used as the metal film layer 7, gold will diffuse rapidly into the copper of the conductor pattern 3 from the surface of the substrate 1. Since the protrusion of gold formed by plating is eliminated, the glass layer 8 remains as it is during the subsequent grinding.
It becomes impossible to expose the gold plating layer which is the metal film layer 7. Thereafter, the thin film wiring pattern 10 was applied in the same manner as in [Example 1] to complete the substrate. According to this embodiment, the wiring resistance in the ceramic substrate can be reduced, so that the signal level in the ceramic substrate can be prevented from lowering.
【0029】〔実施例 5〕本発明のさらに他の実施例
を説明する。セラミック多層配線基板1の薄膜形成面で
のガラス層8を研削後に施される図1(a)の図1
(b)の104工程における熱処理を〔実施例 1〕,
〔実施例3〕において成型したものについては、110
0℃、1時間,実施例4において成型したものについて
は800℃、1時間の再熱処理を施した。この工程を付
加すると、ガラス層8表面に生じた研削時のキズや、少
量残存したガラス層8中のボイド5により生じた表面凹
凸部6が平坦化され、再熱処理を施さない〔実施例
1〕で得られた表面欠陥率を約10%に低減できた。[Embodiment 5] Still another embodiment of the present invention will be described. 1 of FIG. 1 (a) performed after grinding the glass layer 8 on the thin film formation surface of the ceramic multilayer wiring substrate 1.
The heat treatment in the step 104 of (b) is performed in [Example 1],
Regarding the molded product in [Example 3], 110
Remolding was performed at 0 ° C. for 1 hour, and for the molded product in Example 4, 800 ° C. for 1 hour. When this step is added, the scratches on the surface of the glass layer 8 at the time of grinding and the surface irregularities 6 caused by the voids 5 in the glass layer 8 remaining in a small amount are flattened, and the reheat treatment is not performed.
The surface defect rate obtained in 1] could be reduced to about 10%.
【0030】[0030]
【発明の効果】以上、詳細に説明したように、本発明に
よれば、セラミック多層基板の本質的欠陥である焼結時
に生ずるセラミック多層基板の反りを除去し、露光面を
平坦とし、パターン精度を高精度化し、配線を高密度化
し、また、セラミック多層基板の原料が粒子であるため
に表面に生ずる凹凸,残留空孔による凹みが取り去り、
薄膜配線パターンを微細化し、配線を高微細化できるセ
ラミック多層、薄膜多層混成の多層配線基板が得られ
る。さらに、上述の配線を高密度化,薄膜配線パターン
の微細化は、LSI等の電子部品を基板上に搭載できる
こととなり、LSI間を接続する配線長を著しく低減で
き、特に基板配線での信号遅延が問題となる大形計算機
においては、性能向上に顕著な効果を有するものであ
る。As described above in detail, according to the present invention, the warp of the ceramic multi-layer substrate, which is an essential defect of the ceramic multi-layer substrate, which occurs during sintering is removed, the exposed surface is made flat, and the pattern accuracy is improved. Accuracy, wiring density is high, and since the raw material of the ceramic multilayer substrate is particles, the irregularities on the surface and the cavities due to residual holes are removed,
It is possible to obtain a ceramic multi-layer / thin-film multi-layer hybrid multi-layer wiring board that can miniaturize the thin-film wiring pattern and highly miniaturize the wiring. Furthermore, the above-mentioned high-density wiring and miniaturization of thin-film wiring patterns enable electronic components such as LSIs to be mounted on a board, and the wiring length for connecting LSIs can be significantly reduced. In particular, signal delay in board wiring In a large-sized computer where is a problem, it has a remarkable effect on the performance improvement.
【図1】本発明の一実施例に係る多層配線基板の断面図
と製造工程を示す説明図である。FIG. 1 is a cross-sectional view of a multilayer wiring board according to an embodiment of the present invention and an explanatory view showing a manufacturing process.
1 セラミック多層配線基板 2 スルーホールパ−タン 3 導体パ−タン 4 入出力ピンパッド 5 ボイド 6 凹み 7 金属被膜層 8 ガラス層 1 Ceramic Multilayer Wiring Board 2 Through Hole Pattern 3 Conductor Pattern 4 Input / Output Pin Pad 5 Void 6 Recess 7 Metal Coating Layer 8 Glass Layer
Claims (4)
層配線を有するセラミック基板上に薄膜配線パタ−ンを
形成してなる多層配線基板において、 少なくとも薄膜が形成される側の前記セラミック基板上
に研削により削除されても配線機能を保持しうるような
厚さに形成された導体パタ−ンを備えたスル−ホ−ルパ
タ−ンと、 該スル−ホ−ルパタ−ンを平面研削し導体パタ−ンを露
出し、露出した該導体パタ−ン上にあとのガラス層形成
の際酸化しない金属を被覆した金属被膜層と、 少なくとも前記金属被膜層を含む前記セラミック基板表
面の全面を被覆し、被覆後平面研削により該金属被膜層
を露出させたガラス層とを設けたことを特徴とする多層
配線基板。1. A multilayer wiring board comprising a ceramic substrate having inner layer wiring for connecting front and back surfaces in a thickness direction of the substrate, and a thin film wiring pattern formed on the ceramic substrate. A through hole pattern having a conductor pattern formed to have a thickness capable of retaining a wiring function even if the through hole pattern is removed by grinding on a substrate, and the through hole pattern is surface ground. And exposing the conductor pattern, and covering the exposed conductor pattern with a metal coating layer coated with a metal that does not oxidize during the subsequent glass layer formation, and the entire surface of the ceramic substrate including at least the metal coating layer. A multi-layer wiring board, which is provided with a glass layer, the glass layer being coated with the metal coating layer exposed by surface grinding.
タングステンまたはモリブデンもしくはこれらの複合材
料を用い、金属被膜層は、少なくとも金を用いて形成し
たことを特徴とする請求項1記載の多層配線基板。2. The multi-layer wiring according to claim 1, wherein the pad material of the conductor pattern is at least tungsten or molybdenum or a composite material thereof, and the metal coating layer is at least gold. substrate.
金属被膜層は、ニッケルおよび金の二重構造とし形成し
たことを特徴とする請求項1記載の多層配線基板。3. The conductive pattern pad material is copper,
2. The multilayer wiring board according to claim 1, wherein the metal coating layer has a double structure of nickel and gold.
スの軟化する温度で熱処理を行い、軟化ガラス層を形成
したこと特徴とする請求項1記載の多層配線基板。4. The multilayer wiring board according to claim 1, wherein the glass layer with the metal coating layer exposed is heat-treated at a temperature at which the glass softens to form a softened glass layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21145792A JPH0661648A (en) | 1992-08-07 | 1992-08-07 | Multilayer wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21145792A JPH0661648A (en) | 1992-08-07 | 1992-08-07 | Multilayer wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0661648A true JPH0661648A (en) | 1994-03-04 |
Family
ID=16606260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21145792A Pending JPH0661648A (en) | 1992-08-07 | 1992-08-07 | Multilayer wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0661648A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6217990B1 (en) | 1997-05-07 | 2001-04-17 | Denso Corporation | Multilayer circuit board having no local warp on mounting surface thereof |
EP1265467A2 (en) | 2001-06-07 | 2002-12-11 | Ngk Insulators, Ltd. | Multilayer board having precise perforations and circuit substrate having precise through-holes |
-
1992
- 1992-08-07 JP JP21145792A patent/JPH0661648A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6217990B1 (en) | 1997-05-07 | 2001-04-17 | Denso Corporation | Multilayer circuit board having no local warp on mounting surface thereof |
EP1265467A2 (en) | 2001-06-07 | 2002-12-11 | Ngk Insulators, Ltd. | Multilayer board having precise perforations and circuit substrate having precise through-holes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3026465B2 (en) | Ceramic thin film hybrid wiring board and manufacturing method | |
JPS63358A (en) | Low permittivity material for manufacture of subminiature electronic device | |
KR20020070483A (en) | Method of manufacturing ceramic multi-layer substrate, and unbaked composite laminated body | |
JP2757574B2 (en) | Method for manufacturing low dielectric constant hybrid multilayer ceramic wiring board | |
JP3335970B2 (en) | Manufacturing method of glass ceramic substrate | |
JPH0661648A (en) | Multilayer wiring board | |
JP3231987B2 (en) | Method for manufacturing multilayer ceramic circuit board | |
EP1189495B1 (en) | Method of manufacturing multilayer ceramic substrate | |
JPH04196391A (en) | Wiring board and electronic device | |
JPH0818236A (en) | Method for manufacturing layered ceramic circuit board | |
JP2001342073A (en) | Manufacturing method of glass ceramic substrate | |
JP3909189B2 (en) | Manufacturing method of glass ceramic substrate | |
JP3559310B2 (en) | Manufacturing method of multilayer ceramic circuit board | |
JPH0417392A (en) | Manufacture of multilayer ceramic wiring board | |
JPH066015A (en) | Manufacture of glass ceramic multilayer wiring substrate | |
JP2004146701A (en) | Method for manufacturing glass ceramic substrate | |
JPS63307797A (en) | Multilayer interconnection substrate and manufacture thereof | |
JP2004288664A (en) | Method for manufacturing glass ceramic substrate | |
JP3850243B2 (en) | Manufacturing method of glass ceramic substrate | |
JPH0590753A (en) | Ceramic wiring board with projecting through-holes | |
JP2001284479A (en) | Manufacturing method of glass ceramic board | |
JP3591770B2 (en) | Au conductor paste and method for manufacturing glass ceramic circuit board | |
JP3872325B2 (en) | Manufacturing method of glass ceramic substrate | |
JP2002009438A (en) | Manufacturing method for glass ceramic substrate | |
JP3909192B2 (en) | Manufacturing method of glass ceramic substrate |