JPH0590753A - Ceramic wiring board with projecting through-holes - Google Patents

Ceramic wiring board with projecting through-holes

Info

Publication number
JPH0590753A
JPH0590753A JP3250885A JP25088591A JPH0590753A JP H0590753 A JPH0590753 A JP H0590753A JP 3250885 A JP3250885 A JP 3250885A JP 25088591 A JP25088591 A JP 25088591A JP H0590753 A JPH0590753 A JP H0590753A
Authority
JP
Japan
Prior art keywords
ceramic
exposed
wiring board
holes
ceramic wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3250885A
Other languages
Japanese (ja)
Inventor
Shosaku Ishihara
昌作 石原
Takeshi Fujita
毅 藤田
Takashi Kuroki
喬 黒木
Norihiro Ami
徳宏 阿美
Tatsuji Noma
辰次 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3250885A priority Critical patent/JPH0590753A/en
Publication of JPH0590753A publication Critical patent/JPH0590753A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the ceramic section not to be exposed even when the conductor metal of through-hole sections is exposed on the grinding surface during grinding for glazing by forming all through-holes so as to project from the surface of ceramic board when firing them on the exposed surface of the ceramic wiring board. CONSTITUTION:All through-holes 1 on the exposed surface where a ceramic wiring board is fired are formed so as to project from the surface of board ceramic 4. The contraction amount of conductor paste during firing is controlled to regulate the projection amount by adjusting the grain size of metallic powder of the conductor paste to be filled in the through-holes 1 of which green sheet becomes front/back face when piling up layers. Therefore, when the contraction ratio of the conductor paste is smaller than that of the green sheet, the through- holes 1 are formed to project from the surface 4 corresponding to the difference of contraction ratio. Furthermore, even when the conductor metal of through- hole section is exposed on the grinding surface during grinding for glazing treatment, a ceramic section 2 is not exposed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック配線基板に
係り、特に、その基板表裏面に薄膜を形成するのに適し
たセラミック配線基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic wiring board, and more particularly to a ceramic wiring board suitable for forming thin films on the front and back surfaces of the board.

【0002】[0002]

【従来の技術】セラミック配線基板は、小型化が可能で
信頼性が高いという理由で、半導体チップや小型電子部
品搭載用の基板として用いられ、電子計算機、通信機
器、家電品等に組み込まれている。
2. Description of the Related Art A ceramic wiring board is used as a board for mounting a semiconductor chip or a small electronic component because it can be miniaturized and has high reliability, and is incorporated in a computer, a communication device, a home electric appliance or the like. There is.

【0003】セラミック配線基板のなかでも、グリーン
シートを用いる湿式セラミック配線基板が高密度配線に
有利であるためによく用いられる。この湿式セラミック
配線基板の製造方法は以下のようである。まず、セラミ
ック原料粉末を有機樹脂で結合したセラミック生シート
(以下、グリーンシート)を作製し、続いてグリーンシ
ートに貫通孔を加工した後、導体ペーストを用いて配線
パターンを形成するとともに、各シートの配線パターン
を接続する貫通孔にも導体ペーストを充填する。次に、
このように配線パターンを形成したグリーンシートを所
定枚数積み重ね積層圧着した後、焼成することによって
セラミック配線基板が作製される。
Among the ceramic wiring boards, a wet type ceramic wiring board using a green sheet is often used because it is advantageous for high density wiring. The method of manufacturing this wet ceramic wiring board is as follows. First, a ceramic green sheet (hereinafter referred to as a green sheet) in which ceramic raw material powders are combined with an organic resin is prepared, and then a through hole is formed in the green sheet, and then a wiring pattern is formed using a conductor paste, and each sheet is formed. The conductor paste is also filled in the through holes that connect the wiring patterns. next,
A predetermined number of green sheets having the wiring pattern thus formed are stacked, laminated, pressure-bonded, and then fired to produce a ceramic wiring board.

【0004】続いて、日経エレクトロニクス、1985
年、6月17日、P243〜266「マルチチップ・パ
ッケージを水冷する」にあるように焼成したセラミック
配線基板表裏面に、薄膜法で配線パターンを形成する。
薄膜を形成する場合には表面の平坦性が要求されるた
め、グレーズ処理を行い表面を平滑にする必要がある。
Next, Nikkei Electronics, 1985
On June 17, 2014, a wiring pattern is formed by a thin film method on the front and back surfaces of the ceramic wiring board that has been fired as described in P243 to 266 "Water cooling the multi-chip package".
Since flatness of the surface is required when forming a thin film, it is necessary to perform a glaze treatment to smooth the surface.

【0005】グレーズ処理は、焼成後のセラミック基板
表面にガラス粉末を塗布した後、ガラスが溶融しセラミ
ック基板表面と密着するような温度で加熱処理する。続
いて、加熱処理後のガラス表面には微小な凹凸が存在す
るため、研磨処理を行って表面を平滑にする。この時、
薄膜配線と電気的接続をとれるようセラミック配線基板
表面の貫通孔部分の導体金属が研磨表面にあらわれるよ
うにする。
In the glaze treatment, glass powder is applied to the surface of the ceramic substrate after firing, and then heat treatment is performed at a temperature at which the glass melts and comes into close contact with the surface of the ceramic substrate. Subsequently, since minute irregularities are present on the glass surface after the heat treatment, polishing treatment is performed to smooth the surface. At this time,
The conductive metal in the through-hole portion on the surface of the ceramic wiring board is exposed on the polished surface so that the thin film wiring can be electrically connected.

【0006】[0006]

【発明が解決しようとする課題】しかし上記従来技術
は、セラミック配線基板表面の微小なうねりについて全
く配慮されていないため、研磨後でも完全に平滑な面が
得られないという問題があった。
However, the above-mentioned prior art has a problem in that a perfectly smooth surface cannot be obtained even after polishing, since no consideration is given to minute undulations on the surface of the ceramic wiring board.

【0007】すなわち、焼成後のセラミック配線基板断
面は、貫通孔部分の導体金属部がセラミック部よりもわ
ずかに突出しているのみであるため、グレーズ処理後の
研磨で貫通孔部分の導体金属が研磨表面に現れるように
した際に、部分的にセラミックが露出する。これを、図
1に示す。露出したセラミック面には、ボイドが存在す
るため、薄膜形成面としては不適当である。そこでこれ
を避けるために、グレーズ処理前にセラミック配線基板
を研削・研磨して平坦にする方法がとられる。このよう
な方法をとる場合には、セラミック配線基板を研削・研
磨した後めっきを行い貫通孔部分を研削・研磨より盛り
上げる必要がある。
That is, in the cross section of the ceramic wiring board after firing, the conductor metal portion of the through hole portion only slightly protrudes from the ceramic portion, and therefore the conductor metal portion of the through hole portion is polished by the polishing after the glaze treatment. When exposed to the surface, the ceramic is partially exposed. This is shown in FIG. Since the exposed ceramic surface has voids, it is unsuitable as a thin film forming surface. Therefore, in order to avoid this, a method of grinding and polishing the ceramic wiring substrate to make it flat before the glaze treatment is adopted. When such a method is adopted, it is necessary to grind and polish the ceramic wiring substrate and then perform plating to raise the through-hole portion by grinding and polishing.

【0008】しかし、めっきをした場合には単に工程数
の増加にとどまらず、めっき材質からグレーズ方法が制
約を受ける、グレーズ処理後の研磨表面に現れる貫通孔
部上のめっき部分は貫通孔よりめっき厚さ分だけ太るた
め貫通孔部分の微細化が妨げられる等の問題が発生す
る。
However, when plating is performed, the number of steps is not only increased, but the glaze method is restricted by the plating material, and the plated portion on the through-hole portion appearing on the polished surface after the glaze treatment is plated by the through-hole. Since the thickness is increased by the thickness, there arises a problem that the miniaturization of the through hole portion is prevented.

【0009】本発明の目的は、グレージングに適したセ
ラミック配線基板を提供することにある。
An object of the present invention is to provide a ceramic wiring board suitable for glazing.

【0010】[0010]

【課題を解決するための手段】上記目的は、焼成した時
のセラミック配線基板において、基板の露出面にある全
ての貫通孔が、基板のセラミック面に接する仮想平面か
ら突出するような形状とすることによって達成される。
The above object is to provide a ceramic wiring board that is fired so that all the through holes on the exposed surface of the board project from an imaginary plane in contact with the ceramic surface of the board. Is achieved by

【0011】[0011]

【作用】焼成時のセラミック配線基板の露出面にある全
ての貫通孔が基板セラミック面に接する仮想平面から突
出するような形状となっていれば、グレーズ処理後の研
磨によっても基板のセラミック面が露出することはな
い。これを、図2に示す。
If the through-holes on the exposed surface of the ceramic wiring board during firing are shaped so as to project from the virtual plane in contact with the ceramic surface of the substrate, the ceramic surface of the substrate will remain even after polishing after the glaze treatment. Never exposed. This is shown in FIG.

【0012】ここで、焼成時のセラミック配線基板の露
出面にある全ての貫通孔が基板セラミック仮想面より突
出するような形状とするには、次のようにすればよい。
それは、積層時に表裏面となるグリーンシートの貫通孔
内に充填する導体ペーストの金属粉末の粒度を調節する
ことによって、焼成時の貫通孔内の導体ペーストの収縮
量は制御され、同時に突出量も制御される。すなわち、
貫通孔内の導体ペーストの収縮率がグリーンシートの収
縮率と同じであれば、基板セラミック面と貫通孔表面は
同一面となる。導体ペーストの収縮率がグリーンシート
の収縮率より小さい場合には、収縮率差に応じて貫通孔
が基板セラミック面より突出する形状となる。反対に、
導体ペーストの収縮率がグリーンシートの収縮率より大
きい場合には、貫通孔が基板セラミック面よりへこんだ
形状となる。
Here, in order to form a shape in which all the through holes on the exposed surface of the ceramic wiring board during firing protrude from the virtual surface of the substrate ceramic, the following may be done.
This is because the shrinkage amount of the conductor paste in the through holes during firing is controlled by adjusting the particle size of the metal powder of the conductor paste filled in the through holes of the green sheets that are the front and back surfaces during stacking, and at the same time the protrusion amount is also controlled. Controlled. That is,
If the contraction rate of the conductor paste in the through hole is the same as that of the green sheet, the substrate ceramic surface and the surface of the through hole are the same surface. When the contraction rate of the conductor paste is smaller than that of the green sheet, the through holes have a shape protruding from the substrate ceramic surface in accordance with the difference in contraction rate. Conversely,
When the contraction rate of the conductor paste is larger than that of the green sheet, the through holes have a shape recessed from the ceramic surface of the substrate.

【0013】これらのなかで貫通孔が基板セラミック面
より突出した形状のセラミック配線基板は、グレーズ処
理後の研磨で貫通孔部分の導体金属が研磨表面にあらわ
れるようにした時もセラミック部が露出しないため、薄
膜形成に適する。
Among these, in the ceramic wiring board in which the through hole is projected from the ceramic surface of the substrate, the ceramic portion is not exposed even when the conductor metal of the through hole portion is exposed on the polished surface by polishing after the glaze treatment. Therefore, it is suitable for thin film formation.

【0014】[0014]

【実施例】<実施例1>ムライト系材料のセラミック配
線基板を作製する場合について説明する。セラミック粉
末として、粒子径が約2.5μmのムライト微粉末を7
2wt%、焼結助剤としてアルミナ、シリカ、マグネシ
アを28wt%、有機バインダとしてポリビニルブチラ
ールおよび可塑剤としてブチルフタリル・ブチルグリコ
レートを上記セラミック粉末に対してそれぞれ6g、2
g、さらにトリクロルエチレン、テトラクロルエチレ
ン、ブチルアルコールから成るアゼオトロープ組成の溶
剤を加えあわせ、ボールミルにて十分混合し、セラミッ
ク粉末が均一に分散したスラリを作る。続いて、スラリ
を撹拌しながら減圧中で気泡分を脱気した後、ドクター
ブレイド型キャスチング装置を用いて、厚さ0.25m
mのグリーンシートを作製した。このようにして作製し
たグリーンシートの外形を切断し所定寸法とする。さら
に上下間の配線の導通をとるための貫通孔を超硬製ピン
を配置した打ち抜き金型を用いて穿孔する。
EXAMPLES Example 1 A case where a ceramic wiring board made of a mullite material is manufactured will be described. As the ceramic powder, mullite fine powder having a particle diameter of about 2.5 μm is used.
2 wt%, alumina, silica, magnesia as a sintering aid 28 wt%, polyvinyl butyral as an organic binder and butylphthalyl butyl glycolate as a plasticizer with respect to the above ceramic powder, 6 g and 2 respectively.
g, and a solvent of azeotrope composition consisting of trichloroethylene, tetrachloroethylene and butyl alcohol, and well mixed in a ball mill to prepare a slurry in which ceramic powder is uniformly dispersed. Subsequently, after degassing air bubbles while stirring the slurry under reduced pressure, a doctor blade type casting device was used to obtain a thickness of 0.25 m.
m green sheets were produced. The outer shape of the green sheet produced in this manner is cut into a predetermined size. Further, a through hole for establishing electrical continuity between the upper and lower wirings is formed using a punching die having a cemented carbide pin.

【0015】次に、配線パターン形成用のタングステン
ペーストの作製法について説明する。始めに、表面に露
出しない内層の貫通孔および配線パターン用のタングス
テンペーストの作製法について述べる。平均粒径が2μ
mと0.5μmを8:2の割合で混ぜたタングステン微
粉末を80g、焼結助剤としてガラス粉末を2g、エチ
ルセルロースを3g、有機溶剤としてジエチレングリコ
ールを15g加え合わせ、らいかい機および三本ロール
で混練した後、n−ブチルカルビトールアセテートを加
えて粘度調製をする。(以下タングステンペースト1)
同様に、表面に露出する貫通孔用のタングステンペース
トを、平均粒径が2μmと0.5μmを9:1の割合で
混ぜたタングステン微粉末を80g、その他はタングス
テンペースト1と同様の方法にて作製した。(以下タン
グステンペースト2)続いて、スクリーン印刷法で、タ
ングステンペースート1,2を用い、貫通孔加工したグ
リーンシートの貫通孔にペーストを充填するとともに、
グリーンシート表面に配線パターンを形成する。ここ
で、内層となるグリーンシートの貫通孔にはタングステ
ンペースート1を、また、表裏となるグリーンシートの
貫通孔にはタングステンペースート2を充填した。次
に、このように所定の配線パターンを形成したグリーン
シートを積み重ね、温度:130℃、圧力:100kg
/cm2でグリーンシートを互いに接着し一体化する。
続いて、焼成工程にはいる。焼成は、セラミック生配線
基板を所定の台板上に置き、モリブデンを発熱体とする
電気炉を用い、窒素、水素、水蒸気の混合ガス雰囲気中
で、所定温度まで昇温して100mm角のセラミック配
線基板を作製した。
Next, a method for producing a tungsten paste for forming a wiring pattern will be described. First, a method of manufacturing a through-hole in the inner layer not exposed on the surface and a tungsten paste for a wiring pattern will be described. Average particle size is 2μ
80g tungsten fine powder in which m and 0.5μm were mixed at a ratio of 8: 2, 2g glass powder as a sintering aid, 3g ethyl cellulose, 15g diethylene glycol as an organic solvent were added together, and a raider and a triple roll After kneading, the viscosity is adjusted by adding n-butyl carbitol acetate. (Tungsten paste 1 below)
Similarly, the tungsten paste for the through-holes exposed on the surface was mixed with 80 μg of tungsten fine powder having an average particle size of 2 μm and 0.5 μm at a ratio of 9: 1. It was made. (Tungsten paste 2) Subsequently, the paste is filled in the through holes of the green sheet that has been subjected to through hole processing by using the tungsten pastes 1 and 2 by the screen printing method.
A wiring pattern is formed on the surface of the green sheet. Here, a tungsten paste 1 was filled in the through holes of the green sheet as the inner layer, and a tungsten paste 2 was filled in the through holes of the front and back green sheets. Next, the green sheets on which the predetermined wiring patterns are formed are stacked, and the temperature is 130 ° C. and the pressure is 100 kg.
The green sheets are adhered to each other and integrated with each other at / cm 2 .
Then, the firing process is started. For firing, a ceramic raw wiring board is placed on a predetermined base plate, an electric furnace using molybdenum as a heating element is used, and the temperature is raised to a predetermined temperature in a mixed gas atmosphere of nitrogen, hydrogen and water vapor, and the ceramic is 100 mm square. A wiring board was produced.

【0016】(比較例1)比較例1が実施例1と異なる
ところは、貫通孔にペーストを充填する際に表裏および
内層となる貫通孔ともタングステンペースート1を使用
する点だけで、その他は実施例1と同様の方法にてセラ
ミック配線基板を作製した。
(Comparative Example 1) Comparative Example 1 is different from Example 1 only in that tungsten paste 1 is used for both the front and back sides and the inner layer when filling the paste into the paste. A ceramic wiring board was produced in the same manner as in Example 1.

【0017】このようにして作製した比較例1と実施例
1のセラミック配線基板について三次元座標測定機に
て、表面に露出した各々の貫通孔について貫通孔部分の
導体金属のセラミック部からの段差量(+は突出、−は
凹み)、およびセラミック部分全面についての高さ測定
に基いたセラミック面に接する仮想平面からの全貫通孔
の導体金属表面の突出量(+は突出、−は凹み)を測定
(図3)した。結果は以下の通りであった。
With respect to each of the ceramic wiring boards of Comparative Example 1 and Example 1 thus produced, the step difference from the ceramic portion of the conductor metal in the through hole portion was measured for each through hole exposed on the surface by the three-dimensional coordinate measuring machine. Amount (+ is a protrusion, -is a dent), and the amount of protrusion of the conductor metal surface of all through-holes from an imaginary plane in contact with the ceramic surface based on the height measurement on the entire surface of the ceramic part (+ is a protrusion, − is a dent) Was measured (FIG. 3). The results were as follows.

【0018】[0018]

【表1】 [Table 1]

【0019】続いて、比較例1と実施例1で作製したセ
ラミック配線基板の表面のグレーズ処理を行った。グレ
ーズ用のガラスには、中性および弱還元性で使用可能な
組成のものを用い、セラミック配線基板表面にガラス粉
末を塗布した後、電気炉を用いてガラス粉末を溶融させ
セラミック配線基板表面にガラス皮膜を形成した。続い
て、加熱処理後のガラス表面の微小な凹凸を無くし薄膜
形成に適するように表面を研磨して平滑(表面粗度:
0.2μm以下)にすると同時に、貫通孔部分の導体金
属が研磨したガラス表面に現れるように、研磨するガラ
ス量を調節した。このようにグレーズ処理を行った比較
例1と実施例1で作製したセラミック配線基板の研磨後
の表面について、導体金属部分を除いた面積に占める
(グレーズガラス以外の)セラミック配線基板のセラミ
ック部の露出割合について電子顕微鏡を用いて調べた。
結果、セラミック部露出面積割合は実施例1では0%、
比較例1では35%であった。
Subsequently, the surface of the ceramic wiring boards produced in Comparative Example 1 and Example 1 was subjected to glaze treatment. For the glaze glass, use a neutral and weakly reducing composition that can be used.After applying glass powder to the surface of the ceramic wiring board, use an electric furnace to melt the glass powder and apply it to the surface of the ceramic wiring board. A glass film was formed. Then, the surface of the glass after the heat treatment is smoothed by removing fine irregularities so as to be suitable for thin film formation (surface roughness:
(0.2 μm or less), and at the same time, the amount of glass to be polished was adjusted so that the conductive metal in the through-hole portion appeared on the polished glass surface. Regarding the polished surface of the ceramic wiring boards produced in Comparative Example 1 and Example 1 thus subjected to the glaze treatment, the ceramic portion of the ceramic wiring board (other than glaze glass) occupies the area excluding the conductor metal portion. The exposure rate was examined using an electron microscope.
As a result, the exposed area ratio of the ceramic part was 0% in Example 1,
In Comparative Example 1, it was 35%.

【0020】実施例1で表面に露出する貫通孔の充填に
は、導体ペースト用のタングステン微粉末2μmと0.
5μmを9:1としたが、この比率を種々変えた場合に
は、段差量、突出量、セラミック部露出面積割合は比率
に応じて変化する。これを図4に示す。
The filling of the through-holes exposed on the surface in Example 1 was carried out by using 2 μm of tungsten fine powder for the conductor paste and 0.
Although 5 μm was set to 9: 1, when the ratio is variously changed, the step amount, the protrusion amount, and the exposed ceramic area ratio change according to the ratio. This is shown in FIG.

【0021】<実施例2>セラミック配線基板の材料
を、実施例1のムライト系からアルミナ系に変えた場合
について述べる。
<Embodiment 2> A case where the material of the ceramic wiring board is changed from the mullite-based material of Embodiment 1 to an alumina-based material will be described.

【0022】セラミック粉末として、粒子径が数μm以
下のアルミナ微粉末90wt%、焼結助剤としてコージ
エライト組成となるようなタルクとクレイの混合粉末1
0wt%を用いた。また、配線パターン形成用のタング
ステンペーストには、表面に露出しない内層の貫通孔お
よび配線パターン用の金属材料粉末には、平均粒径が2
μmと0.5μmを8.5:1.5の割合で混ぜたタン
グステン微粉末を、また表裏となる貫通孔用には平均粒
径が2μmと0.5μmを9.5:0.5の割合で混ぜ
たタングステン微粉末を用い、その他は実施例1および
比較例1と同様の方法で、貫通孔部の導体金属が突出し
たセラミック配線基板(実施例2)および貫通孔部の導
体金属が突出していないセラミック配線基板(比較例
2)を作製した。続いて同様に、これらのセラミック配
線基板について、貫通孔部分の導体金属のセラミック部
からの段差量、および、セラミック面に接する仮想平面
からの全貫通孔の導体金属表面の突出量を測定した。そ
の結果、段差量は実施例2では30±3μm、比較例2
では0±3μm、一方、突出量は実施例2では13±3
μm、比較例2では−17±3μmであった。
90 wt% of alumina fine powder having a particle diameter of several μm or less as a ceramic powder, and a mixed powder of talc and clay 1 having a cordierite composition as a sintering aid.
0 wt% was used. Further, in the tungsten paste for forming the wiring pattern, the through hole of the inner layer not exposed on the surface and the metal material powder for the wiring pattern have an average particle diameter of 2
Tungsten fine powder in which μm and 0.5 μm were mixed in a ratio of 8.5: 1.5, and for the through holes to be the front and back, the average particle size was 2 μm and 0.5 μm of 9.5: 0.5. Using the tungsten fine powder mixed in a ratio, the same procedure as in Example 1 and Comparative Example 1 was performed except that the ceramic wiring substrate (Example 2) in which the conductor metal in the through hole was projected and the conductor metal in the through hole were formed. A ceramic wiring board (Comparative Example 2) which did not project was produced. Then, similarly, with respect to these ceramic wiring boards, the step amount of the conductor metal in the through hole portion from the ceramic portion and the protrusion amount of the conductor metal surface of all the through holes from the virtual plane in contact with the ceramic surface were measured. As a result, the amount of step difference is 30 ± 3 μm in Example 2, and Comparative Example 2
Is 0 ± 3 μm, while the protrusion amount is 13 ± 3 in the second embodiment.
μm, and in Comparative Example 2 it was -17 ± 3 μm.

【0023】次に、実施例1と同様にグレーズ処理を行
い実施例2と比較例2で作製したセラミック配線基板の
研磨後の表面について、導体金属部分を除いた面積に占
めるセラミック配線基板のセラミック部の露出割合につ
いて電子顕微鏡を用いて調べた。その結果、セラミック
部露出面積割合は実施例2では0%、比較例2では25
%であった。
Then, the same glaze treatment as in Example 1 was performed, and the ceramic surface of the ceramic wiring board after polishing the ceramic wiring boards produced in Example 2 and Comparative Example 2 occupied the area excluding the conductor metal portion. The exposure ratio of the area was examined using an electron microscope. As a result, the exposed area ratio of the ceramic part was 0% in Example 2 and 25 in Comparative Example 2.
%Met.

【0024】このように、表面に露出する貫通孔と表面
に露出しない内層の貫通孔に用いる配線パターン形成用
の導体金属粉末の粒度を調製することによって、焼成後
のセラミック配線基板の表面に露出する貫通孔部の導体
金属表面のセラミック部分からの段差量の調整ができ、
突出形状やへこみ形状とすることが可能で、突出形状と
することによってグレージングに適したセラミック配線
基板とすることができることがわかる。さらに、このこ
とはグリーンシート法を用いるすべてのセラミック配線
基板に有効で、セラミック材料、導体材料の種類とは無
関係であることは明らかである。
In this way, by adjusting the grain size of the conductive metal powder for forming the wiring pattern used for the through holes exposed on the surface and the through holes of the inner layer not exposed on the surface, the exposed metal is exposed on the surface of the ceramic wiring substrate after firing. It is possible to adjust the level difference from the ceramic part of the conductor metal surface of the through hole
It can be seen that it is possible to form a protrusion shape or a dent shape, and by forming the protrusion shape, a ceramic wiring board suitable for glazing can be obtained. Furthermore, it is clear that this is effective for all ceramic wiring boards using the green sheet method and is independent of the types of ceramic materials and conductor materials.

【0025】[0025]

【発明の効果】本発明によれば、焼成時のセラミック配
線基板の露出面にある全ての貫通孔が基板セラミック面
より突出するような形状とすることによって、グレーズ
処理後の研磨で貫通孔部分の導体金属が研磨表面にあら
われるようにした時もセラミック部が露出しないため、
薄膜形成に適したセラミック配線基板が得られる。
According to the present invention, all the through holes on the exposed surface of the ceramic wiring board during firing are formed to project from the ceramic surface of the substrate, so that the through hole portion can be formed by polishing after the glaze treatment. Since the ceramic part is not exposed even when the conductor metal of is exposed on the polished surface,
A ceramic wiring board suitable for thin film formation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるセラミック配線基板をグレーズ処
理した時の表面の説明図、
FIG. 1 is an explanatory view of a surface of a ceramic wiring board according to the present invention when it is subjected to glaze treatment,

【図2】従来技術によるセラミック配線基板をグレーズ
処理した時の説明図、
FIG. 2 is an explanatory view when a ceramic wiring board according to a conventional technique is subjected to glaze processing,

【図3】セラミック配線基板表面に露出した貫通孔の段
差量および突出量の説明図、
FIG. 3 is an explanatory diagram of a step amount and a protrusion amount of a through hole exposed on the surface of a ceramic wiring board;

【図4】表面に露出する貫通孔充填用導体ペーストのタ
ングステン微粉末の粒径の比率を変えた時の、段差量、
突出量、セラミック部露出面積割合を示す特性図。
FIG. 4 is a step amount when the ratio of the particle size of the tungsten fine powder of the conductor paste for filling the through holes exposed on the surface is changed,
FIG. 6 is a characteristic diagram showing the amount of protrusion and the exposed area ratio of the ceramic portion.

【符号の説明】[Explanation of symbols]

1…貫通孔導体金属、2…セラミック配線基板のセラミ
ック部、3…グレーズガラス、4…仮想平面、5…貫通
孔の突出量、6…貫通孔の段差量。
1 ... Through-hole conductor metal, 2 ... Ceramic portion of ceramic wiring board, 3 ... Glaze glass, 4 ... Virtual plane, 5 ... Through hole protrusion amount, 6 ... Through hole step amount.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿美 徳宏 横浜市戸塚区吉田町292番地株式会社日立 製作所生産技術研究所内 (72)発明者 野間 辰次 横浜市戸塚区吉田町292番地株式会社日立 製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norihiro Ami, 292 Yoshida-cho, Totsuka-ku, Yokohama City, Hitachi, Ltd., Production Engineering Laboratory (72) Inventor Tatsuji Noma, 292 Yoshida-cho, Totsuka-ku, Yokohama Hitachi, Ltd. Production Technology Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミックグリーンシートに金属粉末にて
配線パターンを形成し、このグリーンシートを複数枚積
層して焼成するセラミック配線基板において、基板の露
出面にある全ての貫通孔が基板セラミック面から突出し
ていることを特徴とするセラミック配線基板。
1. A ceramic wiring board in which a wiring pattern is formed on a ceramic green sheet with metal powder, and a plurality of green sheets are laminated and fired. All through holes on the exposed surface of the substrate are formed from the substrate ceramic surface. A ceramic wiring board characterized by being projected.
【請求項2】セラミックグリーンシートに金属粉末で配
線パターンを形成し、このグリーンシートを複数枚積層
して焼成した貫通孔がセラミック面より突出した基板の
表裏面をグレーズ処理したセラミック配線基板におい
て、グレーズ面に貫通孔部分の導体金属が露出している
ことを特徴とするセラミック配線基板。
2. A ceramic wiring board in which a wiring pattern is formed on a ceramic green sheet with metal powder, a plurality of green sheets are laminated and fired, and the front and back surfaces of a substrate having through holes protruding from the ceramic surface are subjected to a glaze treatment. A ceramic wiring board, characterized in that the conductor metal of the through hole is exposed on the glaze surface.
JP3250885A 1991-09-30 1991-09-30 Ceramic wiring board with projecting through-holes Pending JPH0590753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3250885A JPH0590753A (en) 1991-09-30 1991-09-30 Ceramic wiring board with projecting through-holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3250885A JPH0590753A (en) 1991-09-30 1991-09-30 Ceramic wiring board with projecting through-holes

Publications (1)

Publication Number Publication Date
JPH0590753A true JPH0590753A (en) 1993-04-09

Family

ID=17214470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3250885A Pending JPH0590753A (en) 1991-09-30 1991-09-30 Ceramic wiring board with projecting through-holes

Country Status (1)

Country Link
JP (1) JPH0590753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126322A (en) * 2003-09-29 2005-05-19 Ngk Spark Plug Co Ltd Ceramic substrate for thin film electronic component, method for producing the same, and thin film electronic component employing the substrate
JP2005129918A (en) * 2003-09-29 2005-05-19 Ngk Spark Plug Co Ltd Ceramic substrate for thin film electronic component and thin film electronic component using this

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126322A (en) * 2003-09-29 2005-05-19 Ngk Spark Plug Co Ltd Ceramic substrate for thin film electronic component, method for producing the same, and thin film electronic component employing the substrate
JP2005129918A (en) * 2003-09-29 2005-05-19 Ngk Spark Plug Co Ltd Ceramic substrate for thin film electronic component and thin film electronic component using this

Similar Documents

Publication Publication Date Title
JP4507012B2 (en) Multilayer ceramic substrate
JPS643355B2 (en)
JPS6273799A (en) Multilayer ceramic circuit substrate
JP2001060767A (en) Method for manufacturing ceramic board and unfired ceramic board
JP3026465B2 (en) Ceramic thin film hybrid wiring board and manufacturing method
JPH0811696B2 (en) Multi-layer glass ceramic substrate and manufacturing method thereof
JP3019138B2 (en) Silver-based conductive paste and multilayer ceramic circuit board using the same
JPH0590753A (en) Ceramic wiring board with projecting through-holes
JPH0613755A (en) Ceramic multilayer wiring board and manufacture thereof
JP2007221115A (en) Manufacturing method of conductor paste and multilayer ceramic substrate
JP2001342073A (en) Manufacturing method of glass ceramic substrate
JPH0417392A (en) Manufacture of multilayer ceramic wiring board
JPH0544840B2 (en)
JP3872289B2 (en) Manufacturing method of glass ceramic substrate
JPH0828579B2 (en) Method for manufacturing ceramic multilayer substrate
JP3183031B2 (en) Manufacturing method of ceramic substrate
JP3748400B2 (en) Manufacturing method of glass ceramic substrate
JPH04196391A (en) Wiring board and electronic device
JPH0250494A (en) Manufacture of laminated ceramic substrate
JP2002290040A (en) Method of manufacturing ceramic board
JP3850243B2 (en) Manufacturing method of glass ceramic substrate
EP0269063A2 (en) Mullite ceramic multi-layered substrate and process for producing the same
JP2005136303A (en) Manufacturing method of multilayer ceramic substrate
JP2002009438A (en) Manufacturing method for glass ceramic substrate
JP3872325B2 (en) Manufacturing method of glass ceramic substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term