JPH0661525A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPH0661525A
JPH0661525A JP21122992A JP21122992A JPH0661525A JP H0661525 A JPH0661525 A JP H0661525A JP 21122992 A JP21122992 A JP 21122992A JP 21122992 A JP21122992 A JP 21122992A JP H0661525 A JPH0661525 A JP H0661525A
Authority
JP
Japan
Prior art keywords
crystal
substrate
layer
light emitting
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21122992A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ishitani
善博 石谷
Shigekazu Minagawa
重量 皆川
Toshiaki Tanaka
俊明 田中
Shinichiro Yano
振一郎 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21122992A priority Critical patent/JPH0661525A/en
Publication of JPH0661525A publication Critical patent/JPH0661525A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the band-gap energy(Eg) of a light emitting diode so as to shorten the light emitting wavelength of the diode by using a GaAsxP1-x substrate crystal Which is grown on a GaAs substrate by gradually increasing phosphor content of the substrate and growing an A GaInP crystal lattice- matched to the substrate crystal. CONSTITUTION:At the time of epitaxially growing an AlGaInP crystal, a layer having a constant composition of GaAs1-xPx grown on a GaAs or GAP substrate crystal with a graded layer 4, in which the (x) of a GaAs1-xPx (0<x<=1) crystal is gradually changed so as to relieve a difference in lattice constant, in between is used as a substrate 8. As a result, a composition GaxIn1-xP (X>0.52) lattice- matched to the substrate 8, namely, an active layer which is >1.92cV in Eg and (6.45nm in light emitting wavelength can be used. The wavelength of the light emitted from the AlGaInP grown on the GaAsxP1-x substrate crystal is shorter than that of the light emitted from AlGaInP grown on a GaAs substrate. Therefore, light having a shorter wavelength can be obtained without adding Al to the active layer of a DH structure in which the active layer is put between layers having large band-gap energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は屋内外における文字・図
形表示板、自動車の方向指示器等に使用される発光ダイ
オードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-emitting diode used for indoor / outdoor character / graphic display boards, automobile direction indicators, and the like.

【0002】[0002]

【従来の技術】従来のp−AlGaInP/u−GaI
nP/n−AlGaInP DH構造を有す発光ダイオ
ードはGaAs基板上に形成されている。GaAs基板
結晶と格子整合するGaInPの組成はGa0.52In
0.48Pであって、Eg=1.92eVである。従って波
長645nm以下の発光波長を持つ発光ダイオードを得
るには、図2に示すように、活性層にアルミニウムを添
加して(AlXGa1-X0.52In0.48Pとし、Egのよ
り大きな活性層を有する素子を作る必要が有った(例え
ば R.M.Fletcherら J.Elec.Mat 20 〔12〕 1125-1130
(1991);H.SugawaraらThe 22nd Conf.Sol. Stat. Mat.,
Ext.Abstracts 1175-1176 (1990))。しかしAl濃度の
増加とともに発光強度が急激に減少するので高輝度の発
光ダイオードを得ることに問題が有る。
2. Description of the Related Art Conventional p-AlGaInP / u-GaI
A light emitting diode having an nP / n-AlGaInP DH structure is formed on a GaAs substrate. The composition of GaInP that lattice-matches the GaAs substrate crystal is Ga 0.52 In
It is 0.48 P and Eg = 1.92 eV. Therefore, in order to obtain a light emitting diode having an emission wavelength of 645 nm or less, as shown in FIG. 2, aluminum is added to the active layer to form (Al X Ga 1-X ) 0.52 In 0.48 P, and a larger Eg activity is obtained. It was necessary to make devices with layers (e.g. RMFletcher et al. J. Elec. Mat 20 [12] 1125-1130.
(1991); H. Sugawara et al. The 22nd Conf.Sol. Stat. Mat.,
Ext. Abstracts 1175-1176 (1990)). However, there is a problem in obtaining a high-luminance light emitting diode because the emission intensity sharply decreases as the Al concentration increases.

【0003】[0003]

【発明が解決しようとする課題】波長645nmより短
い高輝度・高効率の発光ダイオードを得るためにはG
XIn1-XP(X>0.52)なる組成の、すなわちE
g>1.92eVなる結晶を用いる。さらに短波長化
を図るために4元混晶AlGaInPを用いる場合、同
一波長を発光するのであれば、できるだけAl濃度が低
いAlGaInPを採用し発光効率の低下を防ぎたい。
そのために、GaAsより格子定数が小さい基板結晶上
にこれと格子整合するGaInP結晶を成長すれば、そ
の組成はGaXIn1-XP(X>0.52)となり、その
組成に応じてEgが大、すなわち発光波長が短くなる。
また、この結晶系では成長条件により長距離秩序構造
が発生し、このためEgが縮小し、従って発光波長が長
くなる。発光波長を短くするには長距離秩序構造の発生
を低減しなくてはならない。一方高輝度の発光を得る
ためには電極とオーミックコンタクトをとる層として電
流がチップ全面に広がるような低抵抗の層を付けなけれ
ばならず、発光を効率よく取りだすためには、この層が
大きなEgを持ち、発光波長における吸収が少ないこと
が必要である。AlGaInP結晶でこの層を構成する
と結晶にさらにAlを添加してEgを大きくしなくては
ならない。しかしAl組成が大きい結晶では、p型のキ
ャリア密度を大きくすることは難しいので、この二つを
同時に満足する結晶が必要となる。また外部量子効率を
上げ発光強度を増加するには、活性層から電極を有す2
つの面方向に放出される光の両方を、結晶による発光の
吸収少なくして取り出す必要がある。
In order to obtain a high-luminance and high-efficiency light emitting diode having a wavelength shorter than 645 nm,
a X In 1-X P (X> 0.52), that is, E
A crystal with g> 1.92 eV is used. When using a quaternary mixed crystal AlGaInP for further shortening the wavelength, if the same wavelength of light is emitted, it is desirable to use AlGaInP with the lowest Al concentration as possible to prevent a decrease in light emission efficiency.
Therefore, if a GaInP crystal lattice-matched with GaAs is grown on a substrate crystal having a lattice constant smaller than that of GaAs, the composition becomes Ga X In 1 -X P (X> 0.52), and Eg becomes Eg Is large, that is, the emission wavelength is short.
In addition, in this crystal system, a long-range ordered structure is generated depending on the growth conditions, so that Eg is reduced and therefore the emission wavelength is lengthened. In order to shorten the emission wavelength, it is necessary to reduce the occurrence of long-range ordered structure. On the other hand, in order to obtain high-luminance light emission, it is necessary to attach a low resistance layer as a layer that makes ohmic contact with the electrode so that the current spreads over the entire surface of the chip, and this layer is large in order to take out light emission efficiently. It must have Eg and have low absorption at the emission wavelength. If this layer is made of AlGaInP crystal, Al must be added to the crystal to increase Eg. However, since it is difficult to increase the p-type carrier density in a crystal having a large Al composition, a crystal that satisfies both of these requirements is required. In order to increase the external quantum efficiency and increase the emission intensity, it is necessary to have an electrode from the active layer.
It is necessary to take out both of the light emitted in one plane direction with less absorption of the light emission by the crystal.

【0004】[0004]

【課題を解決するための手段】AlGaInP系結晶を
エピタキシャル成長するときに、GaAsまたはGaP
を基板結晶として用い、格子定数差を緩和するためにま
ずGaAs1-XX(0<X≦1)結晶のXを徐々に変え
たグレーデッド層を介してその上に組成一定のGaAs
1-XX層を成長したものを基板として用いる。この基板
と格子整合するGaXIn1-XPの組成X>0.52、つ
まりEg>1.92eV、発光波長<645nmの活性
層を用いることができる。さらに短波長化するためには
長距離秩序度を低減するため基板の結晶面方位を選択し
て用いる。
Means for Solving the Problems When epitaxially growing an AlGaInP-based crystal, GaAs or GaP is used.
Is used as the substrate crystal, and in order to alleviate the difference in lattice constant, GaAs 1-X P X (0 <X ≦ 1) is formed on the GaAs layer with a constant composition via a graded layer in which X is gradually changed.
A substrate obtained by growing a 1-X P X layer is used. An active layer having a composition X of Ga x In 1 -X P that is lattice-matched to this substrate> 0.52, that is, Eg> 1.92 eV and an emission wavelength of <645 nm can be used. In order to further reduce the wavelength, the crystal plane orientation of the substrate is selected and used in order to reduce the long-range order.

【0005】電極とオーミックコンタクトをとる層は、
キャリア密度を大きくでき、かつDH構造において活性
層からの発光にたいし吸収が十分小さくなるような結晶
として、AlYGa1-YP(0≦Y≦0.3)を高濃度ド
ーピングして成長すれば良い。しかし、これらの結晶は
GaAsX1-Xと格子整合しないので結晶欠陥を少なく
して成長するためには格子整合した結晶から組成を徐々
に変えたグレーデッド層を介して成長し、歪緩衝層とな
るAlZIn1-ZP(0≦Z≦1)の超薄膜層またはAl
YGa1-YP/AlZIn1-ZPの超格子構造をいれる。ま
た、活性層からの発光を結晶の基板からの成長方向上側
(上記AlGaP層側)から取りだす場合には、基板を
取り除き、この面にDBR反射膜を付け、下側の面から
光を取り出す場合にはEgが基板より小さい結晶を活性
層に用い、このとき活性層となる結晶は基板と格子整合
しないので、これを厚さを50nm以下の歪量子井戸構
造とし上記AlGaP層の上にDBR反射膜を付ける。
The layer that makes ohmic contact with the electrode is
Al Y Ga 1 -Y P (0 ≦ Y ≦ 0.3) is highly doped as a crystal capable of increasing the carrier density and sufficiently reducing the absorption of light emitted from the active layer in the DH structure. Just grow up. However, since these crystals do not lattice match with GaAs X P 1-X , in order to grow while reducing the crystal defects, the crystals grow from the lattice matched crystal through the graded layer with the composition gradually changed and the strain buffering is performed. Ultra thin film layer of Al Z In 1 -Z P (0 ≦ Z ≦ 1) or Al
Put a superlattice structure of Y Ga 1-Y P / Al Z In 1-Z P. When light emitted from the active layer is taken out from the upper side of the growth direction of the crystal from the substrate (the AlGaP layer side), the substrate is removed, a DBR reflective film is attached to this face, and light is taken out from the lower face. For this, a crystal with Eg smaller than the substrate is used for the active layer. At this time, the crystal that becomes the active layer does not lattice match with the substrate. Attach a film.

【0006】[0006]

【作用】図3に示すように、例えばGaAs基板上に
燐を徐々に増加して成長した上記GaAsX1-X基板結
晶を用い、この結晶に格子整合したAlGaInP系の
結晶を成長すれば、AlやGaの濃度はGaAs基板に
格子整合した結晶より大きくなり、従ってEgが大きく
なって発光波長を短波長化することが可能である。
As shown in FIG. 3, if, for example, the GaAs X P 1-X substrate crystal is grown on a GaAs substrate while gradually increasing phosphorus, an AlGaInP-based crystal lattice-matched to this crystal is grown. , Al and Ga have a higher concentration than that of the crystal lattice-matched with the GaAs substrate, and thus Eg is large, and the emission wavelength can be shortened.

【0007】GaXIn1-XPでは原理的に、直接遷移
から間接遷移にバンド構造が変わるX=0.73、すな
わちEg=2.23eV未満のEgをもつ結晶はAlを
添加する必要はなく、GaAs基板に格子整合したAl
GaInP結晶に比べ、高い発光効率を保ったまま短波
長化を図ることができる。例えば上記GaAs基板上に
成長したGaInPからの赤色の発光に対し、GaAs
0.610.39上に成長したGa0.7In0.3Pでは黄緑色か
ら黄色の発光ダイオードを得ることができる。さらに短
波長化を図る場合にはAlを添加したAlGaInPの
4元結晶を採用すればよいが、この場合GaAs基板上
に格子整合したAlGaInPを用いるより低いAl濃
度で同一波長の発光を得ることができる。従ってAl濃
度の低い分だけ高効率の発光が可能となる。
In Ga X In 1-X P, in principle, a crystal having a band structure changing from a direct transition to an indirect transition X = 0.73, that is, a crystal having Eg of less than Eg = 2.23 eV does not need to have Al added. But Al, which is lattice-matched to the GaAs substrate
As compared with the GaInP crystal, the wavelength can be shortened while maintaining high luminous efficiency. For example, for red emission from GaInP grown on the GaAs substrate, GaAs
With Ga 0.7 In 0.3 P grown on 0.61 P 0.39 , a yellow-green to yellow light emitting diode can be obtained. In order to further reduce the wavelength, a quaternary crystal of AlGaInP added with Al may be adopted. In this case, light emission of the same wavelength can be obtained at a lower Al concentration than that of AlGaInP lattice-matched on a GaAs substrate. it can. Therefore, high-efficiency light emission is possible due to the low Al concentration.

【0008】AlGaInP系結晶のEgは長距離秩
序構造の程度により同じ組成の結晶でも異なった値をと
りうる。図4に示すように、基板結晶の面方位を選択す
ることによりその上に成長するAlGaInP系結晶の
長距離秩序構造の発生の程度を調節し、Egそして発光
波長の値を選択できるので、同一組成の結晶でLEDを
作る場合、基板面方位を変えると発光波長の短波長化が
可能となる。例えばGaInPでは700゜C成長で、
基板面方位を(100)面から(511)A面に傾ける
ことにより長距離秩序構造の発生を抑制し、Egを数十
〜百meV程度大きくでき、その分短波長化が可能とな
る。
The Eg of an AlGaInP-based crystal may take different values depending on the degree of the long-range ordered structure even if the crystal has the same composition. As shown in FIG. 4, by selecting the plane orientation of the substrate crystal, the degree of generation of the long-range ordered structure of the AlGaInP-based crystal grown thereon can be adjusted, and the values of Eg and emission wavelength can be selected. When an LED is made of a crystal having a composition, the emission wavelength can be shortened by changing the substrate surface orientation. For example, GaInP is grown at 700 ° C,
By tilting the substrate plane orientation from the (100) plane to the (511) A plane, generation of a long-range ordered structure can be suppressed, and Eg can be increased by several tens to hundreds of meV, and the wavelength can be shortened accordingly.

【0009】〜により、GaAsX1-X基板結晶の
Xを選択することにより、この結晶に格子整合するGa
YIn1-YP(Y>0.52)のYを決定し、基板結晶の
面方位を選択して長距離秩序構造を制御し、DH構造に
おける活性層のAl濃度を選択しEgの増加を図ること
ができる。本発明による発光ダイオードの発光波長はこ
れら3つの自由度により制御可能である。
According to, by selecting X of the GaAs X P 1-X substrate crystal, Ga that is lattice-matched to this crystal is selected.
Y of Y In 1-Y P (Y> 0.52) is determined, the plane orientation of the substrate crystal is selected to control the long-range ordered structure, and the Al concentration of the active layer in the DH structure is selected to increase Eg. Can be achieved. The emission wavelength of the light emitting diode according to the present invention can be controlled by these three degrees of freedom.

【0010】電極とのオーミックコンタクトをとる層
として高濃度ドーピングの可能なAlXGa1-XP(0≦
X≦0.3)を成長することにより、電流が素子全面に
広がるようにできる。かつこの結晶は間接遷移型である
ので吸収係数が小さく活性層からの光を素子が有す電極
と接触する面のうち基板と反対側の面からも効率良くと
りだすことができる。基板側の面から光を取り出す場合
には基板のEgより小さいEgを持つ活性層とすること
により基板は発光波長に対し吸収が小さくなり、さらに
AlGaP側に反射膜を用いることにより活性層から両
方向へ放出された光を取りだすことができ外部量子効率
を上げることができる。
Al X Ga 1-X P (0≤0) capable of high-concentration doping as a layer for making ohmic contact with the electrode
By growing X ≦ 0.3), the current can be spread over the entire surface of the device. Moreover, since this crystal is an indirect transition type, the absorption coefficient is small, and light from the active layer can be efficiently extracted from the surface opposite to the substrate among the surfaces in contact with the electrodes of the element. When extracting light from the surface on the substrate side, the absorption of the emission wavelength of the substrate is reduced by setting the active layer having Eg smaller than the Eg of the substrate, and by using the reflective film on the AlGaP side, both directions from the active layer can be obtained. The emitted light can be extracted and the external quantum efficiency can be increased.

【0011】GaAsZ1-Z(0≦Z<1)基板結晶
に格子整合したAlGaInP系結晶からInの組成を
徐々に減らしたグレーデッド層を介して上記AlXGa
1-XPを成長し、またこの層に歪緩衝層としてAlYIn
1-YP(0≦Y≦1)単一の超薄膜層または、AlXGa
1-XP/AlYIn1-YPの超格子構造をいれることによ
り、AlXGa1-XP層の転位などの結晶欠陥を低減で
き、素子寿命、発光効率を向上できる。
The Al x Ga layer is formed by gradually reducing the In composition from an AlGaInP-based crystal lattice-matched with a GaAs Z P 1-Z (0 ≦ Z <1) substrate crystal.
1- XP is grown, and Al Y In is used as a strain buffer layer on this layer.
1-Y P (0 ≦ Y ≦ 1) Single ultra thin film layer or Al X Ga
By inserting a superlattice structure of 1-X P / Al Y In 1-Y P, it can reduce crystal defects such as dislocations in the Al X Ga 1-X P layer can be improved device life, the light emission efficiency.

【0012】[0012]

【実施例】(実施例1)図1に示した素子断面図に従い
説明する。n−GaAs0.610.39基板(n=7×10
17cm3)上に有機金属気相成長法によりSiをドープ
したn−(Al0.7Ga0.30.7In0.3P層(1×10
18cm3)を1.0μm,ドーピングしていないGa0.7
In0.3Pを0.5μm、Znをドープしたp−(Al
0.7Ga0.30.7In0.3P層(p=1.2×1017cm
3)を0.2μm、同じく(p=5×1017cm3)を
0.8μm成長する。(以下p型は全てZnドープであ
る。)その上にInの組成を徐々に減らしたp−(Al
0.7Ga0.3XIn1-XPグレーデッド層(X:0.7→
1.0、p=5×1017cm3)を2.0μm、そしてp
−Al0.8In0.2P(80Å)/p−GaP(80Å)
の超格子を10周期成長した後p−GaP層(p=3×
1018cm3)を8μm成長する。ここで成長温度は7
00゜Cである。この場合、活性層であるGa0.7In
0.3P層からの発光波長は583nmであり黄色の発光
が得られる。このグレーデッド層及び超薄膜層をいれる
ことによGaP層の結晶欠陥は少なくなり発光効率は上
昇する。
EXAMPLE 1 Example 1 will be described with reference to the cross-sectional view of the element shown in FIG. n-GaAs 0.61 P 0.39 substrate (n = 7 × 10
Si-doped n- (Al 0.7 Ga 0.3 ) 0.7 In 0.3 P layer (1 × 10 3 on 17 cm 3 ) by metalorganic vapor phase epitaxy.
18 cm 3 ) 1.0 μm, undoped Ga 0.7
In 0.3 P 0.5 μm, Zn-doped p- (Al
0.7 Ga 0.3 ) 0.7 In 0.3 P layer (p = 1.2 × 10 17 cm
3 ) is grown to 0.2 μm, and the same (p = 5 × 10 17 cm 3 ) is grown to 0.8 μm. (Hereinafter, all p-types are Zn-doped.) On top of that, p- (Al
0.7 Ga 0.3 ) X In 1-X P graded layer (X: 0.7 →
1.0, p = 5 × 10 17 cm 3 ) to 2.0 μm, and p
-Al 0.8 In 0.2 P (80Å) / p-GaP (80Å)
Of the p-GaP layer (p = 3 ×
10 18 cm 3 ) is grown to 8 μm. Here, the growth temperature is 7
It is 00 ° C. In this case, the active layer of Ga 0.7 In
The emission wavelength from the 0.3 P layer is 583 nm, and yellow emission is obtained. By including the graded layer and the ultra-thin layer, crystal defects in the GaP layer are reduced and luminous efficiency is increased.

【0013】(実施例2)実施例1において基板結晶の
面方位を(511)A面にすることにより発光波長は5
60nm台の黄緑色の発光が得られる。ここで、GaA
s基板の同じ(511)A面上でのGaInPの発光に
比べ300meV程度短波長化される。また、GaAs
基板に格子整合した4元AlGaInPを活性層とした
場合、Al濃度の増加とともに発光の外部量子効率は減
少し発光波長560nmでは0.1%になるが、本実施
例では2%程度の比較的大きな値となる。
(Embodiment 2) In Embodiment 1, the emission wavelength is 5 by setting the plane orientation of the substrate crystal to the (511) A plane.
Yellow-green light emission of the order of 60 nm is obtained. Where GaA
The wavelength is shortened by about 300 meV as compared with the emission of GaInP on the same (511) A surface of the s substrate. Also, GaAs
When quaternary AlGaInP lattice-matched to the substrate is used as the active layer, the external quantum efficiency of light emission decreases with an increase in Al concentration and becomes 0.1% at an emission wavelength of 560 nm, but in the present embodiment, it is relatively about 2%. It will be a large value.

【0014】(実施例3)実施例2において活性層を
(Al0.05Ga0.950.7In0.3Pの4元混晶とするこ
とにより発光波長が550nm台の緑色の発光が得られ
る。
(Embodiment 3) In Embodiment 2, by making the active layer a quaternary mixed crystal of (Al 0.05 Ga 0.95 ) 0.7 In 0.3 P, green light emission having an emission wavelength of 550 nm can be obtained.

【0015】(実施例4)実施例1から3において基板
結晶をn−GaP結晶基板を用い、その上にGaAsX
1-X(0≦X<1)のXを徐々に増やしたグレーデッ
ド層10μmを介して組成Xの一定なGaAsX1-X
5μmを成長しその上に、これに格子整合するAlGa
InP系結晶を成長する。
(Embodiment 4) In Embodiments 1 to 3, the substrate crystal is an n-GaP crystal substrate on which GaAs X is formed.
A GaAs X P 1-X layer of 5 μm having a constant composition X is grown through a graded layer of 10 μm in which X of P 1-X (0 ≦ X <1) is gradually increased, and lattice matching is performed thereon. AlGa
InP-based crystal is grown.

【0016】(実施例5)基板結晶をn型GaAs0.08
0.92としこの上にこれと格子整合するn−(Al0.4
Ga0.60.96In0.04P(1×1018cm3)を1μ
m、u−Ga0.7In0.3Pを40nm、p−(Al0.4
Ga0.60.96In0.04P(p=1.2×1017cm3
を0.2μm、おなじくp=5.0×1017cm3
0.8μm、p−GaP層(p=3×1018cm3)を
8μm成長し、この面にDBR反射膜を付け、その一部
を取り除きp電極を形成する。この構造により活性層か
ら出る光のうちn,p両電極側に出る光を取りだすこと
ができるので外部量子効率はさらに上がり4%ほどにな
る。
(Embodiment 5) Substrate crystal is n-type GaAs 0.08
P 0.92, and n− (Al 0.4
Ga 0.6 ) 0.96 In 0.04 P (1 × 10 18 cm 3 ) 1 μm
m, u-Ga 0.7 In 0.3 P to 40 nm, p- (Al 0.4
Ga 0.6 ) 0.96 In 0.04 P (p = 1.2 × 10 17 cm 3 )
Of 0.2 μm, p = 5.0 × 10 17 cm 3 of 0.8 μm, and p-GaP layer (p = 3 × 10 18 cm 3 ) of 8 μm are grown, and a DBR reflective film is attached to this surface. A part is removed to form a p-electrode. With this structure, of the light emitted from the active layer, the light emitted to the n and p electrode sides can be extracted, so that the external quantum efficiency further increases to about 4%.

【0017】[0017]

【発明の効果】GaAsX1-X基板結晶上に成長したA
lGaInPからの発光はGaAs基板上に成長したA
lGaInPからの発光に比べ短波長であり、基板結晶
面を変えることにより、それ以外の素子の構造・成長条
件は同じでも長距離秩序構造の発生を低減し発光波長を
短くしDH構造の活性層にAlを添加すること無く発光
波長560nm台の発光を取りだすことができる。
EFFECTS OF THE INVENTION A grown on a GaAs X P 1-X substrate crystal
Light emission from lGaInP was grown on a GaAs substrate A
The wavelength is shorter than that of light emitted from 1GaInP, and by changing the crystal plane of the substrate, the generation of a long-range ordered structure is reduced and the emission wavelength is shortened even if the structure and growth conditions of other elements are the same. It is possible to take out light emission in the 560 nm emission wavelength range without adding Al to Al.

【0018】また、上記GaAsP基板に格子整合した
組成からInに組成を徐々に変えたグレーデッド層を経
て高キャリア濃度のAlYGa1-YP層を成長することに
より低抵抗で電極と十分なオーミックコンタクトがと
れ、電流は素子の広範囲に広がり、発光波長に対する吸
収が少なく、転位など結晶欠陥の少ない結晶から成る高
発光効率の素子が得られる。従来の活性層にAlを添加
した素子に対し、発光効率の高効率化は短波長になるほ
ど大きく、560nm付近では外部量子効率は10倍以
上になる。
Further, by growing an Al Y Ga 1 -Y P layer having a high carrier concentration through a graded layer in which the composition is lattice-matched to the GaAsP substrate and gradually changed to In, the electrode has a low resistance and a sufficient resistance. It is possible to obtain an element having high light emission efficiency, which is made of a crystal having a large ohmic contact, a current spreading over a wide range of the element, little absorption of emission wavelength, and few crystal defects such as dislocations. As compared with the conventional device in which Al is added to the active layer, the improvement of the luminous efficiency becomes larger as the wavelength becomes shorter, and the external quantum efficiency becomes 10 times or more in the vicinity of 560 nm.

【0019】さらに光を取り出す面を電極と接する2つ
の面のうち片方に決め、これと反対側の面への発光をD
BR反射膜を用いて取りだすことにより外部量子効率は
さらに1.8倍ほどになる。また基板側から光を取り出
す際に上記のように活性層のEgを小さくすることによ
り基板での光の吸収を少なくすることが可能となる。
Further, the light-extracting surface is determined to be one of the two surfaces in contact with the electrode, and the light emission to the opposite surface is D
The external quantum efficiency is further increased by about 1.8 times by taking out using the BR reflective film. Further, when the light is extracted from the substrate side, the Eg of the active layer is reduced as described above, so that the light absorption in the substrate can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる発光ダイオードの断面図。FIG. 1 is a sectional view of a light emitting diode according to the present invention.

【図2】従来のGaAs基板上の発光ダイオード。FIG. 2 is a conventional light emitting diode on a GaAs substrate.

【図3】AlGaInP系結晶のバンドギャップエネル
ギーの組成依存性。
FIG. 3 is a composition dependence of a band gap energy of an AlGaInP-based crystal.

【図4】Ga0.7In0.3PのEgの基板面方位依存性。FIG. 4 shows the substrate surface orientation dependence of Eg of Ga 0.7 In 0.3 P.

【符号の説明】[Explanation of symbols]

1,9…電極、3…超格子、4…グレーデッド層、8…
基板。
1, 9 ... Electrode, 3 ... Superlattice, 4 ... Graded layer, 8 ...
substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 振一郎 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichiro Yano 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】GaAsまたはGaP基板上にGaAs
1-XX(0<X≦1)結晶の燐の組成Xを徐々に変えた
グレーデッド層を介して成長した組成一定のGaAsY
1-Y(0≦Y<1)結晶基板上に、これと格子整合す
るAlGaInP系半導体結晶をエピタキシャル成長
し、(AlXGa1-XYIn1-YP(0≦X≦0.8、
0.52<Y≦0.80)をそれよりバンドギャップエ
ネルギーEgの大きい(AlXGa1-XYIn1-YP(0
<X≦1、0.52<Y≦1)で挾んだDH構造を作る
ことにより得られる発光ダイオード。
1. GaAs on a GaAs or GaP substrate
1-X P X (0 <X ≦ 1) GaAs Y having a constant composition grown through a graded layer in which the composition X of phosphorus in the crystal is gradually changed
On a P 1 -Y (0 ≦ Y <1) crystal substrate, an AlGaInP-based semiconductor crystal that is lattice-matched with this is epitaxially grown, and (Al X Ga 1-X ) Y In 1-Y P (0 ≦ X ≦ 0. 8,
0.52 <Y ≦ 0.80) it from the band gap energy Eg larger the (Al X Ga 1-X) Y In 1-Y P (0
A light emitting diode obtained by making a DH structure sandwiched by <X ≦ 1, 0.52 <Y ≦ 1).
【請求項2】上記GaAsP基板の結晶面方位を選択す
ることにより、エピタキシャル成長したAlGaInP
系半導体結晶の長距離秩序度を制御し、もってその発光
波長を制御してなる請求項1記載の発光ダイオード。
2. AlGaInP epitaxially grown by selecting the crystal plane orientation of the GaAsP substrate.
The light emitting diode according to claim 1, wherein the long-range order of the system semiconductor crystal is controlled and thus the emission wavelength thereof is controlled.
【請求項3】電極とオーミックコンタクトを取る層とし
てEgが活性層のそれより大きいnまたはp型のAlX
Ga1-XP層(0≦X≦0.3)を成長した請求項1又
は2記載の発光ダイオード。
3. An n- or p-type Al x having a larger Eg than that of the active layer as a layer for making ohmic contact with the electrode.
The light emitting diode according to claim 1 or 2, wherein a Ga 1-X P layer (0 ≦ X ≦ 0.3) is grown.
【請求項4】結晶の成長方向上側の面(上記AlGaP
層側)より主に光を取り出す場合には基板を取り除いて
あり、この面にDBR反射膜を有すことを、結晶の成長
方向下側の面(基板側)より主に光を取り出す場合に
は、Egが基板より小さい(AlYGa1-YXIn1-X
(0.52<X≦0.8、0≦Y≦0.8)を活性層と
し、この活性層の厚さを50nm以下で歪を有すものと
し、さらにAlGaPの上にDBR反射膜を有すことを
特徴とした請求項3記載の発光ダイオード。
4. A surface on the upper side in the crystal growth direction (the above AlGaP
When the light is mainly extracted from the layer side), the substrate is removed, and it is necessary to have a DBR reflective film on this surface when the light is mainly extracted from the lower surface (substrate side) in the crystal growth direction. Has a smaller Eg than the substrate (Al Y Ga 1-Y ) X In 1-X P
(0.52 <X ≦ 0.8, 0 ≦ Y ≦ 0.8) is used as an active layer, and the thickness of this active layer is set to 50 nm or less and has a strain. Further, a DBR reflective film is formed on AlGaP. The light emitting diode according to claim 3, wherein the light emitting diode is provided.
【請求項5】GaAsP結晶に格子整合したAlGaI
nP結晶と、その上に成長したGaAsPとは格子整合
しないAlXGa1-XP(0≦X≦0.3)層の間にGa
AsP基板と格子整合するAlGaInPからはじめて
(AlYGa1-YZIn1-ZP(0≦Y≦1)のZを1.
0まで徐々に変化させたグレーデッド層を成長して得ら
れる請求項3又は4記載の発光ダイオード。
5. An AlGaI lattice-matched to a GaAsP crystal.
Ga is formed between the Al X Ga 1-X P (0 ≦ X ≦ 0.3) layer that is not lattice-matched with the nP crystal and the GaAsP grown on the nP crystal.
Starting with AlGaInP that is lattice-matched with the AsP substrate, the Z of (Al Y Ga 1-Y ) Z In 1-Z P (0 ≦ Y ≦ 1) is 1.
The light emitting diode according to claim 3 or 4, which is obtained by growing a graded layer which is gradually changed to 0.
【請求項6】AlXGa1-XP層(0≦X≦0.3)に歪
緩衝層であるAlYIn1-YP(0≦Y≦1)の厚さ80
〜150Åの単一超薄膜層またはAlXGa1-XP(厚さ
80〜150Å)/AlYIn1-YP(厚さ80〜150
Å)の超格子(20周期以内)をいれた請求項3又は4
記載の発光ダイオード。
6. The thickness 80 of Al Y In 1 -Y P (0 ≦ Y ≦ 1) which is a strain buffer layer in the Al X Ga 1-X P layer (0 ≦ X ≦ 0.3).
~ 150Å single ultra thin film layer or Al X Ga 1-X P (thickness 80 to 150 Å) / Al Y In 1-Y P (thickness 80 to 150
5. The superlattice (within 20 cycles) of Å) is included.
The light emitting diode described.
JP21122992A 1992-08-07 1992-08-07 Light emitting diode Pending JPH0661525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21122992A JPH0661525A (en) 1992-08-07 1992-08-07 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21122992A JPH0661525A (en) 1992-08-07 1992-08-07 Light emitting diode

Publications (1)

Publication Number Publication Date
JPH0661525A true JPH0661525A (en) 1994-03-04

Family

ID=16602426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21122992A Pending JPH0661525A (en) 1992-08-07 1992-08-07 Light emitting diode

Country Status (1)

Country Link
JP (1) JPH0661525A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236067B1 (en) 1997-12-05 2001-05-22 Rohm Co., Ltd. Semiconductor light emitting device using an AlGaInP group or AlGaAs group material
US6805744B2 (en) 1998-11-24 2004-10-19 Massachusetts Institute Of Technology Method of producing device quality (Al)InGaP alloys on lattice-mismatched substrates
WO2010004454A1 (en) 2008-06-16 2010-01-14 Philips Lumileds Lighting Company, Llc Semiconductor light emitting device including graded region
USRE43159E1 (en) 1994-12-27 2012-02-07 Kabushiki Kaisha Toshiba Semiconductor light emitting device
CN104412396A (en) * 2012-07-05 2015-03-11 皇家飞利浦有限公司 Light emitting diode with light emitting layer containing nitrogen and phosphorus
CN114497298A (en) * 2021-12-22 2022-05-13 厦门士兰明镓化合物半导体有限公司 LED epitaxial structure and preparation method thereof, LED chip and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43159E1 (en) 1994-12-27 2012-02-07 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US6236067B1 (en) 1997-12-05 2001-05-22 Rohm Co., Ltd. Semiconductor light emitting device using an AlGaInP group or AlGaAs group material
US6805744B2 (en) 1998-11-24 2004-10-19 Massachusetts Institute Of Technology Method of producing device quality (Al)InGaP alloys on lattice-mismatched substrates
WO2010004454A1 (en) 2008-06-16 2010-01-14 Philips Lumileds Lighting Company, Llc Semiconductor light emitting device including graded region
JP2011524632A (en) * 2008-06-16 2011-09-01 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Semiconductor light emitting device including an inclined region
US8507929B2 (en) 2008-06-16 2013-08-13 Koninklijke Philips Electronics N.V. Semiconductor light emitting device including graded region
CN104412396A (en) * 2012-07-05 2015-03-11 皇家飞利浦有限公司 Light emitting diode with light emitting layer containing nitrogen and phosphorus
JP2015525965A (en) * 2012-07-05 2015-09-07 コーニンクレッカ フィリップス エヌ ヴェ Light emitting diode having a light emitting layer containing nitrogen and phosphorus
US10147840B2 (en) 2012-07-05 2018-12-04 Lumileds Llc Light emitting diode with light emitting layer containing nitrogen and phosphorus
CN114497298A (en) * 2021-12-22 2022-05-13 厦门士兰明镓化合物半导体有限公司 LED epitaxial structure and preparation method thereof, LED chip and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3063756B1 (en) Nitride semiconductor device
US5153889A (en) Semiconductor light emitting device
JP3250438B2 (en) Nitride semiconductor light emitting device
JP3314666B2 (en) Nitride semiconductor device
JP3063757B1 (en) Nitride semiconductor device
JP2890390B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP2001148507A (en) Nitride semiconductor device
US5981976A (en) Epitaxial wafer for AlGaInP light-emitting diode
US10756960B2 (en) Light-emitting device
JP2000244013A (en) Nitride semiconductor element
US6107648A (en) Semiconductor light emitting device having a structure which relieves lattice mismatch
JP3240097B2 (en) Semiconductor light emitting device
JP2000286451A (en) Nitride semiconductor device
JPH11191639A (en) Nitride semiconductor device
JPH04229665A (en) Semiconductor light-emitting device
JPH0661525A (en) Light emitting diode
JPH077182A (en) Gallium nitride based compound semiconductor light emitting element
JP3237972B2 (en) Semiconductor light emitting device
Akasaki et al. Recent progress of crystal growth, conductivity control and light emitters of group III nitride semiconductors
JPH11220172A (en) Gallium nitride compound semiconductor light-emitting element
JP3209786B2 (en) Semiconductor light emitting device
JP3314671B2 (en) Nitride semiconductor device
JP2795885B2 (en) Semiconductor light emitting diode
JPH0794780A (en) Semiconductor light emitting device