JPH0661005A - Composition for forming thick film resistor - Google Patents

Composition for forming thick film resistor

Info

Publication number
JPH0661005A
JPH0661005A JP4235242A JP23524292A JPH0661005A JP H0661005 A JPH0661005 A JP H0661005A JP 4235242 A JP4235242 A JP 4235242A JP 23524292 A JP23524292 A JP 23524292A JP H0661005 A JPH0661005 A JP H0661005A
Authority
JP
Japan
Prior art keywords
powder
resistor
resistance value
glass
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4235242A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kawakubo
勝弘 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4235242A priority Critical patent/JPH0661005A/en
Publication of JPH0661005A publication Critical patent/JPH0661005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain the thick film resistor having a sheet resistance value not exceeding a specific value in the least dispersion of the resistance value of a resistor and the resistance temperature coefficient immediately after baking step furthermore in the least fluctuation in the resistance value after glass coat baking step. CONSTITUTION:The thick film resistor forming composition contains flake type particles of Ag/Pd alloy so that the wt.% of RuO2 particles, glass particles, Ag/Pd as the solid component may be 95:5-30670, while the wt.% of RuO2 to the glass particles is 0.15-1.5 as well as the wt.% of the flake type particles of Ag/Pd alloy to (RuO2 + glass particles) is to be 0.03-20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック基板上に、
面積抵抗値が1kΩ/□以下の厚膜抵抗体を形成するに
適した厚膜抵抗体形成用組成物に関する。
The present invention relates to a ceramic substrate,
The present invention relates to a thick film resistor-forming composition suitable for forming a thick film resistor having an area resistance value of 1 kΩ / □ or less.

【0002】[0002]

【従来の技術】導電性粉末とガラス粉末を所要の抵抗値
となるように混合し、これを有機ビヒクルに分散したペ
ーストを、アルミナ等の基板上にスクリーン印刷法等に
より所要形状に塗布し、乾燥後、700〜900℃で焼
成して、基板上に電子回路としての抵抗体を形成するこ
とが行われている。このような技術を厚膜技術と呼び、
抵抗体用のペーストを厚膜抵抗体形成用組成物と称す
る。
2. Description of the Related Art A conductive powder and a glass powder are mixed so as to have a desired resistance value, and a paste prepared by dispersing this in an organic vehicle is applied on a substrate such as alumina by a screen printing method or the like to have a desired shape. After drying, baking is performed at 700 to 900 ° C. to form a resistor as an electronic circuit on the substrate. Such technology is called thick film technology,
The resistor paste is referred to as a thick film resistor forming composition.

【0003】抵抗値の低い抵抗体用の導電粉末として
は、Ag、Pdがある。このAg、Pdは含有率に対す
る面積抵抗値の依存性が大きいため、含有率に対する依
存性の小さいRuO2を併用することによって抵抗値の
安定性を改善している。
As the conductive powder for a resistor having a low resistance value, there are Ag and Pd. Since the area resistance value of Ag and Pd greatly depends on the content rate, the stability of the resistance value is improved by using RuO 2 having a small content rate dependence.

【0004】この厚膜抵抗体を用いたチップ抵抗器など
の製造工程では、通常抵抗体の抵抗値をレーザートリミ
ング等によって調整した後に、ガラスコートのためのガ
ラスペーストで被覆し、600℃程度の温度で焼成が行
われる。
In the manufacturing process of a chip resistor or the like using this thick film resistor, the resistance value of the resistor is usually adjusted by laser trimming or the like, and then coated with a glass paste for glass coating, and the temperature is set to about 600 ° C. Baking is performed at a temperature.

【0005】抵抗値を調整する工程において、トリミン
グする割合が大き過ぎると、形成された抵抗体の電圧特
性等が劣化するため、焼成された抵抗体の抵抗値のばら
つきが小さいことが望まれる。また、ガラスコート焼成
における抵抗値変化が大きいと、最終の抵抗値を目標の
範囲内に収めることが困難となる。
In the step of adjusting the resistance value, if the trimming ratio is too large, the voltage characteristics and the like of the formed resistor are deteriorated. Therefore, it is desired that the resistance value of the fired resistor has a small variation. Further, if the change in resistance value during glass coat firing is large, it becomes difficult to keep the final resistance value within the target range.

【0006】抵抗値の低い抵抗体において、Ag、Pd
の単体の粉末を混合して用いると、ガラスコート焼成後
における抵抗値の変化が大きく、この問題を解決するた
めに、Ag/Pdの共沈粉が用いられている。Ag/P
dの共沈粉は、焼成時にAgが局所的に溶融あるいは、
蒸発したり、有機ビヒクル中への分散性が悪いため、焼
成された抵抗体の抵抗値や、抵抗温度係数の変化が大き
くなり、歩留り、抵抗体の信頼性を悪化させる大きな原
因となっている。
In a resistor having a low resistance value, Ag, Pd
When a single powder of (1) is mixed and used, the change in resistance value after glass coating firing is large, and in order to solve this problem, coprecipitated powder of Ag / Pd is used. Ag / P
In the coprecipitated powder of d, Ag locally melts during firing or
Evaporation and poor dispersibility in the organic vehicle cause a large change in the resistance value and temperature coefficient of resistance of the fired resistor, which is a major cause of deterioration in yield and reliability of the resistor. .

【0007】[0007]

【発明が解決しようとする課題】本発明は、焼成された
抵抗体の抵抗値、抵抗温度係数のばらつきが小さく、し
かもガラスコート焼成後における抵抗値変化が小さい、
主として面積抵抗値が1kΩ/□以下の抵抗体が得られ
る厚膜抵抗体形成用組成物を提供せんとするものであ
る。
DISCLOSURE OF THE INVENTION According to the present invention, there is little variation in the resistance value and the temperature coefficient of resistance of a fired resistor, and the change in the resistance value after firing a glass coat is small.
It is intended to provide a composition for forming a thick film resistor, which can obtain a resistor having an area resistance value of 1 kΩ / □ or less.

【0008】[0008]

【課題を解決するための手段】本発明は、固形分として
RuO2粉末、ガラス粉末、Ag:Pdの重量比が9
5:5〜30:70であるAg/Pd合金のフレーク状
粉末を含み、ガラス粉末に対するRuO2の重量比が0.
15〜1.5であり、(RuO2+ガラス粉末)に対する
Ag/Pd合金のフレーク状粉末の重量比が0.03〜
20である厚膜抵抗体形成用組成物を課題を解決するた
めの手段とする。
According to the present invention, the solid content of RuO 2 powder, glass powder, and Ag: Pd weight ratio is 9%.
It contains Ag / Pd alloy flake powder of 5: 5 to 30:70 and the weight ratio of RuO 2 to glass powder is 0.5.
15 to 1.5, and the weight ratio of the flake powder of Ag / Pd alloy to (RuO 2 + glass powder) is 0.03 to
The thick film resistor forming composition of No. 20 is used as a means for solving the problems.

【0009】RuO2粉末は、通常の厚膜抵抗体に用い
られているものでよく、粒径は1μm以下、好ましくは
0.2μm以下が望ましい。ガラス粉末も通常の厚膜抵
抗体に用いられているホウケイ酸鉛系、アルミノホウケ
イ酸鉛系等でよく、粒径は10μm以下、好ましくは5
μm以下がよい。
The RuO 2 powder may be one used in ordinary thick film resistors, and the particle size is preferably 1 μm or less, more preferably 0.2 μm or less. The glass powder may also be lead borosilicate type, aluminoborosilicate type, etc., which are used for ordinary thick film resistors, and the particle size is 10 μm or less, preferably 5 μm.
μm or less is preferable.

【0010】Ag/Pd合金のフレーク状粉末、RuO
2粉末、ガラス粉末以外に、従来から抵抗温度係数の調
整に添加されているMnO2、Nb25、Sb23、T
iO2、CuO等を添加することができる。有機ビヒク
ルは、従来と同様にエチルセルロース、メタクリレート
等をターピネオール、ブチルカルビトールなどに溶解し
たものでよい。
Flake powder of Ag / Pd alloy, RuO
In addition to 2 powders and glass powders, MnO 2 , Nb 2 O 5 , Sb 2 O 3 and T, which have been conventionally added to adjust the temperature coefficient of resistance, are used.
iO 2 , CuO or the like can be added. The organic vehicle may be one in which ethyl cellulose, methacrylate or the like is dissolved in terpineol, butyl carbitol or the like as in the conventional case.

【0011】[0011]

【作用】本発明において、Ag/Pd合金のフレーク状
粉末は、平均粒径が1〜10μm好ましくは1〜3μm
のものがよい。Ag/Pd合金のフレーク状粉末は均一
な合金であるため、焼成時に局部的なAgの溶融、蒸発
がなく、フレーク状で印刷、乾燥後の導電粉末同士の接
触が安定しているため、焼成された抵抗体の抵抗値、抵
抗温度係数のばらつきが小さく、ガラスコート焼成後の
抵抗値の変化が小さい。Ag/Pd合金のフレーク状粉
末のAg:Pdの重量比を95:5〜30:70とする
のは、95:5よりPdが少ないと、抵抗温度係数が大
きくなり、30:70よりPdが多いとコストが高くな
るためである。
In the present invention, the flake powder of Ag / Pd alloy has an average particle size of 1 to 10 μm, preferably 1 to 3 μm.
The ones are good. Since the flake powder of Ag / Pd alloy is a uniform alloy, there is no local melting and evaporation of Ag during firing, and printing is performed in flake form, and the contact between the conductive powders after drying is stable. The resistance value and the temperature coefficient of resistance of the formed resistor are small in variation, and the change in the resistance value after baking the glass coat is small. The weight ratio of Ag: Pd of the flake powder of Ag / Pd alloy is set to 95: 5 to 30:70 because the temperature coefficient of resistance becomes large when Pd is less than 95: 5 and Pd is less than 30:70. This is because the cost increases as the number increases.

【0012】ガラス粉末に対するRuO2粉末の重量比
を0.15〜1.5にするのは、0.15よりもRuO2
末が少ないと、抵抗値の安定性がなく、1.5よりRu
2粉末が多いと、抵抗体の膜強度が弱くなり過ぎるた
めである。
The weight ratio of the RuO 2 powder to the glass powder is set to 0.15 to 1.5 because when the RuO 2 powder is less than 0.15, the resistance value is not stable and Ru is more than 1.5.
This is because if the amount of O 2 powder is large, the film strength of the resistor becomes too weak.

【0013】(RuO2粉末+ガラス粉末)に対するA
g/Pd合金のフレーク状粉末の重量比を0.03〜2
0にするのは、Ag/Pd合金のフレーク状粉末が0.
03より少ないと抵抗値が高くなり過ぎ、20よりも多
いと抵抗値が低くなり過ぎるからである。
A for (RuO 2 powder + glass powder)
The weight ratio of the flake powder of g / Pd alloy is 0.03 to 2
The flake powder of Ag / Pd alloy is set to 0.
If it is less than 03, the resistance value becomes too high, and if it is more than 20, the resistance value becomes too low.

【0014】[0014]

【実施例】平均粒径が、それぞれ0.3μm、0.1μm
以下、及び1.5μmのAg/Pd合金のフレーク状粉
末、RuO2粉末、MnO2、Nb25及びガラス粉末
(重量%で、PbO 55%、SiO2 30%、B23
10%、Al23 5%)を用い、エチルセルロースの
ターピネオール溶液をビヒクルとして添加し、3本ロー
ルミルで混練して表1に示す組成の厚膜抵抗体形成用組
成物を調製した。
[Examples] Average particle diameters of 0.3 μm and 0.1 μm, respectively
The following, and flake powder of Ag / Pd alloy of 1.5 μm, RuO 2 powder, MnO 2 , Nb 2 O 5 and glass powder (55% by weight, PbO 55%, SiO 2 30%, B 2 O 3
10% Al 2 O 3 5%) was used, a terpineol solution of ethyl cellulose was added as a vehicle, and the mixture was kneaded with a three-roll mill to prepare a thick film resistor forming composition having the composition shown in Table 1.

【0015】Ag/Pd合金のフレーク状粉末の代わり
に、平均粒径がそれぞれ1.0μm、0.3μmのAg
粉、Pd粉を使用したものと、平均粒径1.5μmのA
g/Pd共沈粉を使用した表2に示す比較例について試
験した。
Instead of the flake powder of Ag / Pd alloy, Ag particles having average particle diameters of 1.0 μm and 0.3 μm, respectively.
Powder and Pd powder used, A with an average particle size of 1.5 μm
The comparative examples shown in Table 2 using g / Pd co-precipitated powder were tested.

【0016】純度96重量%のアルミナ基板上に、電極
用Ag/Pdペーストを印刷し、850℃で焼成し、こ
の電極上に上記の厚膜抵抗体形成用組成物を印刷し、1
50℃で乾燥後、ピーク温度850℃で9分、合計焼成
時間30分間のベルト炉で焼成し、幅1.0mm、長さ
1.0mm、膜厚7〜10μmの抵抗体を形成した。
An Ag / Pd paste for an electrode was printed on an alumina substrate having a purity of 96% by weight and fired at 850 ° C., and the above-mentioned composition for forming a thick film resistor was printed on this electrode.
After drying at 50 ° C., it was fired in a belt furnace at a peak temperature of 850 ° C. for 9 minutes and a total firing time of 30 minutes to form a resistor having a width of 1.0 mm, a length of 1.0 mm and a film thickness of 7 to 10 μm.

【0017】焼成された抵抗体の面積抵抗値(Ω/□)
の変動は、50個の抵抗体の変動係数で評価した。変動
係数(%)は、標準偏差を平均値で除した値で、相対的
なばらつきの目安として用いられており、値の小さいも
のほどばらつきが小さい。
Area resistance value (Ω / □) of the fired resistor
The fluctuation was evaluated by the coefficient of variation of 50 resistors. The coefficient of variation (%) is a value obtained by dividing the standard deviation by the average value, and is used as a measure of relative variation. The smaller the value, the smaller the variation.

【0018】抵抗温度係数は、温度−55〜25℃の抵
抗値の平均変化率と、温度25〜125℃の抵抗値の平
均変化率(ppm/℃)で表され、前者をCOLD-TCR、後者をHO
T-TCRと称する。抵抗温度係数のばらつきは、10個の
抵抗体のCOLD-TCR、HOT-TCRのそれぞれの最大値から最小
値を引いた値で表わし、値の小さいものほど、ばらつき
が小さい。
The temperature coefficient of resistance is expressed by an average rate of change in resistance value at a temperature of −55 to 25 ° C. and an average rate of change in resistance value at a temperature of 25 to 125 ° C. (ppm / ° C.), the former being COLD-TCR, HO for the latter
Called T-TCR. The variation in the temperature coefficient of resistance is represented by a value obtained by subtracting the minimum value from the maximum value of each of the COLD-TCR and HOT-TCR of 10 resistors, and the smaller the value, the smaller the variation.

【0019】ガラスコート焼成後における抵抗値変化
(%)は、まず抵抗体焼成後の抵抗値を測定し、抵抗体
を完全に被覆するように、黒色ガラスペーストを印刷、
乾燥し、ピーク温度600℃で5分、合計焼成時間40
分のベルト炉で焼成し、ガラスコート焼成後の抵抗体の
抵抗値を測定し、ガラスコート焼成前の抵抗値からの変
化率を求めた。以上の測定結果を表1、表2に併せて示
す。
The change in resistance value (%) after firing the glass coat is measured by first measuring the resistance value after firing the resistor and printing a black glass paste so as to completely cover the resistor.
Dry, peak temperature 600 ° C for 5 minutes, total firing time 40
The resistance value of the resistor after firing the glass coat was measured, and the rate of change from the resistance value before firing the glass coat was determined. The above measurement results are also shown in Tables 1 and 2.

【0020】[0020]

【表1】 実施例 1 2 3 4 5 6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ag/Pdのフレーク状粉末 89.7 95.0 90.2 55.0 61.9 61.0 RuO2粉末 3.5 2.2 5.7 15.4 13.0 13.3カ゛ラス 粉末 各重量% 6.5 2.6 3.8 28.6 24.1 24.7 MnO2 0.15 0.1 0.2 0.5 0.5 0.5 Nb25 0.15 0.1 0.1 0.5 0.5 0.5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ag:Pd重量比 70:30 40:60 70:30 70:30 40:60 30:70 RuO2/カ゛ラス重量比 0.54 0.84 1.50 0.54 0.54 0.54 Ag/Pdのフレーク状粉末/ (RuO2+カ゛ラス)重量比 8.97 20.00 9.49 1.25 1.67 1.61 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 抵抗体焼成後の面積 抵抗値(Ω/□) 0.07 0.09 0.07 1.02 1.09 0.88 抵抗体焼成後の面積 抵抗値の変動係数(%) 3.6 3.3 4.5 3.5 3.2 2.9 COLD-TCR(ppm/℃) +555 +250 +530 +299 +170 +240 COLD-TCRの最大値− 最小値(ppm/℃) 40 40 42 20 20 19 HOT-TCR(ppm/℃) +524 +229 +500 +292 +191 +243 HOT-TCRの最大値− 最小値(ppm/℃) 35 25 40 16 15 14カ゛ラスコート 焼成後の抵抗値 変化率(%) +6.4 +5.9 +9.0 +3.0 +3.2 +3.4 =================================== 実施例 7 8 9 10 11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ag/Pdのフレーク状粉末 38.6 19.1 17.0 12.1 2.7 RuO2粉末 21.0 20.0 20.5 16.9 18.4カ゛ラス 粉末 各重量% 39.0 60.0 61.5 70.2 78.5 MnO2 0.7 0.5 0.6 0.2 0.3 Nb25 0.7 0.4 0.4 0.6 0.1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ag:Pd重量比 70:30 70:30 95:5 70:30 70:30 RuO2/カ゛ラス重量比 0.54 0.33 0.33 0.24 0.23 Ag/Pdのフレーク状粉末/ (RuO2+カ゛ラス)重量比 0.64 0.23 0.21 0.14 0.03 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 抵抗体焼成後の面積 抵抗値(Ω/□) 11.1 86.4 93.7 400 648 抵抗体焼成後の面積 抵抗値の変動係数(%) 1.7 3.0 2.4 1.8 2.1 COLD-TCR(ppm/℃) -1 +5 -2 -28 +1 COLD-TCRの最大値− 最小値(ppm/℃) 20 15 13 20 15 HOT-TCR(ppm/℃) +54 +65 +61 +39 +64 HOT-TCRの最大値− 最小値(ppm/℃) 17 11 7 16 11カ゛ラスコート 焼成後の抵抗値 変化率(%) +0.9 +1.3 +1.7 +1.0 +0.9 ===================================Table 1 Example 1 2 3 4 5 6 -------------------------------------- Ag--Pd. Flake powder 89.7 95.0 90.2 55.0 61.9 61.0 RuO 2 powder 3.5 2.2 5.7 15.4 13.0 13.3 glass powder each weight% 6.5 2.6 3.8 28.6 24.1 24.7 MnO 2 0.15 0.1 0.2 0.5 0.5 0.5 Nb 2 O 5 0.15 0.1 0.1 0.5 0.5 0.5 − − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ag: Pd weight ratio 70:30 40:60 70:30 70:30 40:60 30:70 RuO 2 / glass weight ratio 0.54 0.84 1.50 0.54 0.54 0.54 Ag / Pd flake powder / (RuO 2 + glass) weight ratio 8.97 20.00 9.49 1.25 1.67 1.61 −−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−− Area after resistor firing Resistance value (Ω / □) 0.07 0.09 0.07 1.02 1.09 0.88 Area after resistor firing Coefficient of resistance variation (% 3.6 3.3 4.5 3.5 3.2 2.9 COLD-TCR (ppm / ℃) +555 +250 +530 +299 +170 +240 COLD-TCR maximum value-Minimum value (ppm / ℃) 40 40 42 20 20 19 HOT-TCR ( ppm / ℃) +524 +229 +500 +292 +191 +243 HOT-TCR maximum value-minimum value (ppm / ℃) 35 25 40 16 15 14 Glass coat Resistance change rate after firing +6.4 +5.9 +9.0 +3.0 +3.2 +3.4 ==================================== Example 7 8 9 10 11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ag / Pd flake powder 38.6 19.1 17.0 12.1 2.7 RuO 2 powder 21.0 20.0 20.5 16.9 18.4 Glass powder Each weight% 39.0 60.0 61.5 70.2 78.5 MnO 2 0.7 0.5 0.6 0.2 0.3 Nb 2 O 5 0.7 0.4 0.4 0.6 0.1 −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− Ag: Pd weight ratio 70:30 70:30 95: 5 70:30 70:30 RuO 2 / glass weight Ratio 0.54 0.33 0.33 0.24 0.23 Ag / Pd flake powder / (RuO 2 + glass) Weight ratio 0.64 0.23 0.21 0.14 0.03 −−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− Area resistance after firing resistor (Ω / □) 11.1 86.4 93.7 400 648 Area after firing resistor Resistance coefficient of variation (%) 1.7 3.0 2.4 1.8 2.1 COLD -TCR (ppm / ℃) -1 +5 -2 -28 +1 Maximum value of COLD-TCR-Minimum value (ppm / ℃) 20 15 13 20 15 HOT-TCR (ppm / ℃) +54 +65 +61 +39 +64 Maximum value of HOT-TCR-Minimum value (ppm / ℃) 17 11 7 16 11 Glass coat Resistance value after firing Change rate (%) +0.9 +1.3 +1.7 +1.0 +0.9 ===== ================================

【0021】[0021]

【表2】 比較例 1 2 3 4 5 6 7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ag粉末 64.4 42.7 27.3 Pd粉末 27.6 18.3 11.7 Ag-Pd共沈粉末 90.0 63.0 39.0 19.1 RuO2粉末 2.7 13.3 21.0 3.4 12.6 21.0 20.0カ゛ラス 粉末 各重量% 5.0 24.7 39.0 6.3 23.4 39.0 60.0 MnO2 0.15 0.5 0.5 0.15 0.5 0.5 0.5 Nb25 0.15 0.5 0.5 0.15 0.5 0.5 0.4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ag:Pd重量比 70:30 70:30 70:30 70:30 70:30 70:30 70:30 RuO2/カ゛ラス重量比 0.54 0.54 0.54 0.54 0.54 0.54 0.54 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 抵抗体焼成後の面積 抵抗値(Ω/□) 0.09 1.17 11.7 0.14 1.21 14.5 100.2 抵抗体焼成後の面積 抵抗値の変動係数(%) 3.3 4.0 3.0 6.8 5.6 5.7 4.9 COLD-TCR(ppm/℃) +479 +312 -14 +450 +276 -22 -39 COLD-TCRの最大値− 最小値(ppm/℃) 54 24 21 61 58 35 27 HOT-TCR(ppm/℃) +444 +313 +46 +423 +283 +39 +40 HOT-TCRの最大値− 最小値(ppm/℃) 34 14 18 50 42 31 24カ゛ラスコート 焼成後の抵抗値 変化率(%) +19.8 +7.2 +2.4 +6.2 +3.9 +2.0 +1.5 ===================================[Table 2] Comparative Example 1 2 3 4 5 6 7 ---------------------------- Ag-powder 64.4 42.7 27.3 Pd powder 27.6 18.3 11.7 Ag-Pd co-precipitated powder 90.0 63.0 39.0 19.1 RuO 2 powder 2.7 13.3 21.0 3.4 12.6 21.0 20.0 Glass powder each weight% 5.0 24.7 39.0 6.3 23.4 39.0 60.0 MnO 2 0.15 0.5 0.5 0.15 0.5 0.5 0.5 Nb 2 O 5 0.15 0.5 0.5 0.15 0.5 0.5 0.4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ag: Pd weight ratio 70:30 70:30 70:30 70:30 70:30 70:30 70:30 RuO 2 / glass weight ratio 0.54 0.54 0.54 0.54 0.54 0.54 0.54 −−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−− Area resistance after firing resistor (Ω / □) 0.09 1.17 11.7 0.14 1.21 14.5 100.2 Coefficient of variation in resistance after firing resistor (%) 3.3 4.0 3.0 6.8 5.6 5.7 4.9 COLD-TCR (ppm / ℃) +479 +3 12 -14 +450 +276 -22 -39 COLD-TCR maximum value-minimum value (ppm / ℃) 54 24 21 61 58 35 27 HOT-TCR (ppm / ℃) +444 +313 +46 +423 +283 +39 +40 Maximum value of HOT-TCR-Minimum value (ppm / ℃) 34 14 18 50 42 31 24 Glass coat Resistance change rate after firing (%) +19.8 +7.2 +2.4 +6.2 +3.9 +2.0 + 1.5 ====================================

【0022】比較例1〜3に示すように、Ag粉、Pd
粉を混合して用いた場合は、抵抗体焼成後の面積抵抗
値、TCRのばらつきは小さいが、ガラスコート焼成後
の抵抗値変化が大きい。比較例4〜7に示すように、A
g/Pd共沈粉を用いた場合は、ガラスコート焼成後の
抵抗値変化は小さいが、抵抗体焼成後の面積抵抗値、T
CRのばらつきが大きくなる。
As shown in Comparative Examples 1 to 3, Ag powder, Pd
When the powder is mixed and used, the variation in the sheet resistance value and TCR after firing the resistor is small, but the resistance value change after firing the glass coat is large. As shown in Comparative Examples 4 to 7, A
When the g / Pd coprecipitated powder was used, the change in resistance value after baking the glass coat was small, but the sheet resistance value after baking the resistor, T
The variation of CR becomes large.

【0023】これに対して、本発明実施例では、実施例
1〜11に示すように、抵抗体焼成後の面積抵抗値、T
CRのばらつきが小さく、しかもガラスコート焼成後の
抵抗値変化も小さい。
On the other hand, in Examples of the present invention, as shown in Examples 1 to 11, the sheet resistance value T after firing the resistor, T
The variation in CR is small and the change in resistance value after baking the glass coat is small.

【0024】[0024]

【発明の効果】本発明厚膜抵抗体形成用組成物によれ
ば、従来の技術では困難であった抵抗体焼成後の面積抵
抗値、TCRのばらつきが小さく、しかもガラスコート
焼成後の抵抗値変化も小さい抵抗体が形成できる。
EFFECT OF THE INVENTION According to the composition for forming a thick film resistor of the present invention, variation in sheet resistance and TCR after firing a resistor, which is difficult with the prior art, is small, and the resistance value after firing a glass coat is small. A resistor with little change can be formed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固形分としてRuO2粉末、ガラス粉
末、Ag:Pdの重量比が95:5〜30:70である
Ag/Pd合金のフレーク状粉末を含み、ガラス粉末に
対するRuO2の重量比が0.15〜1.5であり、(R
uO2+ガラス粉末)に対するAg/Pd合金のフレー
ク状粉末の重量比が0.03〜20である厚膜抵抗体形
成用組成物。
1. A RuO 2 powder as a solid content, a glass powder, and a flake powder of Ag / Pd alloy having a weight ratio of Ag: Pd of 95: 5 to 30:70, wherein the weight ratio of RuO 2 to the glass powder. Is 0.15 to 1.5, and (R
A composition for forming a thick film resistor, wherein the weight ratio of the flake powder of Ag / Pd alloy to (uO 2 + glass powder) is 0.03 to 20.
JP4235242A 1992-08-11 1992-08-11 Composition for forming thick film resistor Pending JPH0661005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4235242A JPH0661005A (en) 1992-08-11 1992-08-11 Composition for forming thick film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4235242A JPH0661005A (en) 1992-08-11 1992-08-11 Composition for forming thick film resistor

Publications (1)

Publication Number Publication Date
JPH0661005A true JPH0661005A (en) 1994-03-04

Family

ID=16983184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4235242A Pending JPH0661005A (en) 1992-08-11 1992-08-11 Composition for forming thick film resistor

Country Status (1)

Country Link
JP (1) JPH0661005A (en)

Similar Documents

Publication Publication Date Title
JPH06653B2 (en) Method for producing pyrochlore compound containing tin oxide
JPH0337281B2 (en)
WO2018150890A1 (en) Resistor composition, resistor paste containing same, and thick-film resistor using same
JPH02249203A (en) Resistance material and resistance paste
JPS6335081B2 (en)
JPH05234703A (en) Resistance composition for manufacturing thick-film resistor
JP2555536B2 (en) Method for manufacturing platinum temperature sensor
JP3094683B2 (en) Composition for forming thick film resistor
JPH0661005A (en) Composition for forming thick film resistor
JP7139691B2 (en) Composition for thick film resistor, thick film resistor paste and thick film resistor
US4655965A (en) Base metal resistive paints
JP2900610B2 (en) Thick film conductor composition
JP2777206B2 (en) Manufacturing method of thick film resistor
JPH0654726B2 (en) Thick film resistor forming composition
JP2020061467A5 (en)
US5567358A (en) Thick film resistor composition
JPH0590006A (en) Composition for thick-film resistor formation
JP7273266B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
US6355188B1 (en) Resistive material, and resistive paste and resistor comprising the material
JP2644017B2 (en) Resistance paste
JPH113802A (en) Resistance paste for low-temperature baking
JPH0770370B2 (en) Thick film resistor forming composition
JP2001236825A (en) Electricity resistance paste composition
JP2023144072A (en) Thick film resistor composition, thick film resistor paste, and thick film resistor
JP2020061466A5 (en)