JPH0660564B2 - Air-fuel mixture controller - Google Patents

Air-fuel mixture controller

Info

Publication number
JPH0660564B2
JPH0660564B2 JP25067185A JP25067185A JPH0660564B2 JP H0660564 B2 JPH0660564 B2 JP H0660564B2 JP 25067185 A JP25067185 A JP 25067185A JP 25067185 A JP25067185 A JP 25067185A JP H0660564 B2 JPH0660564 B2 JP H0660564B2
Authority
JP
Japan
Prior art keywords
air
amount
turbine
fuel mixture
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25067185A
Other languages
Japanese (ja)
Other versions
JPS62111105A (en
Inventor
則隆 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25067185A priority Critical patent/JPH0660564B2/en
Publication of JPS62111105A publication Critical patent/JPS62111105A/en
Publication of JPH0660564B2 publication Critical patent/JPH0660564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は混気量制御装置に関し、混気系統を有する廃熱
回収発電プラントに利用される。
TECHNICAL FIELD The present invention relates to an air-fuel mixture control device, and is used in a waste heat recovery power plant having an air-fuel mixture system.

従来の技術 従来の廃熱回収発電プラントの系統例を第4図を参照し
て説明する。
2. Description of the Related Art An example of a conventional waste heat recovery power plant system will be described with reference to FIG.

第4図において、復水器1にて凝縮された復水は、復水
ポンプ2によつて混気フラツシヤ3に送られ、ここで熱
水と混合される。その後、給水ポンプ4によつて給水予
熱器5およびボイラ付属給水予熱器6へ給水分配弁7お
よび8を通して送られ、ここで廃熱源によつて加熱さ
れ、温度差制御器9によつて温度調整されて、1号ボイ
ラ10および2号ボイラ11へ給水制御弁12および1
3を通して供給される。
In FIG. 4, the condensate condensed in the condenser 1 is sent to the mixed air flasher 3 by the condensate pump 2 and mixed there with hot water. After that, it is sent to the feed water preheater 5 and the boiler attached feed water preheater 6 through the feed water distribution valves 7 and 8 by the feed water pump 4, where it is heated by the waste heat source and temperature adjusted by the temperature difference controller 9. The feed water control valves 12 and 1 are fed to the No. 1 boiler 10 and No. 2 boiler 11, respectively.
Supplied through 3.

ここで、1号ボイラ10は給水予熱器6を有するボイラ
を、2号ボイラ11は蒸発部のみからなるボイラを例示
している。
Here, No. 1 boiler 10 exemplifies a boiler having the feedwater preheater 6, and No. 2 boiler 11 exemplifies a boiler having only an evaporation section.

各ボイラは廃熱回収形ボイラであるので、図示しない廃
熱源によつて加熱され、蒸気を発生する。これらの蒸気
は、主蒸気管14に集合され、加減弁15を通してター
ビン16に送気され、ここで仕事をして復水器1に入
り、復水に戻る。
Since each boiler is a waste heat recovery type boiler, it is heated by a waste heat source (not shown) to generate steam. These steams are collected in the main steam pipe 14, are sent to the turbine 16 through the regulator valve 15, work there, enter the condenser 1, and return to the condensate.

給水予熱器5および6において給水に回収される廃熱が
ボイラ10および11に必要な給水量よりも多量に得ら
れるときには、主給水管17に設けられた給水温度制御
器18によつて温度制御弁19が開けられ、熱水を混気フ
ラツシヤ3へ導入する。
When the waste heat recovered in the feed water in the feed water preheaters 5 and 6 is obtained in a larger amount than the feed water amount required for the boilers 10 and 11, the temperature control is performed by the feed water temperature controller 18 provided in the main feed pipe 17. The valve 19 is opened, and hot water is introduced into the air-fuel mixture flasher 3.

混気フラツシヤ3では、熱水がフラツシユし、発生した
蒸気は混気止弁20を通してタービン16の中間段に混気
され、廃熱の回収率の向上を計つている。
In the air-fuel mixture flasher 3, hot water is flushed, and the generated steam is mixed into the intermediate stage of the turbine 16 through the air-mixing stop valve 20 to improve the recovery rate of waste heat.

熱水逃し弁21はタービン起動時、或は混気停止時に、
余剰の熱水を復水器1へ逃すものである。
The hot water relief valve 21 is activated when the turbine is started or when the air mixture is stopped.
The surplus hot water is released to the condenser 1.

発明が解決しようとする問題点 従来の方式では、タービン16が単独調速運転に移行し
たとき、或は低負荷となつたときは、混気運転が不能と
なるため、混気止弁20および給水温度制御弁19を閉
じて混気を停止する。すると混気フラツシヤ3へ供給さ
れていた熱水を処理するために熱水逃し弁21が開いて
復水器1へ熱水がダンプされることとなる。これによつ
て、急に復水器1および復水ポンプ2等の復水系統は多
量の復水を処理しなければならなくなる。このため、通
常は使用されることのない熱水ダンプ時に合わせた過大
な設備を設置しておかなければならない無駄を生じてい
る。特に、低温廃熱回収形プラントでは、熱水ダンプ量
が過大となり、プラント構成上制約が生じることがあ
る。
Problems to be Solved by the Invention In the conventional method, when the turbine 16 shifts to the independent speed control operation, or when the load is low, the air-fuel mixture operation cannot be performed. The feed water temperature control valve 19 is closed to stop the air-fuel mixture. Then, the hot water release valve 21 is opened to treat the hot water supplied to the air-fuel flusher 3, and the hot water is dumped to the condenser 1. As a result, the condensate system such as the condenser 1 and the condensate pump 2 must suddenly process a large amount of condensate. For this reason, there is a waste of having to install excessive equipment for a hot water dump that is not normally used. In particular, in a low temperature waste heat recovery type plant, the amount of hot water dump becomes excessively large, which may cause restrictions on the plant configuration.

タービンの構造上、無闇に混気量を増大させることはで
きないので、タービン負荷に応じた混気量に調整する必
要があるが、従来では適切な方法はなかつた。
Due to the structure of the turbine, it is not possible to increase the air-fuel mixture indiscriminately, so it is necessary to adjust the air-fuel mixture amount according to the turbine load, but in the past there was no suitable method.

問題点を解決するための手段 本発明によれば、タービン運転方式並びにタービン負荷
に応じた許容混気量をプログラム設定し、混気フラツシ
ヤへの熱水量(即ち混気蒸気量)を監視制御する装置を
設けて、過大な混気量を抑制している。
Means for Solving the Problems According to the present invention, the allowable air-fuel mixture amount according to the turbine operating system and the turbine load is programmed, and the hot water amount to the air-fuel mixture flusher (that is, the air-fuel mixture vapor amount) is monitored and controlled. A device is installed to suppress an excessive amount of air-fuel mixture.

混気の抑制が作動したときは、熱水逃し制御の設定温度
を一時的に変更し、過大な熱水ダンプを制限している。
When the suppression of air-fuel mixture is activated, the set temperature for hot water release control is temporarily changed to limit an excessive hot water dump.

更に、給水温度を監視し、給水温度が過昇するときは、
廃熱ボイラの廃熱源を一時的にバイパスさせるバイパス
調整装置を作動させて、低温熱源からの熱回収を一時的
に抑制している。
In addition, the feed water temperature is monitored, and if the feed water temperature rises excessively,
By operating a bypass adjustment device that temporarily bypasses the waste heat source of the waste heat boiler, heat recovery from the low temperature heat source is temporarily suppressed.

作用 タービン単独調速運転時或はタービン通常運転時の許容
混気量をタービン負荷に応じて算定し、タービン運転法
に応じて許容混気量をプログラム設定する。他方、混気
蒸気量を混気フラツシヤ入口の熱水量から想定し、前記
許容混気量と比較監視を行なう。若し、熱水量(即ち実
混気蒸気量)が過大となつたときは、熱水制御弁の開度
を抑制する。これによつてタービンに許容される混気蒸
気量以上の蒸気を混気することがなくなるので、タービ
ンの安全を確保することができる。
Function Calculate the allowable air-fuel mixture amount during turbine independent speed control operation or normal turbine operation according to the turbine load, and set the allowable air-fuel mixture amount according to the turbine operation method. On the other hand, the amount of air-fuel mixture is estimated from the amount of hot water at the inlet of the air-fuel mixture flusher, and the allowable amount of air-fuel mixture is monitored for comparison. If the amount of hot water (that is, the amount of actual mixed air vapor) becomes excessive, the opening degree of the hot water control valve is suppressed. As a result, it is possible to ensure the safety of the turbine, because it is not necessary to mix the steam in an amount larger than the amount of the mixed steam allowed in the turbine.

上記混気量の抑制が作動すると、熱水逃し量が増大する
ので、給水温度制御の設定値を一時的に上昇させ、熱水
逃し弁の開度を最小限にする。これによつて、回収した
廃熱を復水器に放出する無駄がなくなると共に、復水系
統への過大な負荷を防止することができる。
When the suppression of the air-fuel mixture amount is activated, the hot water escape amount increases, so the set value of the feed water temperature control is temporarily increased to minimize the opening degree of the hot water escape valve. This eliminates the waste of releasing the recovered waste heat to the condenser and prevents an excessive load on the condensate system.

上記においても未だ廃熱加熱量と回収熱量とのバランス
がとれずに給水温度が過昇する恐れがあるため、給水温
度の監視を行ない、給水温度が過昇すれば、廃熱源のバ
イパス装置を開けて廃熱の回収量を減じバランスを計
る。このとき、まず、熱水発生が主目的である給水予熱
器の低温廃熱源をバイパスさせ、更に要すれば、ボイラ
付属の給水予熱器の廃熱源をバイパスさせる。
Even in the above case, there is a possibility that the waste water heating amount and the recovered heat amount will not be balanced and the feed water temperature may rise excessively.Therefore, the feed water temperature should be monitored.If the feed water temperature rises excessively, the bypass device of the waste heat source should be installed. Open to reduce the amount of waste heat recovered and balance. At this time, first, the low temperature waste heat source of the feed water preheater whose main purpose is hot water generation is bypassed, and if necessary, the waste heat source of the feed water preheater attached to the boiler is bypassed.

これによつて、タービンにて必要な発電を行ないつつ、
タービンの運転上やむなく抑制すべき混気蒸気のみを抑
制できると共に、復水器へ放出される熱水逃し量を最小
限にすることができる。これによつて当然復水系統への
過大な負荷も防止でき、過大な設備の設置を不要にする
ことができる。
This allows the turbine to generate the required power,
It is possible to suppress only the air-fuel mixture that must be suppressed in the operation of the turbine, and to minimize the amount of hot water released to the condenser. This naturally prevents an excessive load on the condensate system and makes it unnecessary to install an excessive amount of equipment.

実施例 第1図は本発明による装置を適用した廃熱回収発電プラ
ントの例を示すもので、図中、参照符号1は復水器、2
は復水ポンプ、3は混気フラツシヤ、4は給水ポンプ、
5は給水予熱器、6はボイラ付属給水予熱器、7および
8は給水分配弁、9は温度差制御器、10は給水予熱器
付ボイラ、11はボイラ、12および13は給水制御弁、
14は主蒸気管、15は加減弁、16はタービン、17
は主給水管、18は給水温度制御器、19は給水温度制
御弁、20は混気止弁、21は熱水逃し弁、22は主蒸
気圧力制御器、23は発電機、24は発電機出力計、2
5は通常運転用プログラム設定器、26は単独調速運転
用プログラム設定器、27は単独運転検出器、28は信号
切替器、29は低信号選択器、30は信号切替器、31
は給水予熱器用バイパス装置、32は温度設定器、33
は温度検出器、34はオーバライドリレー、35はバイ
パス装置をそれぞれ示している。
Example FIG. 1 shows an example of a waste heat recovery power plant to which the device according to the present invention is applied. In the figure, reference numeral 1 is a condenser, 2
Is a condensate pump, 3 is a mixture flusher, 4 is a water supply pump,
5 is a water supply preheater, 6 is a water supply preheater attached to a boiler, 7 and 8 are water supply distribution valves, 9 is a temperature difference controller, 10 is a boiler with water supply preheater, 11 is a boiler, 12 and 13 are water supply control valves,
14 is a main steam pipe, 15 is a control valve, 16 is a turbine, 17
Is a main water supply pipe, 18 is a water supply temperature controller, 19 is a water supply temperature control valve, 20 is a mixture stop valve, 21 is a hot water relief valve, 22 is a main steam pressure controller, 23 is a generator, and 24 is a generator. Output meter, 2
5 is a program setter for normal operation, 26 is a program setter for independent speed control operation, 27 is an independent operation detector, 28 is a signal switcher, 29 is a low signal selector, 30 is a signal switcher, 31
Is a bypass device for the water supply preheater, 32 is a temperature setter, 33
Is a temperature detector, 34 is an override relay, and 35 is a bypass device.

復水器1にて凝縮された復水は、復水ポンプ2によつて
混気フラツシヤ3に送られ、ここで熱水と混合される。
その後、給水ポンプ4によつて給水予熱器5およびボイ
ラ付属給水予熱器6へ給水分配弁7および8を通して送
られ、ここで廃熱源によつて加熱され、温度差制御器9
によつて温度調整されて、1号ボイラ10および2号ボ
イラ11へ給水制御弁12および13を通して供給され
る。1号ボイラ10は給水予熱器6を有するボイラを、
2号ボイラ11は蒸発部のみからなるボイラを例示して
いる。
The condensate condensed in the condenser 1 is sent to the mixed air flasher 3 by the condensate pump 2 and mixed there with hot water.
After that, it is sent by the feed water pump 4 to the feed water preheater 5 and the boiler attached feed water preheater 6 through the feed water distribution valves 7 and 8, where it is heated by the waste heat source and the temperature difference controller 9
The temperature of the water is controlled by the water supply control valves 12 and 13 to the No. 1 boiler 10 and No. 2 boiler 11. The No. 1 boiler 10 is a boiler having a water supply preheater 6,
The No. 2 boiler 11 exemplifies a boiler having only an evaporator.

各ボイラは図示しない廃熱源によつて加熱され、蒸気を
発生する。これらの蒸気は、主蒸気管14に集合され、
加減弁15を通してタービン16に送気され、ここで仕
事をして復水器1に入り、復水に戻る。給水予熱器5お
よび6において給水に回収される廃熱がボイラ10およ
び11に必要な給水量よりも多量に得られるときは、主
給水管17に設けられた給水温度制御器18によつて温度
制御弁19が開けられ、熱水を混気フラツシヤ3へ導入
する。混気フラツシヤ3では、熱水がフラツシユし、発
生した蒸気は混気止弁20を通してタービン16の中間
段に混気される。これによつて、特に低温廃熱の回収が
計られ熱回収率の向上に寄与している。
Each boiler is heated by a waste heat source (not shown) to generate steam. These steams are collected in the main steam pipe 14,
The air is sent to the turbine 16 through the regulator valve 15, works there, enters the condenser 1, and returns to the condensate. When the waste heat recovered in the feed water in the feed water preheaters 5 and 6 is obtained in a larger amount than the feed water amount required for the boilers 10 and 11, the temperature is controlled by the feed water temperature controller 18 provided in the main feed pipe 17. The control valve 19 is opened, and hot water is introduced into the air-fuel mixture flasher 3. In the air-fuel mixture flasher 3, hot water flushes, and the generated steam is mixed into the intermediate stage of the turbine 16 through the air-mixing stop valve 20. As a result, particularly low-temperature waste heat is collected, which contributes to the improvement of the heat recovery rate.

熱水逃し弁21はタービン起動時或は混気停止時に、余
剰の熱水を復水器1へ逃している。
The hot water release valve 21 releases excess hot water to the condenser 1 when the turbine is started or the air-fuel mixture is stopped.

このような廃熱回収プラントでは、給水予熱器5、6お
よびボイラ10、11で回収した熱を有効に活用するた
め、通常は主蒸気管14に設けた主蒸気圧力制御器22
によつて加減弁15を制御し、発生蒸気量を有効にター
ビン16へ導入する。所謂前圧制御運転を行なつてい
る。
In such a waste heat recovery plant, in order to effectively utilize the heat recovered by the feed water preheaters 5 and 6 and the boilers 10 and 11, the main steam pressure controller 22 usually provided in the main steam pipe 14 is used.
Thus, the regulator valve 15 is controlled to effectively introduce the generated steam amount into the turbine 16. A so-called front pressure control operation is performed.

何等かの事情によつて、タービン16が単独調速運転に
移行した場合、タービン16の調速機能を確保する必要
性から混気量に制限が生じる。更には、タービン16の
安全運転確保のため、タービン負荷に応じた混気量があ
り、無闇に混気量のみを増加することはできない。
For some reason, when the turbine 16 shifts to the independent speed control operation, the amount of air-fuel mixture is limited due to the necessity of ensuring the speed control function of the turbine 16. Further, in order to ensure the safe operation of the turbine 16, there is an air-fuel mixture amount according to the turbine load, and it is impossible to increase only the air-fuel mixture amount indiscriminately.

そこで、タービン16の負荷を発電機23の出力として
発電機出力計24によつて計測し、このタービン出力に
応じて許容混気量をプログラム設定器25、26にて算
出設定する。設定器25は通常運転時の許容混気量を設
定し、設定器26は単独調速運転時の許容混気量を設定
する。そのプログラム設定の例を第2図に示す。タービ
ン16および発電機23が併列運転中か単独運転中かは
単独運転検出器27によつて検知し、信号切替器28を
作動させて設定器26または27を選択する。この選択
された許容混気量信号と給水温度制御器18からの制御
信号を低信号選択器29にて監視させ、万一許容混気量
信号を越える温度信号が伝達されたときは、直ちに許容
混気量信号を選択し、給水温度制御弁19の開度を制限
し、熱水量(即ち混気量)を抑制する。
Therefore, the load of the turbine 16 is measured by the generator output meter 24 as the output of the generator 23, and the allowable air-fuel mixture amount is calculated and set by the program setters 25 and 26 according to the turbine output. The setting device 25 sets the allowable air-fuel mixture amount during normal operation, and the setting device 26 sets the allowable air-fuel mixture amount during independent speed control operation. An example of the program setting is shown in FIG. Whether the turbine 16 and the generator 23 are in parallel operation or in isolated operation is detected by an isolated operation detector 27, and the signal switch 28 is operated to select the setter 26 or 27. The low signal selector 29 monitors the selected allowable mixed air amount signal and the control signal from the feed water temperature controller 18, and if a temperature signal exceeding the allowable mixed air amount signal is transmitted, it is immediately permitted. The air-mixed amount signal is selected, the opening degree of the feed water temperature control valve 19 is limited, and the hot water amount (that is, the air-mixed amount) is suppressed.

混気量のみの抑制では給水温度の上昇を招くので、単独
運転検出器27が単独調速運転を検知したときは、同時
に信号切替器30も作動させ、バイパス装置31を許容
混気量信号に見合う開度まで開き、廃熱回収量を抑制さ
せる。このとき、まず初めに、熱水発生が主目的である
給水予熱器5の系統のバイパス装置31を作動させて混
気量の抑制を行なうようにすることが肝要である。更
に、折角回収した廃熱が熱水逃し弁21を通して復水器
1へ放出されるのを防止するため、給水温度制御器18
の温度設定器32を信号切替器30の切替えと同時に作
動させ、設定温度をボイラ11、12にて許容される上
限温度まで上昇設定変更させる。これらを作動させても
更に給水温度が上昇するならば、温度検出器33によつ
て給水温度の過昇を検出し、単独運転検出器27が単独
調速運転を検出していることを確認の上、オーバライド
リレー34を作動させて給水予熱器付ボイラ10のバイ
パス装置35を駆動し、バイパス装置35を全開とし、
最後の給水予熱器6の熱回収を抑制させる。
If only the air-fuel mixture amount is suppressed, the feed water temperature rises. Therefore, when the islanding operation detector 27 detects the islanding speed control operation, the signal switching device 30 is also operated at the same time, and the bypass device 31 is changed to the allowable air-fuel mixture signal. Open to a commensurate degree to reduce the amount of waste heat recovered. At this time, first of all, it is important to operate the bypass device 31 of the system of the feedwater preheater 5 whose main purpose is to generate hot water so as to suppress the air-fuel mixture amount. Further, in order to prevent the waste heat collected at all from being released to the condenser 1 through the hot water relief valve 21, the feed water temperature controller 18
The temperature setting device 32 is operated at the same time as the signal switching device 30 is switched to raise and change the set temperature to the upper limit temperature allowed by the boilers 11 and 12. If the feed water temperature rises even if these are operated, it is confirmed that the temperature detector 33 detects an excessive rise in the feed water temperature and the islanding operation detector 27 detects the islanding speed control operation. Above, by operating the override relay 34, to drive the bypass device 35 of the boiler 10 with a feedwater preheater, to fully open the bypass device 35,
The heat recovery of the last water preheater 6 is suppressed.

これによつて、タービン16および発電機23の運転方
式並びに負荷に応じて混気量を抑制すると共に、復水器
1への熱水の放出を最小限に抑制することができる。故
に、タービン16の運転の安全が確保できると共に、復
水系統の設備容量を過大なものとする必要がなくなる。
As a result, it is possible to suppress the amount of air-fuel mixture according to the operating method and load of the turbine 16 and the generator 23, and to suppress the release of hot water to the condenser 1 to the minimum. Therefore, the safety of the operation of the turbine 16 can be ensured, and it becomes unnecessary to make the installed capacity of the condensate system excessive.

バイパス装置31、35に関しては、廃熱源を廃ガスと
した場合を例にし、第3a図ないし第3c図を参照して
具体的に説明する。
The bypass devices 31 and 35 will be specifically described with reference to FIGS. 3a to 3c, taking a case where waste heat source is waste gas as an example.

給水予熱器5のバイパス装置31は第3a図のように、
バイパスダクト311およびその中に設けたバイパスダン
パ312を有し給水予熱器5の下流側には通風機51およ
びその入口ダンパ52を備え、給水温度の過昇時にはバ
イパスダンパ312を開くと共に入口ダンパ52を閉じる
ようにするのがよい。
The bypass device 31 of the feed water preheater 5 is, as shown in FIG. 3a,
A bypass duct 311 and a bypass damper 312 provided therein are provided, and a ventilator 51 and an inlet damper 52 thereof are provided on the downstream side of the feedwater preheater 5. When the feedwater temperature rises excessively, the bypass damper 312 is opened and the inlet damper 52 is provided. Should be closed.

第3b図および第3c図は給水予熱器付ボイラ10に関
するバイパス装置35の例を示すもので、第3b図はボ
イラ10をバイパスダクト351およびその中に設置のバ
イパスダンパ352によつてバイパスし、第3c図はバイ
パスダクト353およびバイパスダンパ354によつてボイラ
付属給水予熱器6のみをバイパスする例を示している。
給水温度過昇時には、バイパスダンパ352を開き、通風
機入口ダンパ101を閉じるようにするか、またはボイラ
付属給水予熱器6のバイパスダクト353に設けられたバ
イパスダンパ354を開くようにするのが望ましい。
FIGS. 3b and 3c show an example of the bypass device 35 for the boiler 10 with feedwater preheater, and FIG. 3b shows that the boiler 10 is bypassed by a bypass duct 351 and a bypass damper 352 installed therein. FIG. 3c shows an example in which only the boiler feed water preheater 6 is bypassed by the bypass duct 353 and the bypass damper 354.
When the feed water temperature rises excessively, it is desirable to open the bypass damper 352 and close the ventilator inlet damper 101, or open the bypass damper 354 provided in the bypass duct 353 of the boiler-provided feed water preheater 6. .

発明の効果 以上、本発明によれば次のような効果を奏することがで
きる。
Effects of the Invention As described above, according to the present invention, the following effects can be achieved.

(a) タービンの運転方式およびタービン負荷に応じた
許容混気量と給水温度制御信号とを監視し比較し抑制す
ることにより、タービンへ混気される蒸気量をタービン
の許容限界以下に抑制できるため、タービンの安全運転
が確保できる。
(a) The amount of steam mixed into the turbine can be suppressed below the allowable limit of the turbine by monitoring, comparing and suppressing the allowable amount of mixed air according to the turbine operating method and turbine load and the feedwater temperature control signal. Therefore, safe operation of the turbine can be secured.

(b) 同時に、給水温度制御器の設定温度をボイラの上
限温度まで変更し、更に初めに給水予熱器のバイパス装
置を作動させておくことによつて、復水器への熱水の放
出を最小限に抑制できるため、折角回収した廃熱を復水
器に放出するという無駄がなくなる。
(b) At the same time, the set temperature of the feed water temperature controller is changed to the upper limit temperature of the boiler, and the bypass device of the feed water preheater is activated first to prevent the release of hot water to the condenser. Since it can be suppressed to a minimum, waste heat that has been collected is released to the condenser.

(c) 給水管に温度検出器を設け、給水温度が過昇する
場合はボイラ付属給水予熱器のバイパス装置を作動させ
ることによつて、廃熱の回収を抑制できるので、回収し
た廃熱の復水器への無駄な放出を防止することができ
る。
(c) If a temperature detector is installed in the water supply pipe and the supply water temperature rises excessively, by operating the bypass device of the feedwater preheater attached to the boiler, the recovery of waste heat can be suppressed. It is possible to prevent wasteful discharge to the condenser.

(d) 上記順序を踏むことによつて、万一タービンの混
気量に制限が生じたときは、タービンへの主蒸気は確保
しながら混気のみを制限でき、復水器への熱水の急激な
排出が生じないため、復水系統の設備容量を熱水排出時
に見合う過大容量にしておく必要がなくなる。
(d) By following the above steps, if the mixture amount of the turbine is limited, it is possible to limit the mixture while securing the main steam to the turbine. Since no sudden discharge of hot water occurs, it is not necessary to keep the installed capacity of the condensate system at an excessive capacity that is suitable for hot water discharge.

【図面の簡単な説明】 第1図は本発明による制御装置を適用した例を示す廃熱
回収発電プラントの系統図、第2図はタービンの運転方
式およびタービン負荷に応じた許容混気量のプログラム
設定例を示す図、第3a図、第3b図および第3c図は
廃熱源が廃ガスの場合のバイパス装置の例を示す図、第
4図は従来の廃熱回収発電プラントの系統図である。 1……復水器、2……復水ポンプ、3……混気フラツシ
ヤ、4……給水ポンプ、5……給水予熱器、6……ボイ
ラ付属給水予熱器、7,8……給水分配弁、9……温度
差制御器、10……給水予熱器付ボイラ、11……ボイ
ラ、12,13……給水制御弁、14……主蒸気管、1
5……加減弁、16……タービン、17……主給水管、
18……給水温度制御器、19……給水温度制御弁、2
0……混気止弁、21……熱水逃し弁、22……主蒸気
圧力制御器、23……発電機、24……発電機出力計、
25……通常運転用プログラム設定器、26……単独調
速運転用プログラム設定器、27……単独運転検出器、
28……信号切替器、29……低信号選択器、30……
信号切替器、31……給水予熱器用バイパス装置、32…
…温度設定器、33……温度検出器、34……オーバラ
イドリレー、35……バイパス装置。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram of a waste heat recovery power generation plant showing an example in which a control device according to the present invention is applied, and FIG. 2 is a diagram showing an allowable air-fuel mixture amount according to a turbine operating system and turbine load. Figures showing examples of program settings, Figures 3a, 3b and 3c show examples of bypass devices when the waste heat source is waste gas, and Figure 4 is a system diagram of a conventional waste heat recovery power plant. is there. 1 ... Condenser, 2 ... Condensate pump, 3 ... Mixing flusher, 4 ... Water supply pump, 5 ... Water supply preheater, 6 ... Boiler attached water preheater, 7, 8 ... Water supply distribution Valve, 9 ... Temperature difference controller, 10 ... Boiler with water supply preheater, 11 ... Boiler, 12,13 ... Water supply control valve, 14 ... Main steam pipe, 1
5 ... Control valve, 16 ... Turbine, 17 ... Main water supply pipe,
18 ... Water temperature controller, 19 ... Water temperature control valve, 2
0 ... Mixing stop valve, 21 ... Hot water relief valve, 22 ... Main steam pressure controller, 23 ... Generator, 24 ... Generator output meter,
25: normal operation program setter, 26: independent speed control operation program setter, 27: individual operation detector,
28 …… signal switcher, 29 …… low signal selector, 30 ……
Signal switcher, 31 ... Bypass device for water supply preheater, 32 ...
... Temperature setting device, 33 ... Temperature detector, 34 ... Override relay, 35 ... Bypass device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タービンの運転方式およびタービン負荷に
応じた許容混気量信号を算出設定するプログラム設定器
と、前記許容混気量信号と給水温度制御信号とを比較し
てタービンへの蒸気量を許容限界以下に制御する装置
と、給水予熱器に設けられ給水温度過昇に対して熱回収
量を抑制するバイパス装置と、ボイラ付属給水予熱器に
設けられ給水温度の更なる過昇に対して熱回収量を抑制
するバイパス装置とを備えてなる混気量制御装置。
Claim: What is claimed is: 1. A program setter for calculating and setting an allowable air-fuel mixture signal according to a turbine operating system and a turbine load, and comparing the allowable air-fuel mixture signal with a feed water temperature control signal, the amount of steam to the turbine. Device to control the temperature below the allowable limit, a bypass device installed in the feed water preheater to suppress the amount of heat recovery against excessive rise in the feed water temperature, and a bypass device installed in the boiler feed water preheater to prevent excessive rise in the feed water temperature. And a bypass device for suppressing the amount of heat recovery.
JP25067185A 1985-11-11 1985-11-11 Air-fuel mixture controller Expired - Lifetime JPH0660564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25067185A JPH0660564B2 (en) 1985-11-11 1985-11-11 Air-fuel mixture controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25067185A JPH0660564B2 (en) 1985-11-11 1985-11-11 Air-fuel mixture controller

Publications (2)

Publication Number Publication Date
JPS62111105A JPS62111105A (en) 1987-05-22
JPH0660564B2 true JPH0660564B2 (en) 1994-08-10

Family

ID=17211313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25067185A Expired - Lifetime JPH0660564B2 (en) 1985-11-11 1985-11-11 Air-fuel mixture controller

Country Status (1)

Country Link
JP (1) JPH0660564B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095497A (en) * 2012-11-08 2014-05-22 Miura Co Ltd Boiler water supply heating system
JP2020041771A (en) * 2018-09-12 2020-03-19 三浦工業株式会社 Steam generating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493204U (en) * 1990-02-17 1992-08-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095497A (en) * 2012-11-08 2014-05-22 Miura Co Ltd Boiler water supply heating system
JP2020041771A (en) * 2018-09-12 2020-03-19 三浦工業株式会社 Steam generating device

Also Published As

Publication number Publication date
JPS62111105A (en) 1987-05-22

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
US4578944A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
US9593844B2 (en) Method for operating a waste heat steam generator
US4854121A (en) Combined cycle power plant capable of controlling water level in boiler drum of power plant
WO1998059158A1 (en) Steam cooling apparatus for gas turbine
JPH0660564B2 (en) Air-fuel mixture controller
JP3752568B2 (en) Gas turbine fuel heating system
JPS6239653B2 (en)
JPS6149487B2 (en)
JPS63192905A (en) Main steam pressure control method for power generating plant
JPH01195903A (en) Extraction controller for extraction steam turbine
JPS6242123B2 (en)
JPS6135441B2 (en)
JPS622129B2 (en)
JPH08135405A (en) High pressure turbine bypass steam temperature control method and its device
JPH01193507A (en) Pressure and wafer level controller of aerator at the time of sudden decrease of load
JPH02136502A (en) Temperature control device
JPS6115961B2 (en)
JPH07318006A (en) White smoke preventing device for steam generating equipment
JPH0765728B2 (en) Method and apparatus for controlling stop of combined cycle power plant
JPS6334402A (en) Method of starting thermal power plant
JPS63192903A (en) Main steam pressure control method for power generating plant
JPS6153411A (en) Steam pressure controlling apparatus
JPS63192906A (en) Main steam pressure control method for power generating plant
JPS62297602A (en) Controller for pressure of main steam