JPH01195903A - Extraction controller for extraction steam turbine - Google Patents

Extraction controller for extraction steam turbine

Info

Publication number
JPH01195903A
JPH01195903A JP1965988A JP1965988A JPH01195903A JP H01195903 A JPH01195903 A JP H01195903A JP 1965988 A JP1965988 A JP 1965988A JP 1965988 A JP1965988 A JP 1965988A JP H01195903 A JPH01195903 A JP H01195903A
Authority
JP
Japan
Prior art keywords
extraction
signal
bleed
control valve
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1965988A
Other languages
Japanese (ja)
Other versions
JP2587445B2 (en
Inventor
Shiyou Ishida
承 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63019659A priority Critical patent/JP2587445B2/en
Publication of JPH01195903A publication Critical patent/JPH01195903A/en
Application granted granted Critical
Publication of JP2587445B2 publication Critical patent/JP2587445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To improve plant efficiency and to enable selection of optimal extraction amount of steam by regulating the opening of an extraction control valve based on an outlet supply water temperature signal of a water supply heater, a total fuel flow signal and an actual load signal of generator. CONSTITUTION:A HP extraction control valve 18 is provided to a HP extraction steam pipe 37 coupled with a high pressure turbine 32 and feeding extraction steam to a HP water supply heater 46 while an LP extraction control valve 19 is provided to an LP extraction steam pipe 38 led from an intermediate pressure turbine 33. Signals detected through heater outlet temperature detectors 47, 43 arranged respectively at the outlets of water supply heaters 46, 42, a total fuel flow signal detected through a flow meter 31 arranged in a fuel pipe 29 and actual load signal of a generator 35 are provided, as input signals, to the control circuits of the extraction control valves 18, 19. In the control circuits, an optimal temperature of supply water is set as a function of the load and the fuel flow, then it is compared with an actual temperature in order to regulate the openings of the extraction control valves 18, 19. By such arrangement, the generator load for respective load band or throw-in amount of fuel, i.e. the plant efficiency, can be maximized.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は抽気タービンZ有する火力発電プラント全般に
適用され、抽気蒸気量の最適制御ン行なう装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is generally applicable to thermal power plants having an extraction turbine Z, and relates to an apparatus for optimally controlling the amount of extracted steam.

(従来の技術〕 従来の火力発電プラントの一例ン第3図により説明する
(Prior Art) An example of a conventional thermal power plant will be explained with reference to FIG.

ボイラ20は、燃料制御弁30を備えた燃料管29より
供給された燃料が押込通風機27(以後FDFという)
より導入された空気と混合し、燃焼して炉内に設けられ
ている過熱器21(以後SHというつ内の蒸気が過熱さ
れ更に煙道側に設けられた再熱器22(以後RHという
)においても過熱される。その後、燃焼排ガスは煙道ダ
クト28より煙突等(図示していない。)を経て外部へ
放出される。
The boiler 20 uses fuel supplied from a fuel pipe 29 equipped with a fuel control valve 30 to a forced draft fan 27 (hereinafter referred to as FDF).
The steam is mixed with the air introduced into the furnace and combusted, and the steam in the furnace is superheated in a superheater 21 (hereinafter referred to as SH), which is then heated to a reheater 22 (hereinafter referred to as RH) installed on the flue side. Thereafter, the combustion exhaust gas is discharged to the outside from the flue duct 28 through a chimney or the like (not shown).

前記の8H21において過熱された蒸気は、主蒸気管2
5’に経て、高圧タービン32に供給され、熱回収され
て一部はRH22に送られろ。又、−部はHP抽気止弁
39を備えたHP抽気蒸気管37より、HP給水ヒータ
46へ送られて、ボイラ給水ン加熱する。一方、RH2
2に送られた蒸気は再度過熱され、再熱蒸気管26Y経
て中圧タービン33へ送られて再び熱回収され、更に低
圧タービン34へ送られる。この中圧タービン33には
、LP抽気止弁4(l備えたLP抽気蒸気管38が設け
られており、抽気された蒸気はLP給水ヒータ42に送
られ、復水器36にて復水された復水を加熱する。この
加熱された復水は、DEA (脱気器)44、BFP(
ボイラ給水ポンゾ)45および上記HP給水ヒータ46
を経て、給水管48により上記ボイラ20へ導かれるよ
うになっている。
The steam superheated in 8H21 is transferred to the main steam pipe 2.
5', the heat is supplied to the high pressure turbine 32, the heat is recovered, and a portion is sent to the RH 22. In addition, the negative portion is sent to the HP feed water heater 46 from the HP bleed steam pipe 37 equipped with the HP bleed stop valve 39 to heat the boiler feed water. On the other hand, RH2
2 is superheated again, sent to the intermediate pressure turbine 33 via the reheat steam pipe 26Y, where the heat is recovered again, and further sent to the low pressure turbine 34. This intermediate pressure turbine 33 is provided with an LP bleed steam pipe 38 having an LP bleed stop valve 4 (l), and the extracted steam is sent to the LP water heater 42 and condensed in the condenser 36. This heated condensate is heated by DEA (deaerator) 44, BFP (
boiler water supply ponzo) 45 and the above HP water supply heater 46
The water is then led to the boiler 20 by a water supply pipe 48.

なお、35は上記LPメタ−ン34に連結されている発
電機であり、41は復水ポンプ、23はSHスプレー、
24はRHスプレーである。
In addition, 35 is a generator connected to the above-mentioned LP methane 34, 41 is a condensate pump, 23 is an SH spray,
24 is RH spray.

さて、従来抽気タービンから蒸気を抽気する場合、一定
負荷以上においては抽気止弁を全開とし、抽気蒸気量を
考慮することなく、抽気によりボイラ給水を加熱してい
た。
Conventionally, when steam is extracted from a bleed turbine, the bleed stop valve is fully opened when the load exceeds a certain level, and the boiler feed water is heated by the bleed air without considering the amount of extracted steam.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

HP抽気止弁39およびLP抽気止弁40が全開すると
、発電に寄与する蒸気が抽気されて直接発電負荷が減少
する一方で、給水が加熱されるから投入燃料量は減少す
る。逆に抽気止弁が全閉すると、タービンへの入力蒸気
は全て発電に寄与するから直接発電負荷が増加する一方
、給水は加熱されないから、投入燃料量は増加する。こ
のよ5に抽気止高閉は、直接発電の減少/増加に寄与す
る一方、投入燃料量の増加/減少を引き起こす。
When the HP bleed stop valve 39 and the LP bleed stop valve 40 are fully opened, the steam that contributes to power generation is bled and the power generation load is directly reduced, while the feed water is heated, so the amount of input fuel is reduced. Conversely, when the bleed stop valve is fully closed, all of the steam input to the turbine contributes to power generation, so the power generation load directly increases, while the feed water is not heated, so the amount of input fuel increases. In this way, the bleed air shut-off directly contributes to a decrease/increase in power generation, while at the same time causing an increase/decrease in the amount of input fuel.

したがって、各負荷においてプラント効率を最高にする
抽気量が存在するはずであるが、従来は抽気止弁は全開
または全閉で、抽気量は考慮されなかったので、プラン
ト効率改善の余地が残っていた。
Therefore, there should be an amount of bleed air that maximizes plant efficiency at each load, but in the past, bleed stop valves were either fully open or fully closed, and the amount of bleed air was not taken into account, so there remains room for improvement in plant efficiency. Ta.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記従来の課題を解決するために、抽気タービ
ンを有する火力発電プラントにおいて、抽気蒸気馨給水
ヒータに導1<抽気蒸気管に抽気制御弁を設けるととも
に、上記給水ヒータの出口給水温度信号と、総燃料流量
信号と、発電機の実負荷信号とにより、上記抽気制御弁
の開度音調節するようKしたことを特徴とする抽気ター
ビンの抽気制御装置な提案するものである。
In order to solve the above-mentioned conventional problems, the present invention provides a bleed steam control valve in the bleed steam pipe leading to the bleed water feed water heater in a thermal power plant having a bleed turbine, and also provides a bleed water temperature signal at the outlet of the feed water heater. This invention proposes an air extraction control device for an air extraction turbine, characterized in that the opening sound of the air extraction control valve is adjusted based on a total fuel flow rate signal and an actual load signal of the generator.

〔作用〕[Effect]

給水ヒータ出口給水の最適温度を負荷および燃料流量の
関数として設定し、実温度と比較して抽気制御弁の開度
ya’調節することにより、各負荷帯における燃料投入
量に対する発電負荷すなわちプランド効率を最大にする
ことができる。
By setting the optimum temperature of the feed water at the outlet of the feed water heater as a function of the load and fuel flow rate, and adjusting the opening degree ya' of the extraction control valve by comparing it with the actual temperature, the power generation load, that is, the Prand efficiency, for the amount of fuel input in each load zone can be determined. can be maximized.

〔実施例〕〔Example〕

第2図は本発明の一実施例の系統図、第1図はく 同じで制御回路図である。 Figure 2 is a system diagram of an embodiment of the present invention, Figure 1 is a diagram of an embodiment of the present invention. It is the same control circuit diagram.

まず第2図においては、前記第3図により説明した従来
のものと同様の部分には同一の符号を付け、詳しい説明
!省略する。本実施例においては、高圧タービン32に
接続され、HP給水ヒータ46へ抽気蒸気を供給するH
P抽気蒸気管37にHP抽気制御弁18を追設するとと
もに、中圧タービン33からのLP抽気蒸気管38には
、LP抽気制御弁19を追設する。そして、これら抽気
制御弁18.19の開度な、第1図図示の制御回路で制
御する。更KHP給水ヒータ46の出口とLP給水ヒー
タ42の出口とにHP上ヒータ口温度検出計47とLP
上ヒータ口温度検出計43とをそれぞれ設け、これらの
信号を抽気制御弁18.19の制御回路へ送るように構
成しておくとともに、燃料管29に設けられた流量計3
1の総燃料流量信号と、発電機35からの実負荷信号と
χも制御回路の入力信号とする。
First, in FIG. 2, the same parts as those of the conventional device explained in FIG. Omitted. In this embodiment, the H
An HP bleed control valve 18 is additionally installed in the P bleed steam pipe 37, and an LP bleed control valve 19 is additionally installed in the LP bleed steam pipe 38 from the intermediate pressure turbine 33. The opening degrees of these bleed control valves 18 and 19 are controlled by the control circuit shown in FIG. In addition, a HP upper heater mouth temperature detector 47 and an LP are installed at the outlet of the KHP water heater 46 and the outlet of the LP water heater 42.
A flow meter 3 provided in the fuel pipe 29 is configured to send these signals to the control circuit of the bleed air control valve 18 and 19.
1, the actual load signal from the generator 35, and χ are also input signals to the control circuit.

次に第1図により抽気蒸気制御回路を詳細に説明する。Next, the extraction steam control circuit will be explained in detail with reference to FIG.

この回路はHP抽気制御弁18およびLP抽気制御弁1
9に共に適用するものであるが、HP給水ヒータ46の
出口温度信号はHP抽気制うように構成されている。
This circuit consists of HP bleed control valve 18 and LP bleed control valve 1.
9, the outlet temperature signal of the HP feed water heater 46 is configured to control the HP bleed air.

とのヒータ出口温度(実温度)信号は、コントローラ5
に送られ、発電機35からの実負荷信号より、関数発生
器11、加算器12、更には信号選択器13を経て作成
された温度設定信号とコントローラ5において比較され
、加算器 6、信号発生器7からの最小開度信号を導き
入れる高信号選択器8、更には、自動・手動操作器14
からの手動開閉信号を導き入れる信号切換器9を経て、
電気信号χ空気信号に変換する電気/空気信号変換器1
0から、各抽気潰滅制御弁18.19へ送り、弁開度の
調WJt行う。又、燃料管29に設けられた燃料流量計
31によって検出された、総燃料流量信号は、除算器1
5に送られ、発電機35の実負荷信号とでプラント効率
の信号となり、プラント効率指示計17へ送られて、プ
ラントの効率を表示するとともに、プラント効率を加算
器12へ送る。更に、実負荷信号は、関数発生器16に
も、送られ、先行信号として、加算器6へ送られるよう
に構成されている。
The heater outlet temperature (actual temperature) signal from the controller 5
The controller 5 compares the actual load signal from the generator 35 with the temperature setting signal created via the function generator 11, the adder 12, and the signal selector 13. A high signal selector 8 that introduces the minimum opening degree signal from the device 7, and an automatic/manual operating device 14.
Via the signal switcher 9 that introduces the manual opening/closing signal from
Electrical/air signal converter 1 that converts electrical signals into air signals
0 to each bleed-air collapse control valve 18, 19, and the valve opening degree is adjusted WJt. Further, the total fuel flow rate signal detected by the fuel flow meter 31 provided in the fuel pipe 29 is sent to the divider 1.
5, the signal becomes a plant efficiency signal together with the actual load signal of the generator 35, and is sent to the plant efficiency indicator 17, which displays the efficiency of the plant, and also sends the plant efficiency to the adder 12. Furthermore, the actual load signal is also sent to a function generator 16 and is arranged to be sent as a leading signal to the adder 6.

ここで関数発生器11は、実負荷に対するHTR出口温
度の自動設定値を決める関数モジュールで、実負荷と総
燃料流量より決まるプラント効率の補正馨加算器12で
加算し、自動時の温度設定信号とする。信号選択器13
は、HTR出口温度の手動設定信号と加算器12からの
出力(自動温度設定−信号)ン切替え、コントローラ5
の実温度設定値ケ出力する。関数発生器16の出力は、
制御弁自動運転時の制御弁開度の先行信号を決める関数
であって、コントローラ5の出力に加算器6で加算され
る。高信号選択器8は、信号発生器7による制御弁の最
小開度信号Z選択する(抽気蒸気の最小量が必要な場合
9゜また信号切換器9は、高信号選択器8の出力(制御
弁の自動運転時の信号)と中央ステーションに設けた自
動・手動操作器14による運転員の手動操作信号を切替
える。
Here, the function generator 11 is a function module that determines the automatic setting value of the HTR outlet temperature for the actual load.The plant efficiency correction adder 12 determines the actual load and the total fuel flow rate. shall be. Signal selector 13
The controller 5 switches between the manual setting signal of the HTR outlet temperature and the output (automatic temperature setting signal) from the adder 12.
Outputs the actual temperature setting value. The output of the function generator 16 is
This is a function that determines the preceding signal of the control valve opening during automatic control valve operation, and is added to the output of the controller 5 by the adder 6. The high signal selector 8 selects the minimum opening signal Z of the control valve generated by the signal generator 7 (9° if the minimum amount of extracted steam is required). The signal for automatic operation of the valve) and the signal for manual operation by an operator using the automatic/manual operation device 14 provided at the central station are switched.

〔発明の効果〕〔Effect of the invention〕

本発明においては、抽気蒸気の量ン、プラント効率であ
る発電負荷量および燃料消費量より見直して制御するの
で、プラント効率を向上させ得る最適抽気蒸気量ケ選定
することができる。
In the present invention, control is performed based on the amount of extracted steam, power generation load and fuel consumption, which are plant efficiency, so it is possible to select the optimum amount of extracted steam that can improve plant efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示す図、第3
図は従来の火力発電プラントの一例の系統図である。 5・・・コントローラ   6・・・加算器7・・・信
号発生器    8・・・高信号選択器9・・・信号切
換器    10・・・電気/空気信号変換器11・・
・関数発生器    12・・・加算器13・・・信号
選択器    14・・・自動・手動操作器15・・・
除算器     16・・・関数発生器17・・・プラ
ント効率指示計18・・・HP抽気制御弁19・・・L
P抽気制御弁 20・・・ボイラ21・・・過熱器(S
H)    22・・・再熱器(RH)23・・・SH
スプレー   24・・4■スプレー25・・・主蒸気
管     26・・・再熱蒸気管27・・・挿込通風
機(FDP)  28・・・煙道ダクト29・・・燃料
管      30・・・燃料制御弁31・・・燃料流
量計    32・・・高圧タービン33・・・中圧タ
ービン   34・・・低圧タービン35・・・発電機
      36・・・復水器37・・・HP抽気蒸気
管   38・・・LP抽気蒸気管39・・・HP抽気
止弁   40・・・LP抽気止弁41・・・復水ポン
プ    42・・・LP給水ヒータ43・・・LP上
ヒータ口温度検出計 44・・・DEA (脱気器)
1 and 2 are diagrams showing one embodiment of the present invention, and FIG.
The figure is a system diagram of an example of a conventional thermal power plant. 5... Controller 6... Adder 7... Signal generator 8... High signal selector 9... Signal switch 10... Electric/air signal converter 11...
・Function generator 12... Adder 13... Signal selector 14... Automatic/manual operator 15...
Divider 16...Function generator 17...Plant efficiency indicator 18...HP bleed control valve 19...L
P extraction control valve 20... Boiler 21... Superheater (S
H) 22...Reheater (RH) 23...SH
Spray 24...4 Spray 25...Main steam pipe 26...Reheat steam pipe 27...Drainer (FDP) 28...Flue duct 29...Fuel pipe 30... Fuel control valve 31... Fuel flow meter 32... High pressure turbine 33... Intermediate pressure turbine 34... Low pressure turbine 35... Generator 36... Condenser 37... HP extraction steam pipe 38... LP bleed steam pipe 39... HP bleed stop valve 40... LP bleed stop valve 41... condensate pump 42... LP water supply heater 43... LP upper heater mouth temperature detector 44 ...DEA (deaerator)

Claims (1)

【特許請求の範囲】[Claims] 抽気タービンを有する火力発電プラントにおいて、抽気
蒸気を給水ヒータに導く抽気蒸気管に抽気制御弁を設け
るとともに、上記給水ヒータの出口給水温度信号と、総
燃料流量信号と、発電機の実負荷信号とにより、上記抽
気制御弁の開度を調節するようにしたことを特徴とする
抽気タービンの抽気制御装置。
In a thermal power plant having a bleed turbine, a bleed steam pipe that leads bleed steam to a feed water heater is provided with a bleed control valve, and an outlet feed water temperature signal of the feed water heater, a total fuel flow rate signal, and an actual load signal of a generator are provided. A bleed air control device for an bleed air turbine, characterized in that the opening degree of the bleed air control valve is adjusted by:
JP63019659A 1988-02-01 1988-02-01 Bleeding control device for bleeding turbine Expired - Lifetime JP2587445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63019659A JP2587445B2 (en) 1988-02-01 1988-02-01 Bleeding control device for bleeding turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63019659A JP2587445B2 (en) 1988-02-01 1988-02-01 Bleeding control device for bleeding turbine

Publications (2)

Publication Number Publication Date
JPH01195903A true JPH01195903A (en) 1989-08-07
JP2587445B2 JP2587445B2 (en) 1997-03-05

Family

ID=12005375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63019659A Expired - Lifetime JP2587445B2 (en) 1988-02-01 1988-02-01 Bleeding control device for bleeding turbine

Country Status (1)

Country Link
JP (1) JP2587445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237050A (en) * 2021-05-14 2021-08-10 西安热工研究院有限公司 Automatic high-pressure heater pipe heating system and method based on data model

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818391B2 (en) * 2009-04-16 2011-11-16 中国電力株式会社 Steam turbine plant and operation method thereof
JP6737611B2 (en) 2016-03-25 2020-08-12 三菱日立パワーシステムズ株式会社 Thermal power generation system and method for controlling thermal power generation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192906A (en) * 1982-05-07 1983-11-10 Hitachi Ltd Turbine load control device
JPS61205309A (en) * 1985-03-08 1986-09-11 Hitachi Ltd Protective operating method and its device of feed water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192906A (en) * 1982-05-07 1983-11-10 Hitachi Ltd Turbine load control device
JPS61205309A (en) * 1985-03-08 1986-09-11 Hitachi Ltd Protective operating method and its device of feed water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237050A (en) * 2021-05-14 2021-08-10 西安热工研究院有限公司 Automatic high-pressure heater pipe heating system and method based on data model

Also Published As

Publication number Publication date
JP2587445B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US4592293A (en) Method of controlling an air heater of a coal-fired boiler
US9593844B2 (en) Method for operating a waste heat steam generator
JP3897891B2 (en) Combined cycle power plant
US7509794B2 (en) Waste heat steam generator
GB2166199A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
US4854121A (en) Combined cycle power plant capable of controlling water level in boiler drum of power plant
US6223520B1 (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
WO1998059158A1 (en) Steam cooling apparatus for gas turbine
JP4117517B2 (en) Coal gasification combined power plant and its operation control device.
JPH01195903A (en) Extraction controller for extraction steam turbine
JP2000213374A (en) Gas turbine fuel heating system
JP2002013701A (en) Method for controlling the number of boiler
JP2002106831A (en) Pulverized coal fired boiler facility
JPS60206909A (en) Exhaust heat recovery gas turbine power generating facility
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP2558700B2 (en) Plant warming controller
KR100293225B1 (en) Method for controlling temperature of generating boiler
JP3707087B2 (en) Reheater outlet steam temperature control system in an exhaust-fired combined cycle plant
JP2007285220A (en) Combined cycle power generation facility
JP2863645B2 (en) Feedwater flow control system for an exhaust gas reburning combined cycle power plant
JPH01212802A (en) Steam temperature control device for boiler
JPH0610619A (en) Supply water heating device
JPH0660564B2 (en) Air-fuel mixture controller
JPH08135405A (en) High pressure turbine bypass steam temperature control method and its device