JPH0658951B2 - Stacked solid-state imaging device - Google Patents

Stacked solid-state imaging device

Info

Publication number
JPH0658951B2
JPH0658951B2 JP60157886A JP15788685A JPH0658951B2 JP H0658951 B2 JPH0658951 B2 JP H0658951B2 JP 60157886 A JP60157886 A JP 60157886A JP 15788685 A JP15788685 A JP 15788685A JP H0658951 B2 JPH0658951 B2 JP H0658951B2
Authority
JP
Japan
Prior art keywords
film
solid
imaging device
state imaging
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60157886A
Other languages
Japanese (ja)
Other versions
JPS6218757A (en
Inventor
正倫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP60157886A priority Critical patent/JPH0658951B2/en
Publication of JPS6218757A publication Critical patent/JPS6218757A/en
Publication of JPH0658951B2 publication Critical patent/JPH0658951B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 [従来の技術] 本発明は、積層型固体撮像装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Prior Art] The present invention relates to a stacked solid-state imaging device.

CCD撮像素子等の固体撮像素子を信号電荷読み出し部
として用い、この上に光電変換部として光導電膜を積層
して二階建て構造とした積層型固体撮像装置が注目され
ている。この積層型撮像装置は、従来の一階建ての固体
撮像素子に比べて光学的開口率が大きくとれるため高感
度であり、また光学的開口率を大きくするための製造上
の制約がないため画素の高密度化が可能である、といっ
た基本的特徴を有する。
Attention has been focused on a stacked solid-state image pickup device having a two-story structure in which a solid-state image pickup device such as a CCD image pickup device is used as a signal charge reading unit, and a photoconductive film is stacked thereon as a photoelectric conversion unit. This stacked type image pickup device has high optical aperture ratio as compared with the conventional one-story solid-state image pickup device and thus has high sensitivity, and there is no manufacturing constraint for increasing the optical aperture ratio. It has a basic feature that high density can be achieved.

この様な積層型固体撮像装置において、光導電膜として
は例えばアモルファスSi(a−Si:H)膜等が用い
られ、信号電荷としては多くの場合移動度の高い電子が
用いられる。光照射により光導電膜内に生成された電子
正孔対のうち電子を信号電荷としてチップ基板に形成さ
れた蓄積ダイオードに輸送するためには、チップ基板表
面に各画素毎に設けられた蓄積ダイオードの電極と光導
電膜上の透明電極との間に所定の電界が印加される。こ
のとき、透明電極から光導電膜に電子が注入されること
を防止することが必要で、そのためには光導電膜と透明
電極の間にブロッキング層を介在させる。このブロッキ
ング層として従来は、光導電膜にイントリンシックのa
−Si:H膜を用いた場合p型a−Si:H膜等が用い
られる。
In such a stacked solid-state imaging device, for example, an amorphous Si (a-Si: H) film is used as the photoconductive film, and electrons having high mobility are often used as the signal charges. In order to transport the electrons of the electron-hole pairs generated in the photoconductive film by light irradiation as signal charges to the storage diode formed on the chip substrate, the storage diode provided for each pixel on the surface of the chip substrate. A predetermined electric field is applied between the electrode and the transparent electrode on the photoconductive film. At this time, it is necessary to prevent electrons from being injected from the transparent electrode into the photoconductive film, and for that purpose, a blocking layer is interposed between the photoconductive film and the transparent electrode. Conventionally, as this blocking layer, a
When a -Si: H film is used, a p-type a-Si: H film or the like is used.

[発明が解決しようとする問題点] 積層型固体撮像装置では、光電変換部として光導電膜を
用いているため、従来の一階建ての固体撮像素子に比べ
て残像が大きいことが問題となる。特に高輝度被写体を
撮像した場合のいわゆるハイライト残像は画質を大きく
劣化させる。このハイライト残像は、光導電膜内に時定
数の大きいトラップが存在することや、読み出し切れな
い信号電荷が残ることに起因する。この様な残像を少な
くするためには、信号電荷読み出しを行う前に余剰電荷
の排出を行うことが必要である。従来この様な余剰電荷
の排出を行うために、チップ基板に余剰電荷排出のため
のいわゆるオーバーフロードレインを設けることが行わ
れている。しかしながら、この様なオーバーフロードレ
イン構造を用いると、蓄積ダイオード部や転送部の駆動
に大きい制約を受けることになる。
[Problems to be Solved by the Invention] Since a stacked solid-state imaging device uses a photoconductive film as a photoelectric conversion unit, it has a problem that an afterimage is larger than that of a conventional one-story solid-state imaging device. . In particular, a so-called highlight afterimage when a high-luminance subject is imaged deteriorates image quality. This highlight afterimage is caused by the presence of traps having a large time constant in the photoconductive film and the fact that signal charges that cannot be read out remain. In order to reduce such an afterimage, it is necessary to discharge the excess charge before reading the signal charge. Conventionally, in order to discharge the surplus charges in this way, a so-called overflow drain for discharging the surplus charges has been provided on the chip substrate. However, when such an overflow drain structure is used, driving of the storage diode section and the transfer section is greatly restricted.

本発明は、簡単な構造で余剰電荷の排出を確実に行ない
得るようにした、残像の少ない積層型固体撮像装置を提
供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a stacked solid-state image pickup device having a simple structure and capable of reliably discharging excess charges and having a small afterimage.

[問題点を解決する手段および作用] 本発明は、積層型固体撮像装置において、光導電膜とそ
の上の透明電極の間に設けるブロッキング層として、所
定の電圧でトンネル電流が流れる極薄絶縁膜を介在させ
る。そして光導電膜内の余剰電荷は、透明電極と光導電
膜下の画素電極との間に撮像時とは逆の電界を印加して
トンネル効果により透明電極側に排出するようにする。
[Means and Actions for Solving Problems] The present invention relates to a laminated solid-state imaging device, which is an ultrathin insulating film through which a tunnel current flows at a predetermined voltage as a blocking layer provided between a photoconductive film and a transparent electrode thereabove. Intervene. Then, the excess electric charges in the photoconductive film are discharged to the transparent electrode side by the tunnel effect by applying an electric field opposite to that at the time of imaging between the transparent electrode and the pixel electrode below the photoconductive film.

[実施例] 以下本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

第1図は一実施例の固体撮像装置の要部断面図である。
この実施例では、固体撮像素子チップ基板としてインタ
ーライン転送型CCD撮像素子を用い、これに積層する
光導電膜としてa−Si:H膜を用いている。即ち、1
はp型Si基板であり、その表面部にn++型層2およ
びn型層3が各画素ごとに二次元的に配列形成されて
いる。このn++型層2およびn型層3と基板1との
間の接合が信号電荷の蓄積ダイオードとなっている。4
は埋込みチャネルを形成するためのn型層であり、図
面に垂直な方向に連続的に形成され、この上に第1ゲー
ト絶縁膜5を介して第1層多結晶シリコン電極6
形成され、更にその上に第2ゲート絶縁膜5を介して
第2層多結晶シリコン電極6が形成されている。第1
層多結晶シリコン電極6およ第2層多結晶シリコン電
極6は図面に垂直な方向に互いに一部重なる状態で交
互に多数配列形成されて、信号電荷読み出し部となる垂
直CCDの転送電極を構成する。第1層多結晶シリコン
電極6は蓄積ダイオードの信号電荷を垂直CCDに転
送するためのフィールドシフト用ゲート電極をも兼ねて
いる。7はチャネル・ストッパとしてのp型層であ
る。蓄積ダイオードおよび垂直CCDが形成されたチッ
プ基板はCVD絶縁膜8で覆われ、これにコンタクト
孔を開けて各蓄積ダイオードのn++型層2にコンタク
トする第1層Al電極9が、蓄積ダイオード上から垂
直CCD上に延在するように形成されている。更にこの
上にCVD絶縁膜8が堆積され、これにコンタクト孔
を開けて各画素ごとに第1層Al電極9にコンタクト
する第2層Al電極9が配設されている。この第2層
Al電極9は各画素の信号電荷を収集する電極とな
る。
FIG. 1 is a sectional view of a main part of a solid-state imaging device according to an embodiment.
In this embodiment, an interline transfer CCD image pickup device is used as a solid-state image pickup device chip substrate, and an a-Si: H film is used as a photoconductive film to be laminated thereon. That is, 1
Is a p-type Si substrate, and an n ++ -type layer 2 and an n + -type layer 3 are two-dimensionally arranged and formed for each pixel on the surface portion thereof. The junction between the n ++ type layer 2 and n + -type layer 3 and the substrate 1 is in the storage diode signal charges. Four
Is an n + -type layer for forming a buried channel, which is continuously formed in a direction perpendicular to the drawing, on which a first-layer polycrystalline silicon electrode 6 1 is formed via a first gate insulating film 5 1. It is formed, and further through the second gate insulating film 5 2 second-layer polycrystalline silicon electrode 6 2 is formed thereon. First
A plurality of layer polycrystalline silicon electrodes 6 1 and second layer polycrystalline silicon electrodes 6 2 are alternately arranged in a state that they partially overlap each other in a direction perpendicular to the drawing, and are transfer electrodes of a vertical CCD that serves as a signal charge reading portion. Make up. The first-layer polycrystalline silicon electrode 61 also serves as a field shift gate electrode for transferring the signal charges of the storage diode to the vertical CCD. Reference numeral 7 is a p + type layer as a channel stopper. Chip board storage diode and the vertical CCD are formed is covered with CVD insulating film 81, the first layer Al electrode 9 1 contact opening contact holes in the n ++ type layer 2 of the storage diode thereto, accumulation It is formed so as to extend from above the diode to above the vertical CCD. Furthermore the upper CVD insulating film 82 is deposited, this second layer Al electrode 9 2 are disposed to contact the first layer Al electrode 9 1 for each pixel by opening the contact holes. The second layer Al electrode 9 2 is an electrode for collecting the signal charges of each pixel.

このように構成されたCCD撮像素子チップ基板上に、
光導電膜としてこの実施例ではイントリンシックのa−
Si:H膜10が積層されている。このa−Si:H膜
10の表面には、電子注入を防止するブロッキング層と
して、所定の電圧以上でトンネル電流が流れる数十Å程
度の極薄絶縁膜11を介して、ITOなどの透明電極1
2が形成されている。極薄絶縁膜11はこの実施例では
a−Si:H膜10を熱酸化して得られる酸化膜であ
る。a−Si:H膜10は各画素ごとに独立となるよう
に例えば、膜形成後エッチングにより分離され、分離溝
はCVDにより絶縁膜13および多結晶シリコン膜14
が埋め込まれている。このようにa−Si:H膜10が
各画素毎に独立に形成されているのみならず、この実施
例では透明電極12も同様に各画素毎に分離形成されて
いる。そして各透明電極に所定の電位を与えるための金
属電極15が形成されている。
On the CCD image sensor chip substrate configured as described above,
In this embodiment, as a photoconductive film, an intrinsic a-
A Si: H film 10 is laminated. On the surface of the a-Si: H film 10, as a blocking layer for preventing electron injection, a transparent electrode such as ITO is provided through an ultrathin insulating film 11 of about several tens of liters at which a tunnel current flows at a predetermined voltage or more. 1
2 is formed. The ultra-thin insulating film 11 is an oxide film obtained by thermally oxidizing the a-Si: H film 10 in this embodiment. The a-Si: H film 10 is isolated by, for example, etching after film formation so that the a-Si: H film 10 is independent for each pixel, and the isolation groove is formed by the insulating film 13 and the polysilicon film 14 by CVD.
Is embedded. As described above, not only the a-Si: H film 10 is formed independently for each pixel, but also the transparent electrode 12 is similarly formed separately for each pixel in this embodiment. Then, a metal electrode 15 for applying a predetermined potential to each transparent electrode is formed.

このように構成された積層型固体撮像装置の光電変換部
および蓄積ダイオード部のエネルギー・バンド図を第2
図に示す。第2図は信号電荷蓄積期間の状態であり、透
明電極12側が蓄積ダイオードの電極9に対して負電位
となるように電位関係が設定される。但しこのとき、極
薄絶縁膜11に掛かる電界はトンネル効果が生じない程
度のものとする。この結果光照射によりa−Si:H膜
10内で電子正孔対が生成されると、そのうち電子が信
号電荷として蓄積ダイオード側に走行し、正孔は透明電
極12側に走行する。この間蓄積ダイオードは電気的に
フローティングの状態にあり、信号電荷の蓄積により電
位が低下する。この蓄積期間の後、フィールドシフトパ
ルスにより信号電荷は垂直CCDに転送され、読み出し
が行われる。信号電荷蓄積の期間、極薄絶縁膜11は透
明電極12からa−Si:H膜10への電子注入を阻止
するブロッキング層として働く。
The energy band diagram of the photoelectric conversion unit and the storage diode unit of the stacked solid-state imaging device configured as described above is shown in FIG.
Shown in the figure. FIG. 2 shows the state of the signal charge storage period, and the potential relationship is set so that the transparent electrode 12 side has a negative potential with respect to the electrode 9 of the storage diode. However, at this time, the electric field applied to the ultra-thin insulating film 11 is such that no tunnel effect occurs. As a result, when electron-hole pairs are generated in the a-Si: H film 10 by light irradiation, electrons travel as signal charges to the storage diode side, and holes travel to the transparent electrode 12 side. During this period, the storage diode is in an electrically floating state, and the potential drops due to the accumulation of signal charges. After this accumulation period, the signal charges are transferred to the vertical CCD by the field shift pulse and read out. During the signal charge accumulation period, the ultrathin insulating film 11 functions as a blocking layer that blocks the injection of electrons from the transparent electrode 12 into the a-Si: H film 10.

信号電荷読み出し後、蓄積ダイオード電位は初期状態に
戻る。そして次の信号電荷読み出しサイクルに入る前
に、透明電極12に正電位を与えてa−Si:H膜10
内の過剰電子の掃出しを行う。このとき電位関係は極薄
絶縁膜11に掛かる電界が、この極薄絶縁膜11をトン
ネル電流が流れる程度の値になるように設定される。こ
れにより、a−Si:H膜10内の過剰電子が極薄絶縁
膜11をトンネリングして透明電極12から排出され
る。
After reading the signal charge, the storage diode potential returns to the initial state. Then, before entering the next signal charge read cycle, a positive potential is applied to the transparent electrode 12 to apply the a-Si: H film 10 thereto.
Sweep out excess electrons inside. At this time, the potential relationship is set so that the electric field applied to the ultrathin insulating film 11 becomes a value at which a tunnel current flows through the ultrathin insulating film 11. As a result, excess electrons in the a-Si: H film 10 tunnel through the ultrathin insulating film 11 and are discharged from the transparent electrode 12.

以上のようにこの実施例では、積層型固体撮像装置の透
明電極下にこの透明電極からの電子注入を防止するブロ
ッキング層として極薄絶縁膜を介在させ、かつa−S
i:H膜の過剰電子はこの極薄絶縁膜を流れるトンネル
電流の形で透明電極側に排出することにより残像の低減
を図っている。従ってCCD撮像素子チップ基板にオー
バーフロードレインを設ける構造と比べて、信号電荷蓄
積および転送の駆動が容易になる。またp型層をブロッ
キング層として用いる従来構造に比べて、極薄絶縁膜の
膜厚や材料を選択することにより、ブロッキング層とし
ての機能を最適設計することが容易である。
As described above, in this embodiment, the ultrathin insulating film is interposed below the transparent electrode of the laminated solid-state imaging device as a blocking layer for preventing the injection of electrons from the transparent electrode, and aS
Excess electrons in the i: H film are discharged to the transparent electrode side in the form of tunnel current flowing through the ultra-thin insulating film to reduce the afterimage. Therefore, as compared with the structure in which the overflow drain is provided on the CCD image pickup device chip substrate, driving of signal charge storage and transfer becomes easier. Further, as compared with the conventional structure in which the p-type layer is used as the blocking layer, it is easier to optimally design the function as the blocking layer by selecting the film thickness and material of the ultrathin insulating film.

またこの実施例では、光導電膜であるa−Si:H膜を
各画素毎に分離しており、画素間のクロストークによる
解像度劣化が防止される。これは特に、画素数が例えば
1000×1000という高解像度の静止画用カメラを構成しよ
うとする場合に非常に有効である。
Further, in this embodiment, the a-Si: H film, which is a photoconductive film, is separated for each pixel, and deterioration of resolution due to crosstalk between pixels is prevented. This is especially true if the number of pixels is
It is very effective when constructing a high resolution still image camera of 1000 × 1000.

第3図は本発明の他の実施例の固体撮像装置の要部断面
図である。第1図と対応する部分には第1図と同一符号
を付して詳細な説明は省略する。第1図の実施例ではa
−Si:H膜10を画素毎に分離したのに対して、この
実施例ではチップ基板全面に一様にa−Si:H膜10
を形成している。そしてこのa−Si:H膜10上全面
に極薄絶縁膜11を介して透明電極12を形成してい
る。
FIG. 3 is a sectional view of a main part of a solid-state image pickup device according to another embodiment of the present invention. The parts corresponding to those in FIG. 1 are designated by the same reference numerals as those in FIG. 1 and their detailed description is omitted. In the embodiment shown in FIG. 1, a
While the -Si: H film 10 is separated for each pixel, in this embodiment, the a-Si: H film 10 is uniformly formed on the entire surface of the chip substrate.
Is formed. Then, a transparent electrode 12 is formed on the entire surface of the a-Si: H film 10 with an extremely thin insulating film 11 interposed therebetween.

先の実施例でもこの実施例でも、感光画素は基本的には
第2層Al電極9で定義されるので、撮像管ターゲッ
トと同様にa−Si:H膜10が全面に形成されていて
も、格別に高解像度が要求される用途に使用するのでな
い限り問題ない。そしてこの実施例でも、ブロッキング
層として極薄絶縁膜11を用いてa−Si:H膜10の
過剰電子をトンネル電流として透明電極側に排出するよ
うにすることにより、簡単な構造で効果的に残像の低減
を図ることができる。
Also in Embodiment this embodiment in the example, since the photosensitive pixel is basically defined by the second layer Al electrode 9 2, similarly to the image pickup tube target a-Si: H film 10 is formed on the entire surface However, there is no problem unless it is used for an application requiring a particularly high resolution. Also in this embodiment, by using the ultra-thin insulating film 11 as the blocking layer and discharging excess electrons of the a-Si: H film 10 as a tunnel current to the transparent electrode side, it is possible to effectively use a simple structure. Afterimages can be reduced.

本発明は上記した実施例に限られるものではない。例え
ば固体撮像素子チップ基板として上記実施例ではCCD
撮像素子の場合を説明したが、MOS型撮像素子を用い
た場合にも本発明は有効である。光導電膜や極薄絶縁
膜、透明電極等の材料も必要に応じて他のものを用いる
ことができる。
The present invention is not limited to the above embodiments. For example, as the solid-state image sensor chip substrate, the CCD in the above embodiment
Although the case of the image pickup device has been described, the present invention is also effective when a MOS type image pickup device is used. Other materials such as a photoconductive film, an ultrathin insulating film, and a transparent electrode can be used as necessary.

[発明の効果] 本発明によれば、光導電膜への透明電極からの電荷注入
を防止するブロッキング層として極薄絶縁膜を用い、か
つ光導電膜の余剰信号電荷をトンネル効果を利用して透
明電極側に排出するように構成することで、簡単な構造
で効果的に残像を低減できる積層型固体撮像装置が得ら
れる。
EFFECTS OF THE INVENTION According to the present invention, an ultrathin insulating film is used as a blocking layer for preventing charge injection from the transparent electrode into the photoconductive film, and excess signal charges in the photoconductive film are tunneled. By being configured to discharge to the transparent electrode side, it is possible to obtain a laminated solid-state imaging device that can effectively reduce afterimage with a simple structure.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の積層型固体撮像装置の要部
断面図、第2図はその光電変換部および信号電荷蓄積部
のエネルギー・バンドを示す図、第3図は他の実施例の
積層型固体撮像装置の要部断面図である。 1……p型Si基板、2……n++型層(信号電荷蓄積
ダイオード)、3……n型層、4……n型層(CC
D埋込みチャネル用)、5,5……ゲート絶縁膜、
,6……多結晶シリコン電極、7……p型層、
,8……CVD絶縁膜、9,9……Al電
極、10……a−Si:H膜(光導電膜)、11……極
薄絶縁膜(ブロッキング層)、12……透明電極、13
……CVD絶縁膜、14……CVD多結晶シリコン膜、
15……金属電極。
FIG. 1 is a sectional view of an essential part of a stacked solid-state imaging device according to an embodiment of the present invention, FIG. 2 is a diagram showing energy bands of its photoelectric conversion part and signal charge storage part, and FIG. 3 is another embodiment. FIG. 3 is a cross-sectional view of a main part of an example stacked solid-state imaging device. 1 ... p type Si substrate, 2 ... n ++ type layer (signal charge storage diode), 3 ... n + type layer, 4 ... n + type layer (CC
(For D buried channel), 5 1 , 5 2 ... gate insulating film,
6 1 , 6 2 ... Polycrystalline silicon electrode, 7 ... P + type layer,
8 1 , 8 2 ... CVD insulating film, 9 1 , 9 2 ... Al electrode, 10 ... a-Si: H film (photoconductive film), 11 ... Ultra thin insulating film (blocking layer), 12 ... ... Transparent electrode, 13
... CVD insulating film, 14 ... CVD polycrystalline silicon film,
15 ... Metal electrode.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】信号電荷蓄積部及び信号電荷読み出し部が
配列形成された固体撮像素子基板と、この基板上に積層
された光導電膜と、この光導電膜の表面に積層された透
明電極と、前記光導電膜と透明電極の間に積層された絶
縁膜と、前記光導電膜内の余剰電荷を透明電極側に排出
するように、光導電膜と透明電極との間に撮像時とは逆
の電界を印加する手段とを備えたことを特徴とする積層
型固体撮像装置。
1. A solid-state imaging device substrate on which a signal charge storage unit and a signal charge reading unit are formed in an array, a photoconductive film laminated on the substrate, and a transparent electrode laminated on the surface of the photoconductive film. , An insulating film laminated between the photoconductive film and the transparent electrode, and between the photoconductive film and the transparent electrode at the time of imaging so that excess charges in the photoconductive film are discharged to the transparent electrode side. A laminated solid-state imaging device, comprising: means for applying an opposite electric field.
【請求項2】前記絶縁膜は所定の電圧を印加するとトン
ネル電流が流れる極薄絶縁膜である特許請求の範囲第1
項記載の積層型固体撮像装置。
2. The insulating film is an extremely thin insulating film through which a tunnel current flows when a predetermined voltage is applied.
The laminated solid-state imaging device according to the item.
【請求項3】前記光導電膜はアモルファスSi膜であ
り、前記極薄絶縁膜はこのアモルファスSi膜を熱酸化
して得られる酸化膜である特許請求の範囲第2項記載の
積層型固体撮像装置。
3. The stacked solid-state imaging device according to claim 2, wherein the photoconductive film is an amorphous Si film, and the ultrathin insulating film is an oxide film obtained by thermally oxidizing the amorphous Si film. apparatus.
【請求項4】前記固体撮像素子基板の信号電荷読み出し
部はCCDである特許請求の範囲第1項記載の積層型固
体撮像装置。
4. The stacked solid-state image pickup device according to claim 1, wherein the signal charge reading section of the solid-state image pickup device substrate is a CCD.
【請求項5】前記光導電膜は各感光画素領域毎に埋込み
絶縁膜により分離されている特許請求の範囲第1項記載
の積層型固体撮像装置。
5. The stacked solid-state imaging device according to claim 1, wherein the photoconductive film is separated by a buried insulating film for each photosensitive pixel region.
JP60157886A 1985-07-17 1985-07-17 Stacked solid-state imaging device Expired - Lifetime JPH0658951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60157886A JPH0658951B2 (en) 1985-07-17 1985-07-17 Stacked solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60157886A JPH0658951B2 (en) 1985-07-17 1985-07-17 Stacked solid-state imaging device

Publications (2)

Publication Number Publication Date
JPS6218757A JPS6218757A (en) 1987-01-27
JPH0658951B2 true JPH0658951B2 (en) 1994-08-03

Family

ID=15659565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60157886A Expired - Lifetime JPH0658951B2 (en) 1985-07-17 1985-07-17 Stacked solid-state imaging device

Country Status (1)

Country Link
JP (1) JPH0658951B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312115B2 (en) * 2017-12-28 2023-07-20 ソニーセミコンダクタソリューションズ株式会社 Light receiving element and electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685876A (en) * 1979-12-14 1981-07-13 Hitachi Ltd Photoelectric converter
JPS5742273A (en) * 1980-08-27 1982-03-09 Toshiba Corp Solidstate image sensor
JPS5752276A (en) * 1980-09-12 1982-03-27 Hitachi Ltd Solid image pickup element
JPS59112663A (en) * 1983-11-18 1984-06-29 Hitachi Ltd Photodetector device

Also Published As

Publication number Publication date
JPS6218757A (en) 1987-01-27

Similar Documents

Publication Publication Date Title
US5619049A (en) CCD-type solid state image pickup with overflow drain structure
US7515187B2 (en) Photoelectric conversion film-stacked type solid-state imaging device
JPS6157181A (en) Solid-state image pickup device
US4748486A (en) Solid-state image sensor
JPH06204450A (en) Solid-state image pickup device
JPH08250697A (en) Amplifying type photoelectric converter and amplifying type solid-state image sensor using the same
US5343061A (en) Solid-state imaging device suppressing dark-current noise
JP3052560B2 (en) Charge transfer imaging device and method of manufacturing the same
JPH0658951B2 (en) Stacked solid-state imaging device
CA1241418A (en) Radiation-sensitive semiconductor device
JP2509592B2 (en) Stacked solid-state imaging device
JP2506697B2 (en) Solid-state imaging device
JP2002151673A (en) Solid-state image pickup element
JPS6320385B2 (en)
JPH0294567A (en) Solid-stage image sensing device
JPH05243546A (en) Solid-state image sensing device
JP2597582B2 (en) Solid-state imaging device
JP2674524B2 (en) Solid-state imaging device and driving method thereof
JP2848435B2 (en) Solid-state imaging device
JPH0316477A (en) Solid-state image pickup device
JPH0778957A (en) Solid state image sensor
JPH0322755B2 (en)
JP2975648B2 (en) Charge coupled device
JP2523717B2 (en) Solid-state imaging device
JPS6273663A (en) Solid-state image pickup device and drive method thereof