JPH0653904B2 - Aluminum alloy heat exchanger fin material with high strength - Google Patents
Aluminum alloy heat exchanger fin material with high strengthInfo
- Publication number
- JPH0653904B2 JPH0653904B2 JP24594485A JP24594485A JPH0653904B2 JP H0653904 B2 JPH0653904 B2 JP H0653904B2 JP 24594485 A JP24594485 A JP 24594485A JP 24594485 A JP24594485 A JP 24594485A JP H0653904 B2 JPH0653904 B2 JP H0653904B2
- Authority
- JP
- Japan
- Prior art keywords
- fin material
- heat exchanger
- exchanger fin
- alloy
- high strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims description 37
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 10
- 239000002245 particle Substances 0.000 claims description 7
- 238000007711 solidification Methods 0.000 claims description 6
- 230000008023 solidification Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 description 16
- 239000000956 alloy Substances 0.000 description 15
- 238000005219 brazing Methods 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910018084 Al-Fe Inorganic materials 0.000 description 7
- 229910018192 Al—Fe Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高い常温および高温強度を有し、したがっ
て薄肉化が可能であるとともに、犠牲陽極作用もそなえ
たAl合金製熱交換器フィン材に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has a high normal temperature and high temperature strength, and therefore can be thinned, and is a heat exchanger fin material made of an Al alloy that also has a sacrificial anode function. It is about.
一般に、純AlおよびAl合金は軽くて、熱伝導性にす
ぐれ、かつ或程度の耐食性もそなえていることから、例
えば自動車のラジエータなどの熱交換器の製造に広く用
いられている。Generally, pure Al and Al alloys are widely used for manufacturing heat exchangers such as radiators of automobiles because they are light, have excellent thermal conductivity, and have a certain degree of corrosion resistance.
この熱交換器は、例えば、Al−Mn系合金を芯材と
し、この芯材の片面にAl−Si系合金のろう材をクラ
ッドしたブレージングシートで構成された管体と、別の
ブレージングシートとを成形加工することによって得ら
れたタンクにAl−Fe系合金のフィン材を組合せ、こ
の組合せ体を、真空中または不活性ガス中で加熱してフ
ラックスなしでろう付けするか、あるいは低圧大気中で
フラックスを用いてろう付けすることによって製造され
ており、この熱交換器フィン材は、以前から資材の節
減、軽量化あるいは熱効率の向上等の要望に応えて益々
薄肉化する傾向にあり、今日では溶湯を鋳造した後の熱
間圧延と冷間圧延によって製造される板厚:0.1 mm程度
の薄板をさらに狭幅にスリットしたものが用いられてい
る。This heat exchanger includes, for example, a tube body composed of an Al-Mn-based alloy as a core material, and a brazing sheet in which a brazing material of an Al-Si-based alloy is clad on one surface of the core material, and another brazing sheet. The Al-Fe alloy fin material is combined with the tank obtained by molding and the combination is heated in vacuum or in an inert gas and brazed without flux, or in a low-pressure atmosphere. It is manufactured by brazing with flux, and this heat exchanger fin material has tended to become thinner and thinner in response to requests for material saving, weight reduction or improvement of thermal efficiency, etc. In that case, a thin plate with a thickness of about 0.1 mm, which is manufactured by hot rolling and cold rolling after casting the molten metal, is slit into a narrower width.
しかしながら、上記のようにして製造される熱交換器フ
ィン材は高温強度が十分でないために、余り薄くする
と、ろう付け時に所謂“へたり”などの変形を起してろ
う付け不良を招く一方、その変形を無くそうとすれば、
厚肉にしなければならないという欠点があるとともに、
その製造には前記のように熱間圧延と冷間圧延およびそ
れに付随した多くの工程を必要とするためにコストがか
かり、さらにこのフィン材は、前記管体を構成するAl
−Mn系合金のような材料に体する犠牲陽極作用が低い
という問題があった。However, since the heat exchanger fin material manufactured as described above does not have sufficient high temperature strength, if it is made too thin, it causes deformation such as so-called "fatigue" during brazing, resulting in brazing failure. If you try to eliminate the deformation,
It has the drawback of having to be thick,
The production thereof is costly because it requires hot rolling, cold rolling and many steps associated therewith as described above, and further, the fin material is made of Al that constitutes the tubular body.
There is a problem that the sacrificial anode action of a material such as —Mn-based alloy is low.
そこで、本発明者等は、薄くても十分な高温強度を有す
る熱交換器フィン材の出現が望まれている現状に鑑み
て、種々研究を重ねた結果、 (1) フィン材を構成する前記Al−Fe系合金の溶湯
を、これが収容されているるつぼの底部に形成されてい
るスリットから、その直下に位置した冷却回転ロールの
表面に吹きつけて、その溶湯を104℃/sec 以上の冷
却速度で超急冷凝固させることによって製造した帯状の
薄板は、鉄化合物、主としてAl3Feや不純物等の晶
出物が凝固時に極めて微細に分散した超急冷凝固組織を
もち、この結果高い常温および高温強度をもつようにな
り、さらに上記従来フィン材を構成する薄板の製造にお
けるような造塊、熱間圧延、冷間圧延、および中間焼鈍
などの一連の多くの工程を必要とすることなく、単に回
転ロール表面に溶湯を吹きつけるという操作で製造する
ことができ、しかもこの場合、その板厚は溶湯を噴出さ
せるガスの圧力や冷却回転ロールの回転速度等によって
自在に調整することができて薄肉のものの製造が可能で
あり、したがって、この結果得られた超急冷凝固組織を
有するAl−Fe系合金薄板で構成された熱交換器フィ
ン材は、十分に薄肉の状態で高強度を有すること、 (2) このような超急冷凝固組織を有するAl−Fe系
合金薄板の熱交換器フィン材は、凝固直後は従来のAl
−Fe系合金薄板のそれと同様な電気化学的性質を示す
けれども、その後、例えばろう付け時などに適用される
高温に曝されると、驚くべきことに、その組織中の微細
なAl3Fe晶出粒子が成長することにより著しく卑に
なって、従来のAl−Fe系合金薄板のフィン材では得
られなかった犠牲陽極作用を発揮すること、 (3) 超急冷凝固組織を有するAl−Fe合金薄板のフ
ィン材において得られる前述の強度向上効果と犠牲陽極
作用は、その合金中のFe含有量が0.1 〜3.0 重量%の
範囲にあるときに、最も好適に発揮されること、 (4) Al−Fe系合金溶湯を超急冷凝固させるときの
溶湯の冷却速度は、凝固時に晶出するAl3Fe粒子の
寸法に影響を与えてフィン材の強度および電気化学的性
質を支配し、これらの特性を前述のように改善するに
は、この冷却速度は104℃/sec 以上となることが必要
であること、 (5) 超急冷凝固組織を有するAl−Fe系合金薄板の
フィン材において現われる前記の犠牲陽極作用は、Zn
の添加によって増強され、その添加量は 0.1〜1.5 重量
%が適当であること、 以上(1) 〜 (5)の研究結果を得たのである。Therefore, the present inventors have made various studies in view of the present situation in which the appearance of a heat exchanger fin material having a sufficient high-temperature strength even if it is thin is desired, and (1) The molten metal of Al-Fe alloy is sprayed from the slit formed at the bottom of the crucible in which it is accommodated onto the surface of the cooling rotary roll located immediately below it, and the molten metal is heated at 10 4 ° C / sec or more. The strip-shaped thin plate produced by super-quench solidification at a cooling rate has an ultra-rapid solidification structure in which crystallized substances such as iron compounds, mainly Al 3 Fe and impurities, are extremely finely dispersed during solidification, resulting in high normal temperature and It has high-temperature strength, and further without requiring a series of many steps such as ingot making, hot rolling, cold rolling, and intermediate annealing in the production of the thin plate that constitutes the conventional fin material, It can be manufactured by simply spraying the molten metal on the surface of the rotating roll, and in this case, the plate thickness can be freely adjusted by the pressure of the gas for ejecting the molten metal, the rotation speed of the cooling rotating roll, etc. It is possible to manufacture a thin-walled product. Therefore, the heat exchanger fin material composed of the Al-Fe alloy thin plate having the ultra-rapidly solidified structure obtained as a result has high strength in a sufficiently thin-walled state. (2) The heat exchanger fin material of the Al—Fe alloy thin plate having such a super-rapidly solidified structure has a conventional Al content immediately after solidification.
Although it exhibits electrochemical properties similar to those of the Fe-based alloy thin plate, when it is subsequently exposed to the high temperature applied during brazing, for example, the fine Al 3 Fe crystals in its structure are surprisingly formed. (3) An Al-Fe alloy having a super-rapidly solidified structure that exhibits a sacrificial anode action that cannot be obtained with the fin material of the conventional Al-Fe alloy thin plate by becoming extremely base due to the growth of the emitted particles. The above-mentioned strength improving effect and sacrificial anodic effect obtained in the fin material of the thin plate are most suitably exhibited when the Fe content in the alloy is in the range of 0.1 to 3.0% by weight, (4) Al The cooling rate of the molten Fe-based alloy when it is rapidly quenched and solidified affects the size of the Al 3 Fe particles crystallized during solidification to control the strength and electrochemical properties of the fin material. As mentioned above In order to improve, it is necessary that this cooling rate be 10 4 ° C / sec or more. (5) The above-mentioned sacrificial anode action that appears in the fin material of the Al-Fe alloy thin plate having the ultra-rapidly solidified structure is , Zn
It was enhanced by the addition of 0.1 to 1.5% by weight, and the above results (1) to (5) were obtained.
この発明は、上記の研究結果に基づいてなされたもの
で、薄肉化することが可能で、したがって常温および高
温強度が高く、しかも犠牲陽極作用も有するAl合金製
熱交換器フィン材を簡単な工程で得ることを目的とし、
熱交換器フィン材を、Fe:0.1 〜3.0 重量%、および
必要に応じてZn:0.1 〜1.5 重量%を含有し、残りが
Alと不可避不純物とからなる組成、並びに104℃/se
c 以上の冷却速度で溶湯から超急冷凝固させることによ
って得られる超急冷凝固組織、すなわち微細なAl3F
e晶出粒子が素地に均一に分散分布した組織を有するA
l合金薄板で構成したことを特徴とするものである。The present invention has been made based on the above-mentioned research results, and it is possible to reduce the thickness of the aluminum alloy heat exchanger fin material having a high strength at room temperature and high temperature and a sacrificial anode action by a simple process. With the aim of getting
The heat exchanger fin material contains Fe: 0.1 to 3.0% by weight and, if necessary, Zn: 0.1 to 1.5% by weight, and the balance is Al and inevitable impurities, and 10 4 ° C / se.
An ultra-rapidly solidified structure obtained by super-quenching and solidifying a molten metal at a cooling rate of c or more, that is, fine Al 3 F
e A having a structure in which crystallized particles are distributed uniformly in the matrix
It is characterized in that it is composed of a 1-alloy thin plate.
つぎに、この発明の熱交換器フィン材において、これを
構成するAl合金薄板の成分組成を上記のとおりに限定
した理由を述べる。Next, in the heat exchanger fin material of the present invention, the reason why the component composition of the Al alloy thin plate constituting the fin material is limited as described above will be described.
(1) Fe成分 Fe成分は、超急冷凝固によって素地中に均一に分散す
る極く微細なAl3Fe晶出粒子を形成し、この微細粒
子によってフィン材の強度を向上させるとともに、それ
のろう付け温度である600℃付近の加熱によって起る
Al3Fe晶出粒子の成長に基づいて電気化学的性質を
卑にするのに有効な成分であるが、その含有量が0.1 重
量%(以下、単に%で表わす)未満では上記の効果が十
分に得られず、一方それが3%を越えてもその効果に格
別の向上がみられないばかりか、むしろ伸びなどの機械
的性質が低下することから、その含有量を0.1 〜3%と
定めた。(1) Fe component The Fe component forms ultrafine Al 3 Fe crystallized particles that are uniformly dispersed in the matrix by super-quenching solidification, and the fine particles improve the strength of the fin material, It is an effective component for making the electrochemical properties base on the basis of the growth of Al 3 Fe crystallized particles caused by the heating at the application temperature of about 600 ° C., but its content is 0.1% by weight (hereinafter, If it is less than (%), the above effect cannot be sufficiently obtained, while if it exceeds 3%, not only the effect is not particularly improved, but also the mechanical properties such as elongation are deteriorated. Therefore, the content was determined to be 0.1 to 3%.
(2) Zn成分 Zn成分は、それの含有によってフィン材の電気化学的
性質を一層卑とし、これに犠牲陽極作用を発揮させるの
に有効で、必要に応じて含有されるが、その含有量が0.
1 %未満では上記効果が十分でなく、それが1.5 %を越
えてもその効果に格別の向上がみられず、かえってろう
付け時に蒸発するZn蒸気が増えて、炉を汚染するなど
の問題を生ずるところから、その含有量を0.1 〜1.5 %
と定めた。(2) Zn component The Zn component is effective for making the electrochemical property of the fin material more base by containing it and exerting a sacrificial anode action on it, and is contained as necessary. Is 0.
If it is less than 1%, the above effect is not sufficient, and if it exceeds 1.5%, the effect is not particularly improved, and on the contrary, Zn vapor that evaporates during brazing increases, causing problems such as polluting the furnace. From the place where it occurs, its content is 0.1-1.5%
I decided.
なお、この発明の熱交換器フィン材は、製造技術上並び
に軽量化等の点から、一般に0.03〜0.2 mmの厚さを有す
るのが好適である。The heat exchanger fin material of the present invention preferably has a thickness of generally 0.03 to 0.2 mm from the viewpoint of manufacturing technology and weight reduction.
ついで、この発明の熱交換器フィン材を実施例によって
説明する。Next, the heat exchanger fin material of the present invention will be described by way of examples.
溶解るつぼ内で、それぞれ第1表に示される成分組成を
有する溶湯を調製した後、前記るつぼの底部に設けた0.
5 mm×15mmの寸法をもったスリットから、Arガスによ
り、前記溶湯を、その直下に位置し、かつ2000r.p.m.で
回転する直径:300 mmの水冷銅製ロールの表面に吹き付
けることによって、いずれも幅:16mm×厚さ:0.08mmの
寸法を有するAl合金薄板からなる本発明フィン材1〜
7をそれぞれ製造した。このときの冷却速度は105℃/
sec であった。In the melting crucible, melts each having the component composition shown in Table 1 were prepared, and then the melt was provided at the bottom of the crucible.
From the slit having a size of 5 mm × 15 mm, the molten metal is sprayed by Ar gas onto the surface of a water-cooled copper roll having a diameter of 300 mm, which is located immediately below and rotates at 2000 rpm. Width: 16 mm × thickness: 0.08 mm The present fin material 1 made of an Al alloy thin plate having the dimensions 1 to
7 were each manufactured. The cooling rate at this time is 10 5 ° C /
It was sec.
また、比較のため、上記とそれぞれ同じ成分組成を有す
る溶湯を用い、これを水冷鋳型に鋳造して30mm×150 mm
×500 mmの寸法の鋳塊とし、この鋳塊に通常の条件で熱
間圧延を施し、さらに冷間圧延と中間焼鈍とを繰り返し
施すことによって上記と同じ寸法を有するH12調質のA
l合金薄板からなる従来フィン材1〜7をそれぞれ製造
した。For comparison, molten metal having the same composition as above was used, and this was cast in a water-cooled mold and 30 mm × 150 mm
A H12 temper A having the same dimensions as above was obtained by making an ingot of dimensions of 500 mm and subjecting this ingot to hot rolling under normal conditions, and then repeatedly performing cold rolling and intermediate annealing.
Conventional fin materials 1 to 7 each made of an alloy thin plate were manufactured.
ついで、この結果得られた本発明フィン材1〜7および
従来フィン材1〜7について、常温強度を評価する目的
で引張り強さを測定し、また高温強度を評価する目的で
耐垂下性試験を行なった。耐垂下性試験は、試片とし
て、幅:16mm×長さ:130 mmの寸法をもったものを用
い、一端から長さ方向に30mm隔てた部分を水平に保持し
た状態の前記試片を、熱交換器の製造に際して採用され
る典型的な真空ろう付け条件に相当する条件、すなわち
約10-4torrの真空中、温度:620 ℃に10分間保持の条件
に曝し、それによって試片の前記一端が垂下した高さを
測定することにより行なった。これらの結果を第1表に
示した。 Then, the resulting fin materials 1 to 7 of the present invention and the conventional fin materials 1 to 7 were subjected to a droop resistance test for the purpose of measuring tensile strength for the purpose of evaluating room temperature strength and for evaluating high temperature strength. I did. In the droop resistance test, a test piece having a size of width: 16 mm × length: 130 mm was used, and the test piece in a state in which a part separated by 30 mm in the length direction from one end was held horizontally, The sample is exposed to the conditions equivalent to the typical vacuum brazing conditions used in the production of heat exchangers, that is, in a vacuum of about 10 -4 torr and at a temperature of 620 ° C for 10 minutes, whereby the specimen is This was done by measuring the height at which one end droops. The results are shown in Table 1.
つぎに、このような耐垂下性試験においてろう付け時の
雰囲気に曝された後の各試片の一部を切出すことによっ
て用意した別の試験片について、それぞれ室温における
3.5 %食塩水中のアノード分極測定を実施して、各試験
片の孔食電位を求め、その結果も合わせて第1表に示し
た。Next, with respect to another test piece prepared by cutting out a part of each test piece after being exposed to the atmosphere during brazing in such a droop resistance test, at room temperature,
Anodic polarization measurements were carried out in 3.5% saline to determine the pitting potential of each test piece, and the results are also shown in Table 1.
第1表に示される結果から、本発明フィン材1〜7は、
いずれも従来フィン材1〜7と比較して、著しくすぐれ
た常温および高温強度を有するとともに、本発明フィン
材は、−900mV 付近またはそれ以下の低い孔食電位によ
って示されるように、従来フィン材よりも著しく卑であ
り、したがってすぐれた犠牲陽極作用も発揮できること
が明らかである。From the results shown in Table 1, the fin materials 1 to 7 of the present invention,
All of them have significantly excellent room temperature and high temperature strength as compared with the conventional fin materials 1 to 7, and the fin material of the present invention, as shown by the low pitting potential around -900 mV or less, is a conventional fin material. It is clear that it is significantly more base than that and can therefore also exhibit a good sacrificial anode action.
以上述べた説明から明らかなように、この発明の熱交換
器フィン材は、高い常温および高温強度を有し、薄肉化
した状態でも熱交換器製造におけるろう付け時に変形す
ることがなく、しかもすぐれた犠牲陽極作用も発揮する
上に、溶湯を超急冷凝固することによって直接製造され
るものであるから、薄板製造の上で従来必要であった多
くの工程を省くことができ、したがって、この発明によ
ると、長期にわたって使用できる軽量の熱交換器を提供
できるとともに、コストも著しく軽減されるという工業
上有用な効果が得られる。As is clear from the above description, the heat exchanger fin material of the present invention has high room temperature and high temperature strength, is not deformed during brazing in heat exchanger production even in a thinned state, and is excellent. In addition to exhibiting a sacrificial anode function, it is directly manufactured by super-quenching and solidifying a molten metal, so that many steps conventionally required for manufacturing a thin plate can be omitted. According to the above, it is possible to provide a lightweight heat exchanger that can be used for a long period of time, and obtain an industrially useful effect that the cost is significantly reduced.
Claims (2)
びに微細なAl3Fe晶出粒子が素地に均一に分散分布
した超急冷凝固組織を有するAl合金薄板で構成したこ
とを特徴とする高強度を有するAl合金製熱交換器フィ
ン材。1. A composition comprising Fe: 0.1 to 3% by weight, the balance being Al and inevitable impurities, and a super-quenched solidification structure in which fine Al 3 Fe crystallized particles are uniformly dispersed and distributed in a base material. A heat exchanger fin material made of an Al alloy having high strength, characterized by being composed of an Al alloy thin plate.
に微細なAl3Fe晶出粒子が素地に均一に分散分布し
た超急冷凝固組織を有するAl合金薄板で構成したこと
を特徴とする高強度を有するAl合金製熱交換器フィン
材。2. A composition containing Fe: 0.1 to 3% by weight, Zn: 0.1 to 1.5% by weight, the balance being Al and inevitable impurities, and fine Al 3 Fe crystallized particles uniformly distributed in the matrix. A heat exchanger fin material made of an Al alloy having high strength, characterized by being constituted by an Al alloy thin plate having the above-mentioned ultra-rapidly solidified structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24594485A JPH0653904B2 (en) | 1985-11-01 | 1985-11-01 | Aluminum alloy heat exchanger fin material with high strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24594485A JPH0653904B2 (en) | 1985-11-01 | 1985-11-01 | Aluminum alloy heat exchanger fin material with high strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62107050A JPS62107050A (en) | 1987-05-18 |
JPH0653904B2 true JPH0653904B2 (en) | 1994-07-20 |
Family
ID=17141177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24594485A Expired - Lifetime JPH0653904B2 (en) | 1985-11-01 | 1985-11-01 | Aluminum alloy heat exchanger fin material with high strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0653904B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0379737A (en) * | 1989-08-23 | 1991-04-04 | Nippon Light Metal Co Ltd | Aluminum fin material for heat exchanger having excellent heat conductivity and corrosion resistance |
JP6090734B2 (en) * | 2012-07-27 | 2017-03-08 | 株式会社Uacj | Aluminum alloy plate for heat exchanger fins |
WO2015111182A1 (en) * | 2014-01-24 | 2015-07-30 | 株式会社Uacj | Aluminum alloy sheet for heat exchanger fin |
-
1985
- 1985-11-01 JP JP24594485A patent/JPH0653904B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62107050A (en) | 1987-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6592688B2 (en) | High conductivity aluminum fin alloy | |
US4126487A (en) | Producing improved metal alloy products (Al-Fe alloy and Al-Fe-Si alloy) | |
JP5105389B2 (en) | Aluminum alloy manufacturing method | |
JP4911657B2 (en) | High conductivity aluminum fin alloy | |
EP0365367B1 (en) | Brazeable aluminum alloy sheet and process for its manufacture | |
JP2003520295A5 (en) | ||
JP2003520294A5 (en) | ||
US4828936A (en) | Aluminum alloy sheet excellent in high-temperature sagging resistance and sacrificial anode property and having high room-temperature strength | |
JPH0653904B2 (en) | Aluminum alloy heat exchanger fin material with high strength | |
JP3097642B2 (en) | Aluminum alloy for heat exchanger extruded tube with microstructure cross section and method for producing heat exchanger extruded tube with microstructure cross section | |
JP3355995B2 (en) | Aluminum alloy sheet for cross fin excellent in drawless molding and composite moldability and method for producing the same | |
JPS6280287A (en) | Sacrificial anode material made of al alloy | |
JP2002256364A (en) | Aluminum alloy for fin material of fin for heat exchanger and its production method | |
JP3157149B2 (en) | Method of manufacturing high strength sacrificial anode fin material made of aluminum alloy for heat exchanger manufactured by brazing | |
JP2697242B2 (en) | Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same | |
JP2632818B2 (en) | High-strength copper alloy with excellent thermal fatigue resistance | |
JPH11343532A (en) | Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy | |
JP3085964B2 (en) | Method of manufacturing high strength sacrificial anode fin material made of aluminum alloy for heat exchanger manufactured by brazing | |
JP2607245B2 (en) | High strength aluminum alloy composite thin fin material with excellent sacrificial anode effect for heat exchangers | |
JPH05125499A (en) | Aluminum-base alloy having high strength and high toughness | |
JPS60138083A (en) | Composite al alloy material for fin of heat exchanger having superior strength at high temperature and significant sacrificial anode effect | |
JPH0653898B2 (en) | Method for manufacturing heat exchanger fin material with high strength | |
JPH0379737A (en) | Aluminum fin material for heat exchanger having excellent heat conductivity and corrosion resistance | |
JPH028018B2 (en) | ||
JPH03107435A (en) | Copper alloy for radiator fin |