JPS60138083A - Composite al alloy material for fin of heat exchanger having superior strength at high temperature and significant sacrificial anode effect - Google Patents

Composite al alloy material for fin of heat exchanger having superior strength at high temperature and significant sacrificial anode effect

Info

Publication number
JPS60138083A
JPS60138083A JP58244078A JP24407883A JPS60138083A JP S60138083 A JPS60138083 A JP S60138083A JP 58244078 A JP58244078 A JP 58244078A JP 24407883 A JP24407883 A JP 24407883A JP S60138083 A JPS60138083 A JP S60138083A
Authority
JP
Japan
Prior art keywords
alloy
sacrificial anode
anode effect
unavoidable impurities
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58244078A
Other languages
Japanese (ja)
Other versions
JPH0352549B2 (en
Inventor
Ken Toma
当摩 建
Hajime Kudo
元 工藤
Isao Takeuchi
竹内 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP58244078A priority Critical patent/JPS60138083A/en
Publication of JPS60138083A publication Critical patent/JPS60138083A/en
Publication of JPH0352549B2 publication Critical patent/JPH0352549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Abstract

PURPOSE:To obtain a composite Al alloy material for the fins of a heat exchanger having superior strength at high temp. and a significant sacrificial anode effect by cladding both sides of a core material of an Al alloy contg. specified amounts of Mn and Zn with a shell material of an Al alloy contg. specified amounts of Sn and Zn. CONSTITUTION:Both sides of a core material of an Al alloy having a composition consisting of 0.1-1.5wt% Mn, 0.01-0.5wt% Zn and the balance Al with inevitable impurities are clad with a shell material of an Al alloy having a composition consisting of 0.03-0.12wt% Sn, 0.01-0.3wt% Zn and the balance Al with inevitable impurities.

Description

【発明の詳細な説明】 この発明は、フィン材と管材とをろう付けすることによ
り熱交換器を製造するに際して、ろう付は時の加熱に対
してすぐれた耐垂下性を示す高温強度を有し、かつろう
付は後の管材に対してすぐれた犠牲陽極効果を発揮する
熱交換器用AQ合金製複合フィン材に関するものである
DETAILED DESCRIPTION OF THE INVENTION When manufacturing a heat exchanger by brazing fin materials and tube materials, the present invention provides that brazing has high-temperature strength that exhibits excellent sagging resistance against heating during heating. However, brazing is related to a composite fin material made of AQ alloy for heat exchangers that exhibits an excellent sacrificial anode effect on the subsequent tube material.

一般に、M合金は軽くて、熱伝導性にすぐれ。In general, M alloys are lightweight and have excellent thermal conductivity.

かつ耐食性にもすぐれていることから、例えば自動車の
ラジェータなどの熱交換器の製造に広く用いられている
。この熱交換器は、例えば、AQ −Mn系合金を芯材
とし、この芯材の片面にAA−8i系合金のろう材をク
ラッドしたものからなるプレーソングシートで構成され
た管材と、An −Mn系合金のフィン材とを組合せ、
この組合せ体を、真空中あるいは不活性ガス中で7ラツ
クスなしでろう付けするか、あるいは低圧大気中で7ラ
ツクスを用いてろう付けすることによって製造されてい
る。
Since it also has excellent corrosion resistance, it is widely used, for example, in the manufacture of heat exchangers such as automobile radiators. This heat exchanger includes, for example, a pipe material made of a pre-song sheet made of an AQ-Mn alloy as a core material and one side of the core material clad with an AA-8i alloy brazing material; Combined with Mn-based alloy fin material,
The assembly is manufactured by brazing without 7 lux in vacuum or inert gas, or by brazing with 7 lux in low pressure air.

しだがって、熱交換器のフィン材には、ろう付は時にお
けるろう材の溶融温度以上の加熱に対して変形しない十
分な耐垂下性、すなわち高温強度が要求されることは勿
論のこと、特に実用に際して管材に対して十分満足する
すぐれた犠牲陽極効果を発揮することが要求される。
Therefore, it goes without saying that the fin material of a heat exchanger is required to have sufficient sagging resistance, that is, high-temperature strength, so that it will not deform when heated above the melting temperature of the brazing material during brazing. In particular, in practical use, it is required that the sacrificial anode exhibit a sufficiently satisfactory sacrificial anode effect on the pipe material.

しかし、上記のAQ−Mn系合金製フィン材においては
、管材に対して電気化学的に十分環でないために、満足
な犠牲陽極効果の発揮を期待することはできない。
However, in the above-mentioned AQ-Mn alloy fin material, it cannot be expected to exhibit a satisfactory sacrificial anode effect because it is not electrochemically sufficient to form a ring with respect to the tube material.

かかる点から、熱交換器用フィン材として、へ〇−Mn
系合金に1−2%程度のZnを含有させて電気化学的に
卑にし、もって管材に対する犠牲陽極効果を十分に発揮
せしめるようにしたAg−Mn−Zn系合金が提案され
、確かに、このAR−Mn −Zn 系合金製フィン材
においては、熱交換器が不活性ガス雰囲気中、あるいは
大気中でのろう付けにより製造された場合には、すぐれ
た犠牲陽極効果を発揮したが、高温強度の劣るものであ
シ、さらにこれを用いて真空中でのろう付けによシ熱交
換器を製造した場合には、 Znの含有量が高く、かつ
Znは蒸気圧の高いものであるため、ろう付は中にフィ
ン材中のZnが多く蒸発し、残留量が少なくなって管材
に対する犠牲陽極効果は低いものとなシ、またZnの蒸
発による炉の汚染などの問題が生じるものであった。
From this point of view, 〇-Mn can be used as a fin material for heat exchangers.
An Ag-Mn-Zn alloy has been proposed in which the alloy contains about 1-2% of Zn to make it electrochemically less noble, thereby fully exerting the sacrificial anode effect on the pipe material. Fin materials made of AR-Mn-Zn alloys exhibited excellent sacrificial anode effects when the heat exchanger was manufactured by brazing in an inert gas atmosphere or in the air, but the high-temperature strength was poor. Furthermore, when a heat exchanger is manufactured by brazing in a vacuum using this, the Zn content is high and Zn has a high vapor pressure, so During brazing, a large amount of Zn in the fin material evaporates, and the remaining amount becomes small, resulting in a low sacrificial anode effect on the tube material, and problems such as furnace contamination due to Zn evaporation occur. .

そこで、本発明者等は、上述のような観点から、単一材
にて高温強度と犠牲陽極効果を具備したフィン材を構成
することはきわめて困難であるとの認識に立ち、これら
の両特性を複合材にて構成することにより確保すべく研
究を行なった結果、熱交換器用フィン材を、重量%で(
以下チは重量%を示す)、 Mn: 0.1〜1.5%。
Therefore, from the above-mentioned viewpoint, the present inventors recognized that it would be extremely difficult to construct a fin material with high-temperature strength and sacrificial anode effect from a single material. As a result of research to ensure that by constructing the heat exchanger fin material with composite materials, we found that the fin material for heat exchangers has
(Hereinafter, ``H'' indicates weight %), Mn: 0.1 to 1.5%.

Zn:0.01〜05%。Zn: 0.01-05%.

を含有し、さらに必要に応じて、 Mg: O,Ol 〜1 %。Contains, and if necessary, Mg: O, Ol ~ 1%.

Cu : 0.01〜0.2%。Cu: 0.01-0.2%.

Zr: 0.0 2〜0.2 %。Zr: 0.0 2-0.2%.

Cr: 002〜03′L%。Cr: 002-03'L%.

のうちの1種または2種札上を含有し、残りがAQと不
可避不純物からなる組成を有する48合金製芯材の両面
に、 Sn: 0.03〜0.12 %。
Sn: 0.03 to 0.12% on both sides of a core material made of 48 alloy having a composition containing one or two of the above, and the remainder consisting of AQ and unavoidable impurities.

Zn: 0.01〜0.3 %。Zn: 0.01-0.3%.

を含有し、さらに必要に応じて、 Mg: O,Ol 〜1 %。Contains, and if necessary, Mg: O, Ol ~ 1%.

を含有し、残りがMと不可避不純物からなる組成を有す
るAQ合金製皮材をクラッドしたものからなるAε合金
製複合拐で構成すると、上記芯材によってすぐれた耐垂
下性(高温強度)が確保され、かつ上記皮材においては
、Zn含有量が相対的に低いので、真空ろう付は時にお
けるZnの蒸発は極力抑制されるようになると共に、S
nとの共存によって電気化学的に十分環となることから
、この皮材によってすぐれた犠牲陽極効果が確保される
という知見を得だのである。
When constructed with an Aε alloy composite cladding made of AQ alloy cladding having a composition containing M and the remainder consisting of M and unavoidable impurities, the core material ensures excellent sagging resistance (high temperature strength). In addition, since the Zn content is relatively low in the above-mentioned skin material, the evaporation of Zn during vacuum brazing is suppressed as much as possible, and S
Since the coexistence with n sufficiently forms a ring electrochemically, it was discovered that this skin material ensures an excellent sacrificial anode effect.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に芯材および皮材の成分組成を上記の通りに限
定した理由を説明する。
This invention has been made based on the above findings, and the reason why the component compositions of the core material and the skin material are limited as described above will be explained below.

A、芯材 (a) Mn Mn成分には、Mと化合物を形成し、素地中に微細に分
散析出して合金の再結晶温度を著しく上昇させ、この結
果ろう付は加熱時に再結晶粒が粗大化し、もってろう付
は時の耐垂下性(高温強度)を向上させる作用があるが
、その含有量が01%未満では前記作用に所望の効果が
得られず、一方1.5チを越えて含有させてもよシ一層
の向上効果が得られないばかりでなく、溶解鋳造時に巨
大具を形成して加工性が損なわれるようになり、さらに
熱伝導性も低下するようになることから、その含有量を
0.1〜15チと定めだ。
A. Core material (a) Mn The Mn component forms a compound with M, and is finely dispersed and precipitated in the matrix, significantly increasing the recrystallization temperature of the alloy. As a result, during brazing, recrystallized grains are formed during heating. Coarsening and brazing have the effect of improving the sagging resistance (high temperature strength), but if the content is less than 0.1%, the desired effect cannot be obtained; on the other hand, if the content exceeds 1.5% Even if it is included, not only will it not be possible to obtain further improvement effects, but also it will form giant parts during melting and casting, impairing workability, and further reducing thermal conductivity. Its content is set at 0.1 to 15 chi.

(b) Zn 芯材中のZn成分は、真空ろう付加熱に際して、皮材か
ら少量蒸発するZnを補給する目的で含有されるもので
あり、したがってその含有量が001チ未満ではろう付
は加熱時における皮材へのZn補給を満足に行なうこと
ができず、一方0.5%を越えた含有は、皮材を介して
のZnの多量の蒸発を招くことから、その含有量を0.
01〜05係と定めた。
(b) Zn The Zn component in the core material is contained for the purpose of replenishing a small amount of Zn that evaporates from the skin material during vacuum brazing addition heat. Zn cannot be replenished satisfactorily to the skin material at times, and on the other hand, if the content exceeds 0.5%, a large amount of Zn will evaporate through the skin material.
01 to 05 section.

(c) MgおよびCu これらの成分には、素地に固溶して、これを強化する作
用があるので、特に強度が要求される場合に必要に応じ
て含有されるが、その含有量が、それぞれMg:0.0
1%未満およびCu:0.01%未満では所望の強度向
上効果が得られず、一方Mgについては1%を越えて含
有させると耐垂下性(高温強度)の低下が著しくなシ、
まだCuについては0.2チを越えて含有させると、電
気化学的に著しく貴になって、管材に対する犠牲陽極効
果を失うようになることから、その含有量を、それぞれ
Mg: 0.01〜1 %、 Cu: 0.01〜0.
2%と定めた。
(c) Mg and Cu These components dissolve in solid solution in the base material and have the effect of strengthening it, so they are included as necessary when particularly strength is required, but the content is Mg: 0.0 each
If the content is less than 1% and Cu: less than 0.01%, the desired strength improvement effect cannot be obtained, while if the Mg content exceeds 1%, the sagging resistance (high temperature strength) will be significantly reduced.
However, if the Cu content exceeds 0.2%, it becomes electrochemically extremely noble and loses its sacrificial anode effect on the pipe material, so the content is adjusted to Mg: 0.01~ 1%, Cu: 0.01-0.
It was set at 2%.

(d) Zrおよびcr これらの成分には、Mnとの共存において、Mと化合物
を形成し、素地中に微細に分散析出して合金の再結晶温
度を一段と上昇させ、もってろう付は加熱時に再結晶粒
を粗大化して耐垂下性を向上させる作用があるので、特
により一層の耐垂下性が要求される場合に必要に応じて
含有されるが、その含有量が、それぞれZr:0.02
%未満およびCr:0.02%未満では所望の耐垂下性
改善効果が得られず、一方Cr:0.3チおよびZr:
0.2%を越えて含有させると、溶解時に巨大具を形成
し易くなって加工性が低下するようになシ、かつ耐垂下
性により一層の向上効果も現われないことから、その含
有量をZr: 0.02〜0.2 %、 Cr: 0.
02〜03%と定めた。
(d) Zr and cr When these components coexist with Mn, they form a compound with M, finely disperse and precipitate in the matrix, further raising the recrystallization temperature of the alloy, and thus brazing is difficult during heating. Since it has the effect of coarsening recrystallized grains and improving sagging resistance, it is included as necessary especially when even higher sagging resistance is required. 02
% and Cr: less than 0.02%, the desired sagging resistance improvement effect cannot be obtained, while Cr: 0.3% and Zr:
If the content exceeds 0.2%, it becomes easy to form giant pieces during melting, reducing workability, and further improving the sagging resistance is not achieved. Zr: 0.02-0.2%, Cr: 0.
It was set at 02-03%.

B、皮材 (a) SnおよびZn これらの成分には、同成分共存において、皮材を電気化
学的に卑にし、もってすぐれた犠牲陽極効果を付与せし
める作用があるほか、酬食性を向上させる作用がある。
B. Skin material (a) Sn and Zn These components have the effect of electrochemically making the skin material base in the coexistence of the same components, giving it an excellent sacrificial anode effect, and also improving its feeding properties. It has an effect.

したがって、Snの含有量が0、034未満でも、また
Znの含有量がo、 o 1%未満でもすぐれた犠牲陽
極効果および耐食性を確保することができないものであ
り、一方Sn:0.12チおよびZn:0.3%を越え
て含有させても前記作用に所望の向上効果が得られない
ばかりでなく、加工性が劣化するようになることから、
その含有量を、Sn: 0.03〜0.12%、 Zn
: 0.01〜0.3チと定めだ。
Therefore, even if the Sn content is less than 0.034% or the Zn content is less than 1%, excellent sacrificial anode effect and corrosion resistance cannot be ensured. and Zn: Even if the content exceeds 0.3%, not only the desired effect of improving the above action cannot be obtained, but also the workability deteriorates.
The content is Sn: 0.03-0.12%, Zn
: It is set at 0.01 to 0.3 chi.

(b) Mg Mg成分には、皮材の電気化学的性質をほとんど変える
ことなく、皮材の耐食性を向上させる作用があるので、
特に耐食性が要求される場合に必要に応じて含有される
が、その含有量がo、 014未満では所望の耐食性向
上効果が得られず、一方1チを越えて含有させてもよシ
一層の向上効果が得られないはかシでなく、加工性の劣
化をきたすようになることから、その含有量を0.01
〜1チと定めた。
(b) Mg The Mg component has the effect of improving the corrosion resistance of the skin material without almost changing the electrochemical properties of the skin material.
In particular, it is included as necessary when corrosion resistance is required, but if the content is less than 0.014, the desired effect of improving corrosion resistance cannot be obtained, while on the other hand, if it is contained in excess of 1. The content is reduced to 0.01 because it does not provide any improvement effect and causes deterioration of workability.
~1ch.

つぎに、この発明の複合フィン材を実施例により具体的
に説明する。
Next, the composite fin material of the present invention will be specifically explained using examples.

実施例 通常の溶解法によシ、それぞれ第1表に示される最終成
分組成をもった芯材用M合金と皮材用M合金を溶製し、
鋳造して鋳塊とした後5通常の条件で均質化処理を施し
、ついでこれらのへ〇合金鋳塊のうち芯材用A2合金に
は通常の条件で熱間圧延を施して板厚:8朋の熱延板と
し、さらに皮材用M合金にも同様に通常の条件で熱間圧
延を施して板厚:5朋の熱延板とし、引続いてこれに冷
間圧延を施して板厚:1朋の冷延板とし、つぎKこのよ
うにして形成された板厚二8朋の芯材用A1合金熱延板
と板厚:1mxの皮材用M合金冷延板とを同じく第1表
に示される紹合せにおいて、前記芯材用A2合金熱延板
の両面に前記皮材用AQ合金冷延板を重ね合わせ、この
重ね合せ体に通常の条件で熱間圧延を施すことによって
クラッドして板厚:3Uとし、引続いてこれに適宜中間
焼鈍を加えなから冷間圧延(最終冷間加工率:30%)
を施して板厚:05wrLおよび0.16wILの2種
の本発明AQ合金製複合フィン材1〜27をそれぞれ製
造した。
Example An M alloy for the core material and an M alloy for the skin material each having the final component compositions shown in Table 1 were melted by a conventional melting method,
After casting into an ingot, it is homogenized under normal conditions, and then processed into these alloy ingots. Among the alloy ingots, A2 alloy for the core material is hot-rolled under normal conditions to obtain a plate thickness of 8. This hot-rolled sheet was then similarly hot-rolled to M alloy for skin material under normal conditions to obtain a hot-rolled sheet with a thickness of 5 mm, which was then cold-rolled to obtain a sheet. A cold-rolled plate with a thickness of 1 mm was prepared, and then the A1 alloy hot-rolled plate for the core material with a plate thickness of 28 mm and the M alloy cold-rolled plate for the skin material with a plate thickness of 1 mx were formed in the same way. In the introduction shown in Table 1, the AQ alloy cold-rolled sheet for the skin material is superimposed on both sides of the A2 alloy hot-rolled sheet for the core material, and the superposed body is hot-rolled under normal conditions. The plate is cladded with 3U to give a plate thickness of 3U, and then subjected to appropriate intermediate annealing and then cold rolled (final cold working rate: 30%).
Two types of composite fin materials 1 to 27 made of the AQ alloy of the present invention having plate thicknesses of 05 wrL and 0.16 wIL were manufactured by applying the following steps.

まだ、比較の目的で、同じく第1表に示される最終成分
組成をもったA9合金を溶製し、鋳造し。
For the purpose of comparison, an A9 alloy having the same final component composition shown in Table 1 was melted and cast.

均質化処理した後、これに通常の条件で熱間圧延を施し
て板厚:5TuLの熱延板とし、引続いて適宜中間焼鈍
を、加えなから冷間圧延(最終冷間加工率:309J)
を施すことによって板厚:0.5mおよび016Mを有
する2種類の従来AA合金製フィン材を製造した。
After the homogenization treatment, this was hot rolled under normal conditions to obtain a hot rolled sheet with a thickness of 5 TuL, followed by appropriate intermediate annealing and then cold rolling (final cold working rate: 309 J). )
Two types of conventional AA alloy fin materials having plate thicknesses of 0.5 m and 016 M were manufactured by applying the following steps.

つぎに、板厚:0.16mを有する本発明M合金製複合
フィン材1〜27および従来AA合金製フィン材を用い
、高温強度を評価する目的で耐垂下性試験を行なった。
Next, a drooping resistance test was conducted for the purpose of evaluating high-temperature strength using the composite fin materials 1 to 27 made of the M alloy of the present invention and the conventional fin material made of the AA alloy, each having a plate thickness of 0.16 m.

耐垂下性試験は、試片として、幅:30+u+X長さ:
140Mの寸法をもったものを用い、この試片の長さ方
向の一端から30111111の部分を水平保持した状
態で、約10””’ torrの真空中、温度:620
℃に5分間保持の条件で行ない、先端部の垂下高さを測
定した。
The sagging resistance test was conducted using a sample as a width: 30+u+X length:
Using a specimen with a dimension of 140M, the part 30111111 from one end in the length direction of this specimen was held horizontally in a vacuum of about 10""' torr at a temperature of 620
The test was carried out under the condition of being held at ℃ for 5 minutes, and the hanging height of the tip was measured.

また、耐垂下性試験後の試片を用い、犠牲陽極効果を評
価する目的で、1規定の食塩水での孔食発生電位(飽和
カロメル基準)を測定した。
Further, using the specimens after the sagging resistance test, the potential for pitting corrosion in 1N saline (saturated calomel standard) was measured for the purpose of evaluating the sacrificial anode effect.

さらに、上記の板厚:0.5Mの本発明M合金製複合フ
ィン材1〜27および従来M合金製フィン材より幅:2
ONX長さ=50間の寸法をもっだ試片を切出し、この
試片を、別途用意した幅:40+11111X長さ:5
0MX板厚;1Mの寸法をもち、Mn: 1.21%、
 AQおよび不可避不純物:残りからなる組成を有する
厚さ:0.9u+の芯材の片面に、Si:9.50%、
Mg:1.53チ2Mおよび不可避不純物:残シからな
る組成を有するろう材を厚さ二〇、’llK++1でク
ラッドしたものからなる、通常管材として用いられてい
るM合金板材の長さ方向中心線上に直角に立設保持し、
この状態で、真空中、温度:620℃に5分間保持の条
件でろう付は処理を施し、この結果のろう付は後の組立
て体について、lppmのCu イオン含有の温度:4
0℃の水道水中に30日間浸漬の水道水浸漬試験、並び
に30日間のCASS試験を行ない、試験後の通常管材
として用いられている前記M合金板材における孔食発生
数および最大孔食深さを測定した。
Furthermore, the above plate thickness: 0.5M composite fin materials 1 to 27 made of the M alloy of the present invention and the width of the conventional fin material made of the M alloy: 2
Cut out a specimen with dimensions between ONX length = 50, and use this specimen as a separately prepared width: 40 + 11111X length: 5
0MX plate thickness: 1M dimensions, Mn: 1.21%,
AQ and unavoidable impurities: On one side of a core material with a thickness of 0.9u+ having a composition consisting of the remainder, Si: 9.50%,
Mg: 1.53, 2M, and unavoidable impurities: Residue: The center of the length of an M alloy plate, which is usually used as a pipe material, and is made by cladding with a thickness of 20, 'llK++1. Hold it upright at right angles to the line,
In this state, brazing was carried out in a vacuum at a temperature of 620°C for 5 minutes.
A tap water immersion test of 30 days immersion in 0°C tap water and a 30 day CASS test were conducted to determine the number of occurrences of pitting corrosion and the maximum pitting depth in the M alloy plate material commonly used as pipe material after the test. It was measured.

これらの測定結果を第1表に合せて示した。These measurement results are also shown in Table 1.

第1表に示される結果から、 Mn含有量がほぼ同一の
本発明M合金製複合フィン材5と従来M合金製フィン材
との比較から明らかなように、本発明M合金製複合フィ
ン材1〜27は、いずれも従来A8合金製フィン材と同
等のすぐれた耐垂下性(高温強度)を有し、一方犠牲陽
極効果については、従来M合金製フィン材に比して一段
とすぐれた結果を示している。
From the results shown in Table 1, as is clear from the comparison between the composite fin material 5 made of the M alloy of the present invention and the conventional fin material made of the M alloy, which have almost the same Mn content, the composite fin material 1 made of the M alloy of the present invention ~27 all have excellent droop resistance (high temperature strength) equivalent to conventional A8 alloy fin materials, while the sacrificial anode effect is even better than conventional M alloy fin materials. It shows.

なお、第1表に示される各種のAε合金は、いずれも不
可避不純物としてMn: 0.01 %以下、Cu:0
、01%以下、Cr:0.01%以下、Zr:O,01
%以下、Si:0.3%以下、Fe:0.4%以下を含
有するものであった。
The various Aε alloys shown in Table 1 all contain Mn: 0.01% or less and Cu: 0 as unavoidable impurities.
,01% or less, Cr:0.01% or less, Zr:O,01
% or less, Si: 0.3% or less, and Fe: 0.4% or less.

上述のように、この発明のM合金製複合フィン材は、す
ぐれた高温強度(耐垂下性)を有しているので、熱交換
器の製造に際して適用されるろう付は処理において、6
へたシ″などの発生がなく、したがって良好なろう付け
を行なうことができるばかりでなく、これがろう付けさ
れる管材に対して電気化学的に十分環な電気的特性を有
しているので、管材に対して十分な犠牲陽極効果を発揮
し、すぐれた耐食性を具備することと合まって、熱交換
器の著しい延命化を可能とするなどの工業上有用な特性
を有するのである。
As mentioned above, the M alloy composite fin material of the present invention has excellent high temperature strength (sagging resistance), so the brazing applied when manufacturing the heat exchanger is
Not only does it not cause any sag, so good brazing can be achieved, but it also has electrical properties that are electrochemically sufficient for the pipe material to be brazed. It exhibits a sufficient sacrificial anode effect on the tube material and has excellent corrosion resistance, and has industrially useful properties such as making it possible to significantly extend the life of heat exchangers.

Claims (8)

【特許請求の範囲】[Claims] (1) Mn : 0.1〜1.5%。 Zn: 0.01〜0.5%。 を含有し、残シがMと不可避不純物からなる組成を有す
る42合金製芯材の両面に、 Sn 二0.03〜0.12 % e Zn:0.O2N2.3チ。 を含有し、残シがAAと不可避不純物からなる組成(以
上重量%)を有するA9合金製皮材をクラッドしてなる
高温強度および犠牲陽極効果のすぐれた熱交換器用M合
金製複合フィン材。
(1) Mn: 0.1-1.5%. Zn: 0.01-0.5%. 42 alloy core material containing 0.03 to 0.12% Sn2 and Zn:0. O2N2.3chi. An M alloy composite fin material for a heat exchanger, which has excellent high-temperature strength and sacrificial anode effect, and is made by cladding an A9 alloy skin material having a composition (by weight %) of AA and unavoidable impurities.
(2) Mn : 0.1〜1.5 % tZn: 、
O,Ol〜0.5 %。 を含有し、さらに、 Mg : 0.01〜1チ。 Cu : 0.01〜0.2%。 のうちの1種または2種を含有し、残りがMと不可避不
純物からなる組成を有するM合金製芯材の両面に、 Sn: 0.03〜0112%。 Zn : 0.01〜0.3 %。 を含有し、残りがAQと不可避不純物からなる組成(以
上重量%)を有するA1合金製皮材をクラッドしてなる
高温強度および犠牲陽極効果のすぐれた熱交換器用A1
合金製複合フィン材。
(2) Mn: 0.1-1.5% tZn: ,
O, Ol~0.5%. and further contains Mg: 0.01 to 1 t. Cu: 0.01-0.2%. Sn: 0.03 to 0112% on both sides of an M alloy core material having a composition containing one or two of these, with the remainder consisting of M and unavoidable impurities. Zn: 0.01-0.3%. A1 for heat exchangers with excellent high-temperature strength and sacrificial anode effect, made by cladding with A1 alloy skin material having a composition (by weight %) containing
Alloy composite fin material.
(3) Mn: 0.1〜1.5 To。 Zn:0.01〜0.5%。 を含有し、さらに Zr: 0.02〜0.2 %。 Cr: 0.02〜0.3%。 のうちの1種または2種を含有し、残りがMと不、可避
不純物からなる組成を有するA1合金製芯材の両面に、 Sn: 0.0 3〜0.1 2 %。 Zn : 0.0 1−0.3 %。 を含有し、残りがAεと不可避不純物からなる組成(以
上重量%)を有するM合金製皮材をクラッドしてなる高
温強度および犠牲陽極効果のすぐれだ熱交換器用AQ合
金製複合フィン材。
(3) Mn: 0.1 to 1.5 To. Zn: 0.01-0.5%. and further contains Zr: 0.02 to 0.2%. Cr: 0.02-0.3%. Sn: 0.03 to 0.12% on both sides of an A1 alloy core material having a composition containing one or two of the above, and the remainder consisting of M and unavoidable impurities. Zn: 0.0 1-0.3%. An AQ alloy composite fin material for a heat exchanger, which has excellent high-temperature strength and sacrificial anode effect, and is made by cladding an M alloy skin material having a composition (by weight %) containing Aε and unavoidable impurities.
(4)Mn: 0.I N1.5 %。 Zn: 0.01〜0.5 %。 を含有し、さらに、 Mg: O,Ol〜1チ。 Cu : 0.01〜0.2%。 のうちの1種または2種と、 Zr: 0.02〜0.2%。 Cr: 0.02〜0.3%。 のうちの1種まだは2種を含有し、残シがAAと不可避
不純物からなる組成を有するA1合金製芯材の両面に、 Sn: 0.03〜0.12 %。 Zn : 0.01〜0.3%。 を含有し、残りがAQと不可避不純物からなる組成(以
上型、量チ)を有するM合金製皮材をクラッドしてなる
高温強度および犠牲陽極効果のすぐれだ熱交換器用AQ
合金製複合フィン材。
(4) Mn: 0. IN1.5%. Zn: 0.01-0.5%. and further contains Mg: O, Ol to 1. Cu: 0.01-0.2%. One or two of the above, and Zr: 0.02 to 0.2%. Cr: 0.02-0.3%. Sn: 0.03 to 0.12% on both sides of an A1 alloy core material containing one or two of these, with the remainder being AA and unavoidable impurities. Zn: 0.01-0.3%. AQ for heat exchangers with excellent high-temperature strength and sacrificial anode effect, made by cladding with M alloy skin material having a composition (type, quantity) containing AQ and unavoidable impurities.
Alloy composite fin material.
(5) Mn: 0.1〜1.5 %。 Zn: 0.01〜0.5 %。 を含有し、残りがMと不可避不純物からなる組成を有す
るM合金製芯材の両面に、 Sn: 0.03〜0.12%。 Zn: 0.01〜0.3%。 Mg:0.01〜1チ。 を含有し、残シがMと不可避不純物からなる組成(以上
重量%)を有するM合金製皮材をクラッドしてなる高温
強度および犠牲陽極効果のすぐれた熱交換器用Al1合
金製複合フィン材。
(5) Mn: 0.1-1.5%. Zn: 0.01-0.5%. Sn: 0.03-0.12%. Zn: 0.01-0.3%. Mg: 0.01 to 1 t. An Al1 alloy composite fin material for a heat exchanger, which has excellent high-temperature strength and sacrificial anode effect, and is made by cladding an M alloy skin material having a composition (by weight %) of M and unavoidable impurities.
(6) Mn: 0.1〜1.5%。 Zn: 0.01〜0.5 ’16゜ を含有し、さらに、 Mg:0.01〜1%。 Cu: 0.01〜0.2%。 のうちの1種または2種を含有し、残りがMと不可避不
純物からなる組成を有するA9合金製芯材の両面に、 Sn: 0.03〜0.12 %。 Zn: 0.01〜O,,3チ。 Mg:0.01〜1チ。 を含有し、残シがAgと不可避不純物からなる組成(以
上重量%)を有するAP、合金製皮材をクラッドしてな
る高温強度および犠牲陽極効果のすぐれた熱交換器用M
合金製複合フィン材。
(6) Mn: 0.1-1.5%. Contains Zn: 0.01 to 0.5'16°, and further contains Mg: 0.01 to 1%. Cu: 0.01-0.2%. Sn: 0.03 to 0.12% on both sides of an A9 alloy core material having a composition containing one or two of the following, with the remainder consisting of M and unavoidable impurities. Zn: 0.01~O, 3chi. Mg: 0.01 to 1 t. M for heat exchangers with excellent high-temperature strength and sacrificial anode effect, which is made by cladding AP and alloy skin material with a composition (by weight %) containing Ag and unavoidable impurities.
Alloy composite fin material.
(7) Mn: 0.1〜1.5 %。 Zn: 0.01〜0.5%。 を含有し、さらに Zr : 0.02〜0.2%。 Cr : 0.02〜0.3%。 のうちの1種または2種を含有し、残シがAQと不可避
不純物からなる組成を有するM合金製芯材の両面に、 Sn: 0.03〜0.12 %。 Zn: 0.01〜0.3 %。 Mg:0.01〜1%。 を含有し、残りがAQと不可避不純物からなる組成(以
上重量%)を有するA1合金製皮材をクラッドしてなる
高温強度および犠牲陽極効果のすぐれた熱交換器用AQ
合金製複合フィン材。
(7) Mn: 0.1-1.5%. Zn: 0.01-0.5%. and further contains Zr: 0.02 to 0.2%. Cr: 0.02-0.3%. Sn: 0.03 to 0.12% on both sides of an M alloy core material containing one or two of the above, with the remainder consisting of AQ and unavoidable impurities. Zn: 0.01-0.3%. Mg: 0.01-1%. AQ for heat exchangers with excellent high-temperature strength and sacrificial anode effect, which is made by cladding A1 alloy skin material with a composition (by weight %) containing AQ and unavoidable impurities.
Alloy composite fin material.
(8) Mn: 0.1〜1.5%。 Zn:0101〜05チ。 を含有し、さらに、 Mg:0.01〜1%。 Cu: 0.01〜0.2 %。 のうちの1種または2種と、 Zr: 0.02〜0.2 %。 Cr: 0.02〜0.3%。 のうちの1種または2種を含有し、残りがMと不可避不
純物からなる組成を有するM合金製芯材の両面に、 Sn: 0.03〜0.12%。 Zn:0.01〜0.3チ。 Mg:0.01〜1チ。 を含有し、残シがAQと不可避不純物からなる組成(以
上重量%)を有するM合金製皮材をクラツドしてなる高
温強度および犠牲陽極効果のすぐれた熱交換器用AQ合
金製複合フィン材。
(8) Mn: 0.1-1.5%. Zn:0101~05chi. and further contains Mg: 0.01 to 1%. Cu: 0.01-0.2%. One or two of these and Zr: 0.02 to 0.2%. Cr: 0.02-0.3%. Sn: 0.03 to 0.12% on both sides of an M alloy core material having a composition containing one or two of the following, with the remainder consisting of M and unavoidable impurities. Zn: 0.01-0.3chi. Mg: 0.01 to 1 t. An AQ alloy composite fin material for a heat exchanger, which has excellent high-temperature strength and sacrificial anode effect, and is made by cladding an M alloy skin material containing AQ and unavoidable impurities (weight percent).
JP58244078A 1983-12-26 1983-12-26 Composite al alloy material for fin of heat exchanger having superior strength at high temperature and significant sacrificial anode effect Granted JPS60138083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58244078A JPS60138083A (en) 1983-12-26 1983-12-26 Composite al alloy material for fin of heat exchanger having superior strength at high temperature and significant sacrificial anode effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58244078A JPS60138083A (en) 1983-12-26 1983-12-26 Composite al alloy material for fin of heat exchanger having superior strength at high temperature and significant sacrificial anode effect

Publications (2)

Publication Number Publication Date
JPS60138083A true JPS60138083A (en) 1985-07-22
JPH0352549B2 JPH0352549B2 (en) 1991-08-12

Family

ID=17113405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58244078A Granted JPS60138083A (en) 1983-12-26 1983-12-26 Composite al alloy material for fin of heat exchanger having superior strength at high temperature and significant sacrificial anode effect

Country Status (1)

Country Link
JP (1) JPS60138083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125452A (en) * 1990-09-18 1992-06-30 Sumitomo Light Metal Industries, Ltd. Aluminum alloy clad material
US5187016A (en) * 1990-07-05 1993-02-16 Atochem Thermoplastic composition comprising a copolymer based on ethylene and maleic anhydride, and industrial articles obtained from such a composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187016A (en) * 1990-07-05 1993-02-16 Atochem Thermoplastic composition comprising a copolymer based on ethylene and maleic anhydride, and industrial articles obtained from such a composition
US5125452A (en) * 1990-09-18 1992-06-30 Sumitomo Light Metal Industries, Ltd. Aluminum alloy clad material

Also Published As

Publication number Publication date
JPH0352549B2 (en) 1991-08-12

Similar Documents

Publication Publication Date Title
JPS6248742B2 (en)
JPS5985837A (en) Al alloy for fin material of heat exchanger with superior sag resistance
US4828936A (en) Aluminum alloy sheet excellent in high-temperature sagging resistance and sacrificial anode property and having high room-temperature strength
JPH01195263A (en) Manufacture of al-alloy fin material for heat exchanger
JPS60138037A (en) Al alloy composite fin material for heat exchanger having excellent high-temperature strength and sacrificial anode effect
JPS60138083A (en) Composite al alloy material for fin of heat exchanger having superior strength at high temperature and significant sacrificial anode effect
JPS6280246A (en) Al alloy material for heat exchanger excellent in strength at high temperature
JPH01102297A (en) Aluminum alloy compound fin material for heat exchanger suitable for brazing and corrosion resistance
JPS5864339A (en) Al alloy for fin material of heat exchanger with superior sacrificial anode effect and drooping resistance
JP3977978B2 (en) Aluminum alloy for heat exchangers with excellent corrosion resistance
JPS6358217B2 (en)
JPH03197652A (en) Production of aluminum alloy fin material for brazing
JP2607245B2 (en) High strength aluminum alloy composite thin fin material with excellent sacrificial anode effect for heat exchangers
JPS58171546A (en) Al alloy as fin material for heat exchanger with superior drooping resistance and sacrificial anode effect
JPH029098B2 (en)
JPH0931614A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JPS586956A (en) Al alloy for fin material of heat exchanger with superior heat conductivity and superior drooping resistance
JPS6323260B2 (en)
JPH01159343A (en) Al alloy clad fin material for heat exchanger having superior brazability and corrosion resistance
JPH03153835A (en) Fin material made of high strength al alloy for al heat exchanger
JPH0653904B2 (en) Aluminum alloy heat exchanger fin material with high strength
JPS5985838A (en) Al alloy for fin material of heat exchanger having superior sag resistance and sacrificial anode effect
JPS60110835A (en) Al alloy brazing sheet having significant sacrificial anode effect
JPH0931613A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JPS5887245A (en) Al alloy sheet for fin material of heat exchanger with superior sag resistance