JPH0653594B2 - Conductor composition - Google Patents

Conductor composition

Info

Publication number
JPH0653594B2
JPH0653594B2 JP60195437A JP19543785A JPH0653594B2 JP H0653594 B2 JPH0653594 B2 JP H0653594B2 JP 60195437 A JP60195437 A JP 60195437A JP 19543785 A JP19543785 A JP 19543785A JP H0653594 B2 JPH0653594 B2 JP H0653594B2
Authority
JP
Japan
Prior art keywords
weight
fine particles
composition
oxide
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60195437A
Other languages
Japanese (ja)
Other versions
JPS6255805A (en
Inventor
清造 村山
謙一 宇留賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP60195437A priority Critical patent/JPH0653594B2/en
Publication of JPS6255805A publication Critical patent/JPS6255805A/en
Publication of JPH0653594B2 publication Critical patent/JPH0653594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Glass Compositions (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、基板に回路を形成するために用いられる導体
組成物に関し、特に結晶化ガラスからなるホーロ被覆基
板等に強固に接着した回路を形成し得る導体組成物に関
するものである。
TECHNICAL FIELD The present invention relates to a conductor composition used for forming a circuit on a substrate, and particularly to a conductor composition strongly bonded to a holo-coated substrate made of crystallized glass. The present invention relates to a conductor composition that can be formed.

「従来の技術とその問題点」 近年、厚膜技術を利用して回路を形成するために、セラ
ミックス基板が広く用いられている。セラミックス基板
としては、従来アルミナ製のものが用いられていた。こ
のアルミナ製基板は、耐熱性に優れ、高品質の回路を焼
成できる利点があるものの、このアルミナ性基板はもろ
いため、実用的には寸法の小さいものしか作成できない
等の問題があった。
“Conventional Technology and Its Problems” In recent years, ceramic substrates have been widely used to form circuits using thick film technology. As the ceramic substrate, one made of alumina has been conventionally used. Although this alumina substrate has the advantage of being excellent in heat resistance and capable of firing a high-quality circuit, there is a problem in that only a small size can be practically produced because this alumina substrate is brittle.

このような問題に対処し得るセラミックス基板として、
特開昭57−140877号公報にて開示された方法で
製造されるホーロー被覆された基板がある。この基板
は、ホーロー被覆をなすガラスの50〜90vol%が結
晶化されたものである。このホーロー被覆された基板
は、良好な靱性を有するので寸法の大きなものを作成で
きると共に、アルミナ製基板に匹敵する耐熱性を有する
ので、高品質の回路を形成できる可能性を有する優れた
ものである。
As a ceramic substrate that can deal with such problems,
There is a enamel coated substrate manufactured by the method disclosed in Japanese Patent Application Laid-Open No. 57-140877. This substrate is obtained by crystallizing 50 to 90 vol% of the glass forming the enamel coating. This enamel coated substrate has good toughness, so that it can be made into a large size, and it has heat resistance comparable to that of an alumina substrate, so it is an excellent one with the possibility of forming high-quality circuits. is there.

ところが、セラミックス基板に回路を形成するための導
体組成物として従来提供されているものは、主にアルミ
ナ製基板用に開発されたものであったので、従来の導体
組成物で上記ホーロー被覆された基板上に回路を形成し
た場合、形成された回路の基板に対する接着強度が不十
分である問題があった。
However, what has been conventionally provided as a conductor composition for forming a circuit on a ceramic substrate has been developed mainly for an alumina substrate, so that the above-mentioned enamel coating with the conventional conductor composition has been performed. When a circuit is formed on a substrate, there is a problem that the strength of adhesion of the formed circuit to the substrate is insufficient.

「発明の目的」 本発明は、上記事情に鑑みてなされたもので、上記ホー
ロー被覆された基板にも接着強度の高い回路を形成し得
る新規な導体組成物を提供することを目的とする。
"Object of the Invention" The present invention has been made in view of the above circumstances, and an object thereof is to provide a novel conductor composition capable of forming a circuit having high adhesive strength even on the above-mentioned enamel-coated substrate.

「問題点を解決するための手段」 本発明の導体組成物は、金属粉末70〜98.5重量%
と、ガラス微粒子0.5〜10重量%と、三酸化ビスマ
ス微粒子8重量%以下と、酸化銅微粒子0.2〜15重
量%とからなるものである。
"Means for Solving Problems" The conductor composition of the present invention contains 70 to 98.5% by weight of metal powder.
Glass fine particles 0.5 to 10% by weight, bismuth trioxide fine particles 8% by weight or less, and copper oxide fine particles 0.2 to 15% by weight.

上記ガラス微粒子が、一酸化鉛55〜85重量%、三酸
化二ホウ素5〜20重量%、二酸化ケイ素5〜30重量
%、酸化アルミニウム5重量%以下、酸化カルシウム5
重量%以下、酸化マグネシウム5重量%以下の組成から
なる。または、上記ガラス微粒子が、酸化バリウム40
〜55重量%、酸化カルシウム10〜15重量%、三酸
化二ホウ素14〜25重量%、二酸化ケイ素13〜23
重量%の組成からなる。
The glass fine particles are composed of 55 to 85% by weight of lead monoxide, 5 to 20% by weight of diboron trioxide, 5 to 30% by weight of silicon dioxide, 5% by weight or less of aluminum oxide, and 5% by weight of calcium oxide.
It has a composition of less than 5% by weight and less than 5% by weight of magnesium oxide. Alternatively, the glass fine particles are barium oxide 40.
~ 55 wt%, calcium oxide 10-15 wt%, diboron trioxide 14-25 wt%, silicon dioxide 13-23
It is composed by weight.

上記酸化銅微粒子が、酸化第一銅からなるものである。The fine copper oxide particles are composed of cuprous oxide.

「作用」 本発明の導体組成物にあっては、基本的には組成物中の
ガラス成分が導体金属と基板とを結合させる働きをす
る。酸化銅は基板とガラス成分との結合を強化する作用
を有するが、酸化第一銅は特にその作用が強く有効であ
る。酸化ビスマスは、フラックスとしての作用を有する
ので組成物中の各成分の濡れを促進し、特に酸化銅の反
応性を高め、導体金属微粒子の焼結を容易にする。
"Function" In the conductor composition of the present invention, the glass component in the composition basically functions to bond the conductor metal and the substrate. Copper oxide has an action of strengthening the bond between the substrate and the glass component, but cuprous oxide is particularly effective because of its strong action. Since bismuth oxide has a function as a flux, it promotes the wetting of each component in the composition, particularly enhances the reactivity of copper oxide, and facilitates the sintering of conductive metal fine particles.

「実施例」 以下、本発明の導体組成物を詳しく説明する。"Example" Hereinafter, the conductor composition of the present invention will be described in detail.

本発明の導体組成物は、金属粉末とガラス微粒子と添加
物としての三酸化ビスマス微粒子および酸化銅微粒子と
からなるものである。そして、この導体組成物は、これ
ら粉末を粘性流体化して印刷可能にする有機媒体に分散
されて用いられる。
The conductor composition of the present invention comprises metal powder, glass fine particles, and bismuth trioxide fine particles and copper oxide fine particles as additives. Then, this conductor composition is used by being dispersed in an organic medium which makes these powders into viscous fluids and enables printing.

上記添加物は、導体組成物の接着強度を向上するもの
で、本発明の導体組成物にあっては、三酸化ビスマス
(Bi23)および酸化銅(酸化第一銅Cu2Oあるいは酸化
第二銅CuO)の微粒子が添加される。Bi23微粒子
は、これを添加することにより次のような効果が得られ
る。即ち、導体組成物が焼成される際に融解して、基板
の表面および導体組成物中の金属粉末、ガラス微粒子を
濡らし、フッラックスとして作用する。そのうえ、本発
明の導体組成物においてBi23は、焼成時、同時に添
加された酸化銅(融点 Cu2O=1,230℃、CuO=1,026
℃)と反応してこの酸化銅の融点を低下させる。このた
め酸化銅は、一般的な焼成温度である850℃程度で融
解し、酸化銅は基板表面、ガラス微粒子および金属粉末
と良好に接触する。そして、酸化銅は、焼成時、高い反
応性を発揮し、金属粉末等の導体組成分とホーロー被覆
された基板表面との接着強度を著しく向上せしめる。特
に、酸化第一銅(Cu2O)は結晶化ガラスとの反応性が高
い。上記特開昭57−140877号公報記載の方法で
製造されたホーロー被覆基板(以下、ホーロー被覆基板
と略称する)に本発明の導体組成物で形成された回路を
調べると、Cu2Oがホーロー被覆をなすガラスの内部に
浸入している状態が観察される。
The above-mentioned additive improves the adhesive strength of the conductor composition. In the conductor composition of the present invention, bismuth trioxide is used.
Fine particles of (Bi 2 O 3 ) and copper oxide (cuprous oxide Cu 2 O or cupric oxide CuO) are added. By adding Bi 2 O 3 fine particles, the following effects can be obtained. That is, when the conductor composition is fired, it melts and wets the surface of the substrate and the metal powder and glass fine particles in the conductor composition, and acts as flax. In addition, in the conductor composition of the present invention, Bi 2 O 3 was added at the same time as copper oxide during the firing (melting point Cu 2 O = 1,230 ° C., CuO = 1,026).
C.) to lower the melting point of this copper oxide. Therefore, the copper oxide melts at about 850 ° C., which is a general firing temperature, and the copper oxide makes good contact with the substrate surface, glass fine particles and metal powder. Then, copper oxide exhibits high reactivity during firing, and remarkably improves the adhesive strength between the conductor composition such as metal powder and the surface of the enamel coated substrate. In particular, cuprous oxide (Cu 2 O) has high reactivity with crystallized glass. When a circuit formed of the conductor composition of the present invention on a enamel coated substrate manufactured by the method described in JP-A-57-140877 (hereinafter abbreviated as enamel coated substrate) is examined, Cu 2 O is enamel. It is observed that the glass penetrates the inside of the glass forming the coating.

本発明の導体組成物にはBi23が、導体組成物中の全
固形物に対して8重量%以下、より好ましくは0.5〜
8重量%添加される。Bi23の添加量が8重量%を越
えると、形成される回路の接着強度が著しく低下するう
え、半田付け性の低下を招く場合があるので好ましくな
い。また、Bi23の添加量が0.5重量%以上になる
と、上記したBi23の作用が十分発揮され、ホーロー
被覆基板に形成される回路の接着強度がより向上される
ので好ましい。
Bi 2 O 3 is contained in the conductor composition of the present invention in an amount of 8% by weight or less based on the total solids in the conductor composition, and more preferably 0.5 to 5.
8% by weight is added. If the amount of Bi 2 O 3 added exceeds 8% by weight, the adhesive strength of the circuit to be formed remarkably decreases and the solderability may deteriorate, which is not preferable. Further, when the added amount of Bi 2 O 3 is 0.5% by weight or more, the above-described action of Bi 2 O 3 is sufficiently exhibited, and the adhesive strength of the circuit formed on the enamel coated substrate is further improved, which is preferable. .

また、上記酸化銅は導体組成物中の全固形物に対して
0.2〜15重量%、より好ましくは2〜7重量%添加
される。この酸化銅の添加量が15重量%を越えると、
導体組成物の焼結が阻害されるうえ、基板に形成された
回路が半田くわれを起こし易いものとなるので好ましく
ない。また、酸化銅の添加量が0.2重量%未満になる
と、上記のような酸化銅の作用が十分発揮されず、ホー
ロー被覆基板に形成される回路の接着強度が不十分とな
る。酸化銅としては、CuO、Cu2O共に利用できる
が、高い反応性を有する点でCu2Oの方がより好ましく
用いられる。
Further, the above copper oxide is added in an amount of 0.2 to 15% by weight, more preferably 2 to 7% by weight, based on the total solids in the conductor composition. If the amount of copper oxide added exceeds 15% by weight,
It is not preferable because the sintering of the conductor composition is hindered and the circuit formed on the substrate is apt to cause soldering. On the other hand, if the amount of copper oxide added is less than 0.2% by weight, the action of copper oxide as described above will not be sufficiently exhibited, and the adhesive strength of the circuit formed on the enamel coated substrate will be insufficient. As copper oxide, both CuO and Cu 2 O can be used, but Cu 2 O is more preferably used from the viewpoint of high reactivity.

上記ガラス微粒子は、導体組成物の金属粉末と基板とを
結合する結合剤として働くもので、導体組成物中の全固
形物に対して0.5〜10重量%添加される。ガラス微
粒子の添加量が10重量%を越えると、導体組成物中の
金属粉末の量が相対的に減少し導体組成物の導電性が損
なわれるので、好ましくない。また、ガラス微粒子の添
加量が0.5重量%未満になると、金属粉末と基板との
結合が不十分となり、形成された回路から金属粉末が脱
落し易くなる不都合が生じる。
The glass fine particles act as a binder for binding the metal powder of the conductor composition and the substrate, and are added in an amount of 0.5 to 10% by weight based on the total solid matter in the conductor composition. If the addition amount of the glass fine particles exceeds 10% by weight, the amount of the metal powder in the conductor composition is relatively decreased and the conductivity of the conductor composition is impaired, which is not preferable. If the amount of the glass particles added is less than 0.5% by weight, the bonding between the metal powder and the substrate will be insufficient, and the metal powder will easily fall off from the formed circuit.

この導体組成物に添加されるガラス微粒子には、バリウ
ムガラス、鉛ガラス、カリ石炭ガラス、ケイ酸アルカリ
ガラス等種々のものを利用できるが、その中でも好適な
ものとして、まず第一にホウケイ酸鉛ガラスを挙げるこ
とができる。このホウケイ酸鉛ガラスは、金属粉末等と
基板とを強固に接着し得る点で好ましい。また、ホウケ
イ酸鉛ガラスの中でも、一酸化鉛(PbO)55〜85重
量%、三酸化二ホウ素(B23)5〜20重量%、二酸化
ケイ素(SiO2)5〜30重量%、酸化アルミニウム(Al
23)5重量%以下、酸化カルシウム(CaO)5重量%以
下、酸化マグネシウム(MgO)5重量%以下の組成のも
のが適しており、特に、PbO65〜82重量%、B2
310〜15重量%、SiO25〜10重量%、Al23
重量%以下、CaO5重量%以下、MgO5重量%以下の
組成のものが好適である。
Various fine particles such as barium glass, lead glass, potash coal glass, and alkali silicate glass can be used as the glass fine particles added to the conductor composition. Among them, first of all, lead borosilicate is preferable. Glass can be mentioned. This lead borosilicate glass is preferable because it can firmly bond the metal powder and the like to the substrate. Further, among lead borosilicate glasses, lead monoxide (PbO) 55 to 85% by weight, diboron trioxide (B 2 O 3 ) 5 to 20% by weight, silicon dioxide (SiO 2 ) 5 to 30% by weight, oxidation Aluminum (Al
2 O 3 ) 5% by weight or less, calcium oxide (CaO) 5% by weight or less, and magnesium oxide (MgO) 5% by weight or less are suitable. Particularly, PbO 65 to 82% by weight, B 2 O
3 10-15% by weight, SiO 2 5-10% by weight, Al 2 O 3 5
A composition having a composition of less than 5% by weight, less than 5% by weight of CaO and less than 5% by weight of MgO is suitable.

また、この導体組成物に添加されるガラス微粒子として
好適に用いられるガラスとして、第2に酸化バリウム
(BaO)40〜55重量%、酸化カルシウム(CaO)10
〜15重量%、三酸化二ホウ素(B23)14〜25重量
%、二酸化ケイ素(SiO2)13〜23重量%からなるガ
ラスを挙げることができる。このガラスの中でも、Ba
O47〜53重量%、CaO10〜15重量%、B23
15〜20重量%、SiO216〜21重量%の組成のも
のが特に好適に用いられる。このような組成のガラスに
あっても、本発明の導体組成物を基板に対して強固に接
着し得る。
Further, as the glass that is preferably used as the glass fine particles added to the conductor composition, secondly, barium oxide is used.
(BaO) 40-55% by weight, calcium oxide (CaO) 10
15 wt%, diboron trioxide (B 2 O 3) 14~25% by weight, it may be mentioned glass composed of silicon dioxide (SiO 2) 13 to 23 wt%. Among this glass, Ba
O47~53 wt%, CaO10~15 wt%, B 2 O 3
Those having a composition of 15 to 20% by weight and SiO 2 of 16 to 21% by weight are particularly preferably used. Even in the glass having such a composition, the conductor composition of the present invention can be firmly adhered to the substrate.

上記金属粉末は、導体組成物の主成分で、この導体組成
物で形成される回路に導電性を付与するものである。こ
の金属粉末は、導体組成物中に70〜98.5重量%加
えられる。この金属粉末の添加量が70重量%未満にな
ると、得られる導体組成物の抵抗が増大する不都合を生
じる。また、金属粉末の添加量が98.5重量%を越え
ると、他の成分を必要量添加できない不都合を生じる。
The metal powder is a main component of the conductor composition and imparts conductivity to the circuit formed by the conductor composition. This metal powder is added to the conductor composition in an amount of 70 to 98.5% by weight. If the amount of the metal powder added is less than 70% by weight, the resistance of the conductor composition obtained will be disadvantageously increased. Further, if the addition amount of the metal powder exceeds 98.5% by weight, there arises a disadvantage that other components cannot be added in necessary amounts.

この金属粉末には、銅、ニッケル等の卑金属、銀、金等
の貴金属など種々の金属を利用できるが、耐酸化性に優
れている点で、貴金属からなる粉末が好適に用いられ
る。また、貴金属からなる粉末の中でも、銀粉末、銀−
パラジウム合金の粉末、銀粉末とパラジウム粉末の混合
物、銀−白金合金の粉末、銀粉末と白金粉末の混合物等
が好適に用いられる。これらの金属粉末は混合して用い
ることもできる。銀(Ag)粉末は、金属の中でも最も導
電率が高い点で好適である。また、Agにパラジウム(P
d)あるいは白金(Pt)を加えたものは、高湿雰囲気下で
のマイグレーションや半田くわれの現象を改善し得る点
で好ましい。
Various metals such as base metals such as copper and nickel, and noble metals such as silver and gold can be used as the metal powder, but a powder made of a noble metal is preferably used because of its excellent oxidation resistance. In addition, among powders of precious metals, silver powder, silver-
Palladium alloy powder, a mixture of silver powder and palladium powder, a silver-platinum alloy powder, a mixture of silver powder and platinum powder, and the like are preferably used. These metal powders may be mixed and used. Silver (Ag) powder is suitable because it has the highest conductivity among metals. Also, Ag (palladium (P
d) or a material to which platinum (Pt) is added is preferable because it can improve the phenomenon of migration or solder shaving in a high humidity atmosphere.

このような本発明の導体組成物は、有機媒質に分散せし
められ、基板の表面にスクリーン印刷された後、焼成さ
れて回路とされる。
Such a conductor composition of the present invention is dispersed in an organic medium, screen-printed on the surface of a substrate, and then fired to form a circuit.

この導体組成物を分散せしめる有機媒体としては、乾
燥、焼成により蒸発、分散あるいは酸化されて除去され
るものが好適に用いられる。このような有機媒体として
は、例えば、エチルセルロース等の有機結合剤がテルピ
ネオール、ブチルカルビトールアセテート等の溶剤に溶
解されたものを挙げることができる。また、この有機媒
体には、厚膜ペースト用ビヒクルとして一般に市販され
ているものも利用できる。
As the organic medium in which this conductor composition is dispersed, those which are removed by being evaporated, dispersed or oxidized by drying and firing are preferably used. Examples of such an organic medium include those in which an organic binder such as ethyl cellulose is dissolved in a solvent such as terpineol and butyl carbitol acetate. Further, as this organic medium, a commercially available vehicle for thick film paste can also be used.

「実験例1」 本発明の導体組成物を試作して、その接着強度を調べ
た。
"Experimental Example 1" A conductor composition of the present invention was manufactured as a prototype, and its adhesive strength was examined.

試作した導体組成物の組成を第1表に示す。Table 1 shows the composition of the prototype conductor composition.

導体組成物の製造は次のように行った。まず、上記*1
および*2に示した組成のガラスを作成し、これらを粉
砕して粒径3μm以下のガラス微粒子とした。このガラ
ス微粒子に、平均粒径0.5μmのAg粉末、平均粒径
1.5μmのCu2O微粒子および粒径3μm以下のBi2
3微粒子を加え、上記第1表に示す組成の導体組成物
を作成した。尚、samp.5として、Cu2Oの代わりにCu
Oを加えたものを作成した。
The conductor composition was manufactured as follows. First, above * 1
Glass having the composition shown in and * 2 was prepared, and these were crushed to obtain glass fine particles having a particle diameter of 3 μm or less. Ag powder having an average particle size of 0.5 μm, Cu 2 O particles having an average particle size of 1.5 μm, and Bi 2 having a particle size of 3 μm or less were added to the glass particles.
O 3 fine particles were added to prepare a conductor composition having the composition shown in Table 1 above. In addition, as samp.5, instead of Cu 2 O, Cu
A product with O added was prepared.

次いで、作成された導体組成物をスクリーン印刷用ペー
ストとするために、各導体組成物100重量部に対して
約20重量部の有機媒体を加え、混練した。有機媒体に
はエレクトロ・サイエンス・ラボラトリー社製#406
を用いた。
Next, in order to make the prepared conductor composition into a screen printing paste, about 20 parts by weight of an organic medium was added to 100 parts by weight of each conductor composition and kneaded. # 406 manufactured by Electro Science Laboratory for organic media
Was used.

接着強度の試験は次のように行った。The adhesive strength test was performed as follows.

まず、試験用にホーロー被覆基板を作成した。この基板
は、MgO58.0モル%、BaO7.0モル%、B23
21.0モル%、SiO214.0モル%の組成を有す
る結晶化ガラスをホーロー用鋼板上にコーティングする
ことにより作成した。
First, a enamel coated substrate was prepared for testing. This substrate is composed of 58.0 mol% MgO, 7.0 mol% BaO, B 2 O 3
It was prepared by coating crystallized glass having a composition of 21.0 mol% and SiO 2 of 14.0 mol% on a enamel plate.

次いで、この基板に上記スクリーン印刷用ペーストを、
2mm×2mmでそれぞれ20箇所ずつスクリーン印刷し
た。この後これを150℃×20分で乾燥し、更にピー
ク温度850℃×10分で焼成して導体パッドとした。
Then, the screen printing paste on this substrate,
Screen printing was performed at 20 points each with a size of 2 mm × 2 mm. After that, this was dried at 150 ° C. for 20 minutes and further baked at a peak temperature of 850 ° C. for 10 minutes to obtain a conductor pad.

次に、各導体パッドに直径0.8mmの錫メッキ軟銅線を
半田付けした。そして、プッシュプルスケール用いてこ
の軟銅線をパッド面と垂直方向に引っ張り、印刷された
導体パッドと基板との接着部が破壊されたときの荷重を
測定した。測定値を相加平均して平均接着強度を求め
た。結果を第2表に示す。
Next, a tin-plated annealed copper wire having a diameter of 0.8 mm was soldered to each conductor pad. Then, using a push-pull scale, this annealed copper wire was pulled in the direction perpendicular to the pad surface, and the load when the printed conductor pad and the bonded portion of the substrate were broken was measured. The measured values were arithmetically averaged to obtain the average adhesive strength. The results are shown in Table 2.

一般に、厚膜導体回路の接着強度は2mm×2mmの導体パ
ッドで5ポンド(約2.3kg)以上あれば、余裕をもって
実用に供し得ると考えられている。この実験の結果、本
発明の導体組成物で形成された導体パッドはいずれも5
ポンド以上の強度を示し、本発明の導体組成物を用いる
ことによりホーロー被覆基板上に十分実用に供し得る接
着強度を有する回路を形成できることが判明した。
Generally, it is considered that a thick film conductor circuit having a bond strength of 5 mm (about 2.3 kg) or more with a conductor pad of 2 mm × 2 mm can be put to practical use with a margin. As a result of this experiment, all the conductor pads formed of the conductor composition of the present invention were 5
It has been found that a circuit having a strength of pounds or more and having the adhesive strength sufficient for practical use can be formed on the enamel coated substrate by using the conductor composition of the present invention.

「実験例2」 実験例1において試作した導体組成物と金属粉末の種類
のみ異なる導体組成物を試作して、同様の試験方法で接
着強度を測定した。
"Experimental Example 2" A conductive composition prepared in Experimental Example 1 and a conductive composition different only in the kind of metal powder were experimentally manufactured, and the adhesive strength was measured by the same test method.

金属粉末として実験例1で用いたAg粉末の代わりに、
Ag−10重量%Pd合金粉末、Ag−15%Pd混合粉末、A
g−10重量%Pt合金粉末およびAg−8重量%Pt混合粉
末を用いた。
Instead of the Ag powder used in Experimental Example 1 as the metal powder,
Ag-10% by weight Pd alloy powder, Ag-15% Pd mixed powder, A
A g-10 wt% Pt alloy powder and an Ag-8 wt% Pt mixed powder were used.

試作した導体組成物を用いてスクリーン印刷ペーストを
作成し、これらを印刷して導体パッドとした。
A screen-printing paste was prepared using the trial-produced conductor composition, and these were printed to form a conductor pad.

これらの導体パッドの接着強度を測定したところ、いず
れも5ポンド以上の平均接着強度を示し、Ag−10重量
%Pd合金粉末等からなる導体組成物によっても、十分
実用に供し得る接着強度の回路を形成できることが判明
した。
When the adhesive strength of these conductor pads was measured, all of them showed an average adhesive strength of 5 pounds or more, and even a conductor composition composed of Ag-10 wt% Pd alloy powder or the like had a sufficient adhesive strength circuit for practical use. It has been found that can be formed.

「発明の効果」 以上説明したように、本発明の導体組成物は、金属粉末
70〜98.5重量%と、ガラス微粒子0.5〜10重
量%と、三酸化ビスマス微粒子8重量%以下と、酸化第
一銅微粒子0.2〜15重量%とからなるものなので、
本発明の導体組成物により形成された回路は、基板、特
に特開昭57−140877号公報で開示された方法で
製造された結晶化ガラスからなるホーロー被覆基板に対
して強固に接着したものとなる。従って、本発明の導体
組成物によれば、上記結晶化ガラスからなるホーロー被
覆基板上にも高品質の回路を形成することができる。
"Effects of the Invention" As described above, the conductor composition of the present invention comprises 70 to 98.5% by weight of metal powder, 0.5 to 10% by weight of glass particles, and 8% by weight or less of bismuth trioxide particles. , Cuprous oxide fine particles 0.2 to 15% by weight,
The circuit formed by the conductor composition of the present invention is firmly adhered to a substrate, particularly a enamel-coated substrate made of crystallized glass produced by the method disclosed in Japanese Patent Laid-Open No. 57-140877. Become. Therefore, according to the conductor composition of the present invention, a high quality circuit can be formed even on the enamel coated substrate made of the above-mentioned crystallized glass.

また特に、本発明は、上記ガラス微粒子が、一酸化鉛5
5〜85重量%、三酸化二ホウ素5〜20重量%、二酸
化ケイ素5〜30重量%、酸化アルミニウム5重量%以
下、酸化カルシウム5重量%以下、酸化マグネシウム5
重量%以下の組成からなり、または、上記ガラス微粒子
が、酸化バリウム40〜55重量%、酸化カルシウム1
0〜15重量%、三酸化二ホウ素14〜25重量%、二
酸化ケイ素13〜23重量%の組成からなり、上記酸化
銅微粒子が、酸化第一銅からなるから、ホーロー被覆さ
れた基板に良好な接着強度で接着することができ、より
一層接着強度の高い回路を形成することができる。さら
に、結晶化ガラスとの反応性の高い酸化第一銅を含むの
で、酸化第一銅がホーロー被覆をなすガラスの内部に浸
入し、ホーロー被覆された基板に接着強度の高い回路を
形成することができる。
Further, in particular, in the present invention, the above glass fine particles are lead monoxide 5
5-85 wt%, diboron trioxide 5-20 wt%, silicon dioxide 5-30 wt%, aluminum oxide 5 wt% or less, calcium oxide 5 wt% or less, magnesium oxide 5
The glass fine particles are composed of 40% to 55% by weight of barium oxide and 1% of calcium oxide.
It has a composition of 0 to 15% by weight, diboron trioxide 14 to 25% by weight, and silicon dioxide 13 to 23% by weight. Since the copper oxide fine particles are composed of cuprous oxide, it is suitable for a enamel coated substrate. Bonding can be performed with adhesive strength, and a circuit with even higher adhesive strength can be formed. Furthermore, since it contains cuprous oxide that is highly reactive with crystallized glass, cuprous oxide can penetrate into the glass that forms the enamel coating and form a circuit with high adhesive strength on the enamel coated substrate. You can

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属粉末70〜98.5重量%と、ガラス
微粒子0.5〜10重量%と、三酸化ビスマス微粒子8
重量%以下と、酸化銅微粒子0.2〜15重量%とから
なり、上記ガラス微粒子が、一酸化鉛55〜85重量
%、三酸化二ホウ素5〜20重量%、二酸化ケイ素5〜
30重量%、酸化アルミニウム5重量%以下、酸化カル
シウム5重量%以下、酸化マグネシウム5重量%以下の
組成からなり、上記酸化銅微粒子が、酸化第一銅からな
るものであることを特徴とする導体組成物。
1. Metal powder 70 to 98.5% by weight, glass fine particles 0.5 to 10% by weight, and bismuth trioxide fine particles 8
The glass fine particles are composed of 55 to 85 wt% of lead monoxide, 5 to 20 wt% of diboron trioxide, and 5 to 20 wt% of silicon dioxide.
A conductor having a composition of 30% by weight, 5% by weight or less of aluminum oxide, 5% by weight or less of calcium oxide, and 5% by weight or less of magnesium oxide, wherein the copper oxide fine particles are made of cuprous oxide. Composition.
【請求項2】金属粉末70〜98.5重量%と、ガラス
微粒子0.5〜10重量%と、三酸化ビスマス微粒子8
重量%以下と、酸化銅微粒子0.2〜15重量%とから
なり、上記ガラス微粒子が、酸化バリウム40〜55重
量%、酸化カルシウム10〜15重量%、三酸化二ホウ
素14〜25重量%、二酸化ケイ素13〜23重量%の
組成からなり、上記酸化銅微粒子が、酸化第一銅からな
るものであることを特徴とする導体組成物。
2. Metal powder 70 to 98.5% by weight, glass fine particles 0.5 to 10% by weight, and bismuth trioxide fine particles 8
% Or less and 0.2 to 15% by weight of copper oxide fine particles, and the glass fine particles include 40 to 55% by weight of barium oxide, 10 to 15% by weight of calcium oxide, and 14 to 25% by weight of diboron trioxide. A conductor composition having a composition of 13 to 23% by weight of silicon dioxide, wherein the copper oxide fine particles are made of cuprous oxide.
JP60195437A 1985-09-04 1985-09-04 Conductor composition Expired - Lifetime JPH0653594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60195437A JPH0653594B2 (en) 1985-09-04 1985-09-04 Conductor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60195437A JPH0653594B2 (en) 1985-09-04 1985-09-04 Conductor composition

Publications (2)

Publication Number Publication Date
JPS6255805A JPS6255805A (en) 1987-03-11
JPH0653594B2 true JPH0653594B2 (en) 1994-07-20

Family

ID=16341044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60195437A Expired - Lifetime JPH0653594B2 (en) 1985-09-04 1985-09-04 Conductor composition

Country Status (1)

Country Link
JP (1) JPH0653594B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442691A (en) * 1977-09-12 1979-04-04 Hitachi Ltd Conductive compound
US4187201A (en) * 1978-03-15 1980-02-05 Electro Materials Corporation Of America Thick film conductors

Also Published As

Publication number Publication date
JPS6255805A (en) 1987-03-11

Similar Documents

Publication Publication Date Title
US4521329A (en) Copper conductor compositions
US4172919A (en) Copper conductor compositions containing copper oxide and Bi2 O3
KR960001353B1 (en) Method for making multilayer electronic circuits
JP4291857B2 (en) Copper conductor paste, conductor circuit board and electronic components
JPH07500450A (en) Silver-rich conductor composition with high thermal cycle adhesion and aging adhesion
US4865772A (en) Copper thick film conductor composition
JP2008226771A (en) Copper conductive paste, conductor circuit board, and electronic component
JPS62104878A (en) Copper-containing conductive paint for magnetized metal substrate
KR100585909B1 (en) Thick Film Conductor Compositions for Use on Aluminum Nitride Substrates
JP4495740B2 (en) Copper conductor paste, conductor circuit board and electronic components
JPH0653594B2 (en) Conductor composition
JPH06342965A (en) Ceramic circuit board and manufacture thereof
IE52134B1 (en) Thick film conductor compositions
JP2021536676A (en) Conductive thick film paste for silicon nitride and other substrates
JPH0737420A (en) Conductive paste composition and circuit board using conductive paste composition
JPS63283184A (en) Circuit substrate covered with conductor composition
JP2941002B2 (en) Conductor composition
JPS62237605A (en) Thick film paste
JPH01107592A (en) Electric circuit board
JPH10106346A (en) Silver-based conductor paste
JPH0548225A (en) Conductive paste
JP2743558B2 (en) Copper conductor paste
JPH0368485B2 (en)
JP2614147B2 (en) Organometallic conductor composition
JPH022244B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term