JPH0653000B2 - リラクタンス発電機制御装置 - Google Patents

リラクタンス発電機制御装置

Info

Publication number
JPH0653000B2
JPH0653000B2 JP59193099A JP19309984A JPH0653000B2 JP H0653000 B2 JPH0653000 B2 JP H0653000B2 JP 59193099 A JP59193099 A JP 59193099A JP 19309984 A JP19309984 A JP 19309984A JP H0653000 B2 JPH0653000 B2 JP H0653000B2
Authority
JP
Japan
Prior art keywords
current
generator
load
direct
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59193099A
Other languages
English (en)
Other versions
JPS6173596A (ja
Inventor
英男 河村
正 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP59193099A priority Critical patent/JPH0653000B2/ja
Publication of JPS6173596A publication Critical patent/JPS6173596A/ja
Publication of JPH0653000B2 publication Critical patent/JPH0653000B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、リラクタンス発電機制御装置に関する。
(従来技術) 自動車や船舶等、外部から電力の供給を受けることの出
来ない交通機関では、原動機を含めて電力用機器の小
型、軽量化が要求されている。
このような電力用機器の小型、軽量化の要求に対して、
数万rpm〜数十万rpmの超高速発電機が開発されて
いるが、超高速発電機においては同期型発電機を用いる
と、強大な遠心力により、ロータと界磁電流供給源との
間に設けるブラシが破損することがある等の問題を生じ
る。
また、誘導型発電機を用いると、特に高速回転用に適し
ているかご型ロータを有する場合には、二次導体や短絡
環はアルミニウムを鋳込んで構成しているため、高速回
転時に二次導体が短絡環や鉄芯から剥離して、遂にはロ
ータが破壊に至るという問題があった。
これに対して、リラクタンス発電機は、突極同期発電機
から界磁巻線を取り除いたもので、磁界巻線で励磁する
代りに、電機子巻線に進相電流を流して、電機子反作用
の増磁作用を利用して同期発電機として動作させる。こ
のため、回転子の構造が簡単になり超高速発電機として
好適な発電機ということができる。
次に、リラクタンス発電機の特性について説明する。第
4図は、一般的な突極型同期発電機のベクトル図であ
る。
但し、Ia:電機子電流 Id:電機子電流の直軸分(直軸電流) Iq:電機子電流の横軸分(横軸電流) Xd:直軸リアクタンス Xq:横軸リアクタンス r :巻線抵抗 Va:電機子電圧 Eo:界磁電流による誘導起電力 リラクタンス発電機は、同期発電機から界磁巻線を取り
除いたものであるから、界磁電流による誘導起電力Eoを
0とし、電機子電流IaをEoに対して進相とすると、第5
図のベクトル図が得られる。
このベクトル図より、 Ia・cosθ=Iq ……(1) Ia・sinθ=Id ……(2) Va・cosδ=Xd・Id ……(3) Va・sinδ=Xq・Iq ……(4) が得られ、リラクタンス発電機の有効出力Pは となる。
ここで、リラクタンス発電機の出力側には、負荷によら
ず必要な励磁電流が供給できる遅相電流源(進相電流の
吸収源)が必要となる。従って、リラクタンス発電機の
出力側は、一般的に第6図のように表わすことができ
る。このときの負荷RL′での消費電力P=3Va2/RL′
は、(5)式の有効出力と等しいので、電機子電圧Vaに
無関係に次式が成立する。
即ち、横軸リアクタンスXq、及び直軸リアクタンスXdが
定まれば、負荷抵抗RL′によって位相角δが決まり、 のときRL′は最小値、従って、最大出力時の等価負荷
抵抗が決定される。ここで、 を(5)式に代入して整理すると、最大有効出力 が得られる。従って、直軸リアクタンスXdが大きく、か
が小さい程、最大有効出力は大きくできる。
第7図は、リラクタンス発電機に用いる回転子の一例
で、略I字形の形状として、直軸リアクタンスXdを大き
く、横軸リアクタンスXqと直軸リアクタンスの比 を小さくしている。即ち、第8図(a)のようにロータ
の回転位置とコイル軸との方向が一致すると、コイルの
作る磁束は実線矢印を通るため、磁路の磁気抵抗は小さ
く、従ってコイルの自己インダクタンスLが大きくな
る。また、第8図(b)のようにロータの回転位置とコ
イル軸とが直交する場合には、磁路の磁気抵抗は大き
く、コイルのインダクタンスは小さくなる。これより、
ロータの形状としてd軸方向で磁気抵抗が小さく、q軸
方向で磁気抵抗が大きい第7図のようなものが望ましい
ことになる。
(従来技術の問題点) このようなリラクタンス発電機において、進相電流を流
す方法として、従来は進相コンデンサを用いていたが、
コンデンサ容量が大きくなり、また、可変回転数、可変
負荷に対しては、コンデンサの容量制御が十分に行なえ
ないという問題があった。
(本発明の目的) 本発明の目的は、リラクタンス発電機の負荷回路に電圧
形インバータを接続し、回転子の回転位置と負荷電流を
検出することにより、インバータを制御して、電機子電
流を無負荷起電力に対して90度進ませるようにした、リ
ラクタンス発電機制御装置を提供することにある。
(発明の概要) 本発明のリラクタンス発電機制御装置は、回転軸に直交
する一方向の磁気抵抗が小さく、この方向に直交する方
向の磁気抵抗が大きい略I字形の回転子を具備するリラ
クタンス発電機において、回転子と固定子との相対位置
を検出する位置検出器と、発電機負荷電流検出器の信号
により、負荷電流の直軸電流を演算し、得られた直軸電
流に基づいて、無負荷誘導起電圧に対して所定の遅れ位
相角で発電機の出力側に接続した電圧形インバータを付
勢して、回転子位置に応じた無負荷誘導起電力に対して
90度進相の電機子電流を流すように制御することを特徴
とするものである。
(実施例) 以下、図により本発明の実施例について説明する。第1
図は、本発明のリラクタンス発電機制御装置の概略のブ
ロック図である。図において、第7図に示したような略
I字形の形状の回転子を有するリラクタンス発電機2
は、タービン等の原動機1により駆動される。リラクタ
ンス発電機の回転子と固定子巻線との相対位置は位置検
出器3により検出され、パルス整形回路4に入力され
る。パルス整形回路で整形された位置信号は論理回路5
を通して、出力信号Pu、Pv、Pwを直軸電流検出回路8に
送る。また、論理回路5の他の出力信号は三角波発生回
路12及びインバータ駆動信号発生器14に送られる。ま
た、リラクタンス発電機の出力側には、変流器CTu6、CT
w6′を設け、U相及びW相の発電機出力電流を検出す
る。変流器6、6′の出力電流は、電流増幅演算回路7
に入力されて、V相の出力電流Ivを、 v=−(u+w) ……(8) により演算して求める。電流増幅演算回路7の出力信号
は直軸電流検出回路8に送られ、論理回路5の出力信号
Pu、Pv、Pwにより出力電流中の直軸電流Idを求め、誤差
増幅回路9において、直軸電流基準発生器10で設定され
た直軸電流の基準値Idoとの誤差を求め、誤差信号を比
較回路13に送る。比較回路13では、三角波発生回路12の
出力信号と直軸電流の誤差信号から、第4図のベクトル
図における無負荷誘導起電力と電機子電圧の位相角がδ
となるようにインバータ駆動信号発生器14を付勢し、電
圧形インバータ15を駆動する。
電圧形インバータの出力側には平滑コンデンサCoと、
ダイオードD、スイッチS、直流電源Esよりなる始
動回路16及び負荷RLを接続する。
第2図は、リラクタンス発電機の出力電流に含まれる直
軸電流Idを検出するための回路図の一例である。変流器
6、6′で検出されたU相及びW相の発電機出力電流、
即ち負荷電流は、それぞれ電流増幅演算回路7の演算増
幅器OP、OPに入力され、OP、OPの出力
の反転加算を演算増幅OPで行ない、即ち(8)式の
演算によりV相の出力電流を求める。各相の発電機出力
電流は、直軸電流検出回路8のアナログスイッチSW1、S
W2、SW3を通して演算増幅器OPで加算され、ローパ
スフィルタから直流分のみ、即ち、直軸電流Idを取り出
す。アナログスイッチは、論理回路の出力Pu、Pv、Pwが
1のときにオンするように構成される。従って、各相の
負荷電流Iu、Iv、Iwが、対応する相電圧eu、ev、ewと同
相の場合には、直軸電流Idは0となる。また、各相の
負荷電流に、相電圧に対して90度の進相電流が含まれて
いる場合には、直軸電流Idは90度進み成分に比例する。
いま、定常状態において各相の負荷電流の基本波成分I
、Iv、Iwのうち、各相電圧と同相成分の振
幅をIq、90度進相成分の振幅をI1dとすると、次式
が成立する。
また、起電力成分P11、P21、P31の基本波成分
は、 となる。直軸電流Idは、 Id=Iu1・P11+Iv1・P21+Iw1・P31……(11) の直流分であるので、(9)、(10)式を代入して、 として求めることができる。
第3図は、本発明のリラクタンス発電機制御装置の特性
図である、各相の無負荷誘導起電力eu、ev、ewは第3図
(a)のように表わされる。第3図(b)は、位置検出
器3の出力波形で、各相電圧の零点及び正負の最大値で
図示のような瞬時パルスを発生する。第3図(c)はパ
ルス整形回路4の出力波形で、位置検出器の各相電圧の
零点で発生されるパルスを整形する。第3図(d)は、
論理回路5の出力信号で、各相 のパルス幅を有する信号が得られる。第3図(f)は、
比較回路13の出力信号δ(第5図の位相角)を決定する
特性の説明で、第2図で得られた直軸電流Idと、直軸電
流基準発生器10で設定される基準値Id0とを比較して得
られた誤差信号Ideのレベルと、三角波発生回路12で形
成された三角波との交点を求め、これによって位相角δ
を求める。第3図(g)は、インバータ駆動信号発生器
14から電圧形インバータ15を駆動する信号Putの波形
で、信号Putで電圧形インバータを駆動することによ
り、無負荷誘導起電力に対して90度進相の電機子電流を
制御する。
次に、リラクタンス発電機の運転制御について説明す
る。リラクタンス発電機を原動機1により駆動し、始動
回路16のスイッチSをオンにして、直流電源Esを付勢
し、インバータ15を介してリラクタンス発電機の初期励
磁を行なう。リラクタンス発電機の端子電圧が確立して
電源電圧Es以上となると、始動回路のダイオードDは逆
バイアスされ、スイッチSをオフにして電源Esをイン
バータより切り離し、直流電力を負荷RLに供給する。
リラクタンス発電機の回転子と固定子の相対位置は位置
検出器3で検出され、また、発電機の出力電流は変流機
6により検出され、直軸電流Idを演算して、無負荷起電
力に対してδ遅れ位相のパルスを電圧形インバータに供
給して、各相負荷電流即ち電機子電流の90度進相電流を
制御する。
(発明の効果) 以上説明したように、本発明は、略I字形の回転子を有
するリラクタンス発電機において、回転子と固定子との
相対位置を検出する位置検出器と、負荷電流検出器の信
号より直軸電流を演算し、無負荷誘導起電力に対して所
定の遅れ位相角で電圧形インバータを付勢することによ
り、回転子位置に応じて、無負荷誘導起電力に対して90
度進相の電機子電流を流すように制御しているので、負
荷変動が生じても、安定して進相電流を制御することが
できる。
【図面の簡単な説明】
第1図は本発明の概略のブロック図、第2図は直軸電流
の検出回路、第3図は特性図、第4図、第5図はベクト
ル図、第6図はリラクタンス発電機の負荷回路、第7図
は回転子の構成図、第8図は説明図である。 1……原動機、2……リラクタンス発電機、3……位置
検出器、4……パルス整形回路、5……論理回路、6、
6′……変流器、7……電流増幅演算回路、8……直軸
電流検出回路、9……誤差増幅回路、13……比較回路、
14……インバータ駆動信号発生器、15……電圧形インバ
ータ、16……始動回路。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】回転軸に直交する一方向の磁気抵抗が小さ
    く、この方向に直交する方向の磁気抵抗が大きい略I字
    型の回転子を具備するリラクタンス発電機において、 回転子と固定子との相対的な位置を検出する位置検出器
    と、 発電機負荷電流検出器と、 該発電機負荷電流検出器からの信号により負荷電流の直
    軸電流を演算する演算手段と、 該演算された直軸電流に基づいて無負荷誘導起電圧に対
    して所定の遅れ位相角で発電機の出力側に接続した電圧
    型インバータを付勢して、回転子位置に応じて無負荷誘
    導起電圧に対して90度進相の電機子電流を流す手段と、
    を具備することを特徴とするリラクタンス発電機制御装
    置。
JP59193099A 1984-09-14 1984-09-14 リラクタンス発電機制御装置 Expired - Lifetime JPH0653000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59193099A JPH0653000B2 (ja) 1984-09-14 1984-09-14 リラクタンス発電機制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59193099A JPH0653000B2 (ja) 1984-09-14 1984-09-14 リラクタンス発電機制御装置

Publications (2)

Publication Number Publication Date
JPS6173596A JPS6173596A (ja) 1986-04-15
JPH0653000B2 true JPH0653000B2 (ja) 1994-07-06

Family

ID=16302218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59193099A Expired - Lifetime JPH0653000B2 (ja) 1984-09-14 1984-09-14 リラクタンス発電機制御装置

Country Status (1)

Country Link
JP (1) JPH0653000B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683597B2 (ja) * 1986-05-12 1994-10-19 いすゞ自動車株式会社 リラクタンス発電機制御装置
JP2579977B2 (ja) * 1987-12-21 1997-02-12 株式会社東芝 電動機の発電制御装置
JP6172500B2 (ja) * 2013-03-01 2017-08-02 株式会社ジェイテクト モータ制御装置
CN112019118B (zh) * 2020-08-25 2022-04-15 科诺伟业风能设备(北京)有限公司 一种直驱风电变流器无定子电压测量矢量控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167947A (ja) * 1974-12-11 1976-06-12 Hitachi Ltd Denryokuchoseisochi
JPS573117A (en) * 1980-06-05 1982-01-08 Toshiba Corp Output control system for induction generator
JPS5759497A (en) * 1980-09-24 1982-04-09 Meidensha Electric Mfg Co Ltd Induction generator
JPS59193100A (ja) * 1983-04-15 1984-11-01 松下電器産業株式会社 電子部品供給装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167947A (ja) * 1974-12-11 1976-06-12 Hitachi Ltd Denryokuchoseisochi
JPS573117A (en) * 1980-06-05 1982-01-08 Toshiba Corp Output control system for induction generator
JPS5759497A (en) * 1980-09-24 1982-04-09 Meidensha Electric Mfg Co Ltd Induction generator
JPS59193100A (ja) * 1983-04-15 1984-11-01 松下電器産業株式会社 電子部品供給装置

Also Published As

Publication number Publication date
JPS6173596A (ja) 1986-04-15

Similar Documents

Publication Publication Date Title
Gabriel et al. Field-oriented control of a standard ac motor using microprocessors
JP4629659B2 (ja) 1個の固定子と少なくとも1個の回転子を有する同期電機及び関連制御装置
WO2007001007A1 (ja) 電力変換制御装置、電力変換制御方法、および電力変換制御用プログラム
US8742732B2 (en) Control method for doubly-fed electric generator
US4680525A (en) Induction motor driving system
US20170237373A1 (en) Power generation system
JP3806539B2 (ja) 永久磁石式同期モータの制御方法
Iyer et al. Investigation of interior permanent magnet motor with dampers for electric vehicle propulsion and mitigation of saliency effect during integrated charging operation
Nikpayam et al. Vector Control Methods for Star-Connected Three-Phase Induction Motor‎ Drives Under the Open-Phase Failure
Ghosh et al. Performance comparison of different vector control approaches for a synchronous reluctance motor drive
JP2010239790A (ja) 回転電機制御装置
Ekong et al. Field-weakening control for torque and efficiency optimization of a four-switch three-phase inverter-fed induction motor drive
JPH0653000B2 (ja) リラクタンス発電機制御装置
Plunkett et al. System design method for a load commutated inverter-synchronous motor drive
Cervone et al. A Constrained Optimal Model Predictive Control for Mono Inverter Dual Parallel PMSM Drives
US11581837B2 (en) Control method and associated control system
JPH0611200B2 (ja) リラクタンス発電機の交・直電源供給装置
He et al. Post-fault operation for five-phase induction machines under single-phase open using symmetrical components
Zhang et al. A Study of Charging Equivalent Inductances for Zero-Average Torque Three-Phase Integrated on-Board EV Chargers With Segmented Machine
JPH07236295A (ja) 内磁形ブラシレス直流モータの駆動制御方法
Abdel-Khalik et al. Steady-state performance and stability analysis of mixed pole machines with electromechanical torque and rotor electric power to a shaft-mounted electrical load
Methsamphop et al. Characteristics of two-phase inverter-fed three-phase induction motor drive
Han et al. Single-electrical-port control of cascaded brushless doubly-fed induction drive for EV/HEV applications
JP3097745B2 (ja) 交流励磁回転電機制御装置
JP2005102385A (ja) モーター制御装置