JPH0652901A - Stationary type metal-hydrogen battery - Google Patents

Stationary type metal-hydrogen battery

Info

Publication number
JPH0652901A
JPH0652901A JP4201509A JP20150992A JPH0652901A JP H0652901 A JPH0652901 A JP H0652901A JP 4201509 A JP4201509 A JP 4201509A JP 20150992 A JP20150992 A JP 20150992A JP H0652901 A JPH0652901 A JP H0652901A
Authority
JP
Japan
Prior art keywords
battery
internal pressure
control
charge
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4201509A
Other languages
Japanese (ja)
Other versions
JP3291320B2 (en
Inventor
Mamoru Kimoto
衛 木本
Masao Takee
正夫 武江
Fusago Mizutaki
房吾 水瀧
Koji Nishio
晃治 西尾
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20150992A priority Critical patent/JP3291320B2/en
Publication of JPH0652901A publication Critical patent/JPH0652901A/en
Application granted granted Critical
Publication of JP3291320B2 publication Critical patent/JP3291320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To correctly control charging and concurrently predict a battery life, by sensing the rise of the internal pressure of battery due to gas generation, with a strain gage. CONSTITUTION:A positive electrode terminal 7, a safety valve 8, and a negative electrode terminal 9 are provided on the upper surface 1a of an electrode can 1, and the positive and the negative electrode terminals 7 and 9 are connected to positive and negative electrodes 2 and 3 respectively. Moreover the battery can 1, having this constitution, is fastened with fastening plate 10, provided on both the side surfaces of the battery can 1, and tie rods 11 provided on the upper and lower sides of the battery can 1 for fixing the fastening plate 10. A strain gage 12, for sensing the deformation of the battery can 1 due to inside pressure rise, is provided between the battery can 1 and the fastening plate 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、据置型金属−水素電池
に関する。
FIELD OF THE INVENTION The present invention relates to a stationary metal-hydrogen battery.

【0002】[0002]

【従来の技術】近年、水素を可逆的に吸蔵、放出するこ
とができる水素吸蔵合金の開発が盛んに行われており、
この水素吸蔵合金を用いたニッケル−水素蓄電池につい
ての研究も盛んに行われている。そして、このニッケル
−水素蓄電池は、従来からよく用いられる鉛蓄電池、及
びニッケル−カドミウム電池等に比べて、軽量化を図る
ことができ、しかも高容量化を達成できることが可能と
なるといった利点を奏するので有望である。
2. Description of the Related Art In recent years, a hydrogen storage alloy capable of reversibly storing and releasing hydrogen has been actively developed.
Studies on nickel-hydrogen storage batteries using this hydrogen storage alloy are also being actively conducted. Further, this nickel-hydrogen storage battery has an advantage in that it can be made lighter in weight and can achieve higher capacity than lead-acid batteries, nickel-cadmium batteries and the like which have been often used conventionally. So promising.

【0003】ところで、上記ニッケル−水素蓄電池では
充電時にガスが発生し、電池内部圧力が上昇する。この
電池内部圧力の上昇が進むと、電池の破裂や、電解液の
飛散を招くという問題点を有している。特に、高率充電
時においては、ガス発生量が多く、上記したような電池
の破裂や、電解液の飛散等の問題を招かないためにも、
電池の充電の終了を正確に制御する必要がある。
By the way, in the nickel-hydrogen storage battery, gas is generated during charging, and the internal pressure of the battery rises. As the internal pressure of the battery rises, the battery may rupture and the electrolytic solution may be scattered. In particular, at the time of high-rate charging, a large amount of gas is generated, and in order not to cause the above-mentioned problems such as battery rupture and electrolyte scattering,
There is a need to accurately control the end of battery charging.

【0004】据置型ニッケル−水素蓄電池の従来の充電
制御の方法としては、電圧、温度、または電池内部圧力
を測定する方法がある。
As a conventional charging control method for a stationary nickel-hydrogen storage battery, there is a method of measuring voltage, temperature or battery internal pressure.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電圧、
温度を測定する制御方法では、ガス発生が起こり電池内
部圧力が生じ充電を終了すべき時点と、電圧及び温度に
変化が生じる時点との間にずれが生じることや、充電が
進んでいく間の電圧、温度の変化が小さいことなどか
ら、正確な充電の制御を行うことができなかった。
However, the voltage,
In the control method that measures the temperature, there is a gap between the time when the gas is generated and the internal pressure of the battery is generated and the charging should be ended, and the time when the voltage and the temperature are changed, or the charging progress Due to small changes in voltage and temperature, it was not possible to control charging accurately.

【0006】また、電池内部圧力を測定する方法では、
正確に制御を行うことができるものの、内圧測定の為
に、電池内圧測定部の密閉性が必要とされ、装置が大き
くなり、コンパクトにできないという問題があった。ま
た、据置型ニッケル−水素蓄電池では、充放電を繰り返
すと正極が膨化し、セパレータの電解液を膨化した正極
が吸い取ってしまい、セパレータ中の電解液量が減少す
るという現象が起こる。この状態を長く続けていると、
電池内が乾燥した状態になり、セパレータの発火等の危
険性がでてくるので、電池寿命を予測する必要がある。
ところが、セパレータの膨化によって、電圧、温度、電
池内圧力の変化は起こらないため、電池寿命を予測する
ことができないのが現状であった。
Further, in the method of measuring the internal pressure of the battery,
Although accurate control can be performed, there is a problem in that the internal pressure of the battery is required to be hermetically sealed for measuring the internal pressure, the device becomes large, and the device cannot be made compact. Further, in a stationary nickel-hydrogen storage battery, the positive electrode swells when charging and discharging are repeated, and the swollen positive electrode absorbs the electrolyte solution of the separator, so that the amount of the electrolyte solution in the separator decreases. If you keep this state for a long time,
Since the inside of the battery becomes dry and there is a risk of ignition of the separator, it is necessary to predict the battery life.
However, due to the expansion of the separator, changes in voltage, temperature, and internal pressure of the battery do not occur, so that the life of the battery cannot be predicted.

【0007】上記問題点を解決するために、本発明は正
確に充電制御を行うことができ、同時に電池寿命を予測
することのできる高性能な電池を提供することを目的と
する。
In order to solve the above-mentioned problems, it is an object of the present invention to provide a high performance battery which can accurately perform charge control and at the same time predict the battery life.

【0008】[0008]

【発明を解決するための手段】上記目的を達成するため
に、本発明では、負極、正極、及びセパレータからなる
電極群が高さ方向に延設された電池缶に収納された据置
型金属−水素蓄電池において、上記電池缶及び正極の体
積変化を感知する歪み検出器を有することを特徴とす
る。
In order to achieve the above object, in the present invention, a stationary metal containing an electrode group consisting of a negative electrode, a positive electrode, and a separator housed in a battery can extending in the height direction is used. The hydrogen storage battery is characterized by having a strain detector that senses a change in volume of the battery can and the positive electrode.

【0009】[0009]

【作用】上記のように構成することにより、以下のよう
な作用が得られる。即ち、上記方法では、ガス発生によ
る電池内部圧力の上昇の影響を直接うける電池缶の体積
変化による歪みを測定しているため、充電を終了させる
べき時点に遅れることなく正確に制御を行うことができ
る。加えて、電圧、温度の変化に比べて歪みの変化は大
きいため充電の制御を行いやすい。
With the above-mentioned structure, the following actions can be obtained. That is, in the above method, since the strain due to the change in the volume of the battery can which is directly affected by the increase in the internal pressure of the battery due to the gas generation is measured, it is possible to accurately perform the control without delaying the time to finish the charging. it can. In addition, since the change in strain is larger than the change in voltage and temperature, it is easy to control charging.

【0010】また、歪みゲージは電池缶の外に設けられ
ているため、密閉性の問題がなくコンパクトな装置で制
御を行うことができる。さらに、歪みゲージを用いるこ
とにより、正極の膨化による体積変化を測定することが
できるため、電池寿命の予測を行うことが可能である。
Further, since the strain gauge is provided outside the battery can, there is no problem of hermeticity and control can be performed by a compact device. Further, by using the strain gauge, it is possible to measure the volume change due to the expansion of the positive electrode, so that it is possible to predict the battery life.

【0011】[0011]

【実施例】【Example】

〔実施例〕図1は、本発明の一実施例にかかる据置型ニ
ッケル−水素アルカリ蓄電池の部分断面斜視図であり、
電池缶1内には、ニッケル正極2と水素吸蔵合金(Mm
Ni3.1 Co0.9 Al0.2 Mn0.5 )を含む負極3とが
交互に重ねられており、且つこれら正負両極2、3と正
負両極間に介挿されたセパレータ4とからなる電極群5
が設けられている。そして、この電極群5はそれぞれ絶
縁シート6に囲まれている。
[Embodiment] FIG. 1 is a partial cross-sectional perspective view of a stationary nickel-hydrogen alkaline storage battery according to an embodiment of the present invention.
In the battery can 1, a nickel positive electrode 2 and a hydrogen storage alloy (Mm
A negative electrode 3 containing Ni 3.1 Co 0.9 Al 0.2 Mn 0.5 ) is alternately superposed, and an electrode group 5 composed of positive and negative electrodes 2 and 3 and a separator 4 interposed between the positive and negative electrodes.
Is provided. The electrode group 5 is surrounded by the insulating sheet 6.

【0012】また、上記電極缶1の上面1aには、正極
端子7と安全弁8と負極端子9とが設けられており、正
極端子7は上記正極2と、負極端子9は上記負極3とそ
れぞれ接続されている。更に、上記のような構成の電池
缶1は図2に示すように、当該電池缶1の両側面に設け
た締め付け板10と、この締め付け板10を固定するた
めに電池缶1の上下に設けられたタイロット11とによ
って締め付けられており、電池缶1と締め付け板10の
間には、電池缶1の内部圧力上昇による変形を感知する
ための歪みゲージ12が設けられている。
A positive electrode terminal 7, a safety valve 8 and a negative electrode terminal 9 are provided on the upper surface 1a of the electrode can 1, the positive electrode terminal 7 being the positive electrode 2 and the negative electrode terminal 9 being the negative electrode 3 respectively. It is connected. Further, as shown in FIG. 2, the battery can 1 configured as described above is provided with tightening plates 10 provided on both side surfaces of the battery can 1 and above and below the battery can 1 for fixing the tightening plates 10. The strain gauge 12 is tightened by the tie lot 11 and the strain gauge 12 is provided between the battery can 1 and the tightening plate 10 to detect deformation of the battery can 1 due to an increase in internal pressure.

【0013】尚、この電池の公称容量は50Ahであ
る。このような電池を、以下(A)電池と称する。 〔比較例1〕図示しないが、上記電池において、充電制
御のために歪みゲージの代わり電池内部の圧力が測定で
きるように電池上部に圧力センサを配管する以外は、上
記実施例と同様に電池を作製した。
The nominal capacity of this battery is 50 Ah. Such a battery is hereinafter referred to as (A) battery. [Comparative Example 1] Although not shown, a battery was prepared in the same manner as in the above Example except that a pressure sensor was connected to the upper part of the battery so that the pressure inside the battery could be measured instead of the strain gauge for charge control. It was made.

【0014】このように作製した電池を、以下(X1
電池と称する。 〔比較例2〕図示しないが、上記電池において、充電制
御のために歪みゲージに変えて、電池缶の外表面に温度
測定のための熱電対を張りつけた以外は、上記実施例と
同様に電池を作製した。
The battery produced in this manner is represented by the following (X 1 )
It is called a battery. [Comparative Example 2] Although not shown, a battery was prepared in the same manner as in the above Example except that a strain gauge was used for charge control and a thermocouple for temperature measurement was attached to the outer surface of the battery can. Was produced.

【0015】この様に作製した電池を、以下(X2 )電
池と称する。 〔比較例3〕図示しないが、上記電池において、充電制
御のために歪みゲージを設けずに、上記実施例と同様に
電池を作製した。このように作製した電池を、以下(X
3 )電池と称する。 〔実験1〕本発明の(A)電池、比較例の電池(X1
〜(X3 )電池を用いて、電池の充電をおこなう際の、
充電量の変化に対する本発明の(A)電池については歪
みの変化、比較例の(X1 )電池については内圧の変化
を、比較例の(X2 )電池については温度の変化を、比
較例の(X3 )電池については電圧の変化をそれぞれ測
定したので、その結果を図3に示す。
The battery thus manufactured is hereinafter referred to as a (X 2 ) battery. [Comparative Example 3] Although not shown, a battery was produced in the same manner as in the above-mentioned example, without providing a strain gauge for charge control. The battery produced in this manner is described below (X
3 ) Called battery. [Experiment 1] Battery (A) of the present invention, Comparative battery (X 1 ).
~ (X 3 ) When using a battery to charge the battery,
The strain of the battery (A) of the present invention with respect to the change of the charge amount, the change of internal pressure of the battery (X 1 ) of the comparative example, the change of temperature of the battery (X 2 ) of the comparative example, and the comparative example The change in voltage was measured for each of the (X 3 ) batteries in ( 3 ), and the results are shown in FIG.

【0016】図3から明らかなように、電池内圧、歪み
の値の変化に比べて、電圧、温度の変化は値の変化量が
小さいため、制御を行いにくいことがわかる。 〔実験2〕本発明の(A)電池、比較例の電池(X1
〜(X3 )電池、それぞれの電池を用いて、歪み、温
度、圧力、電圧、電圧差による充電制御を行った際の電
池容量のばらつきと、サイクル数を測定したので、その
結果を図4〜8と表1に示す。
As is clear from FIG. 3, the change in voltage and temperature is smaller than the change in battery internal pressure and strain value, so that it is difficult to control. [Experiment 2] Battery (A) of the present invention, Comparative battery (X 1 ).
~ (X 3 ) battery, the variation in battery capacity and the number of cycles when charge control was performed by strain, temperature, pressure, voltage, and voltage difference using each battery, and the results are shown in FIG. ~ 8 and shown in Table 1.

【0017】尚、実験条件は、1Cでそれぞれの制御方
法において設定した終止値に達するまで充電を行い、電
圧が10Vとなるまで放電をおこなった。それぞれの終
止値については、表1に記載した条件で行った。尚、サ
イクル寿命は、電池容量が初期容量の1/2になった時
点とした。
The experimental conditions were that the battery was charged at 1 C until the end value set in each control method was reached, and discharged until the voltage reached 10 V. The final value of each was measured under the conditions shown in Table 1. The cycle life was defined as the time when the battery capacity became half the initial capacity.

【0018】[0018]

【表1】 [Table 1]

【0019】図4〜8から明らかなように、電圧、電圧
差、温度による制御では、制御した時点での充電容量の
値に大きな差があり、正確に制御を行うことができな
い。したがって電池のサイクル寿命も短い。一方、本発
明の電池では、正確に充電制御を行うことができる電池
内圧を直接測定した場合と遜色なく、制御した時点での
容量のばらつきが少ない、したがって正確に制御を行う
ことが可能となり、電池のサイクル寿命も伸びる。
As is apparent from FIGS. 4 to 8, in the control by the voltage, the voltage difference, and the temperature, there is a large difference in the value of the charge capacity at the time of control, and the control cannot be performed accurately. Therefore, the cycle life of the battery is short. On the other hand, in the battery of the present invention, it is comparable to the case of directly measuring the battery internal pressure capable of performing accurate charge control, and there is little variation in the capacity at the time of control, and therefore it is possible to perform accurate control. Battery cycle life is also extended.

【0020】サイクル寿命の予測を行うことが可能にな
る。 〔実験3〕本発明の(A)電池を用いて、充放電を繰り
返した際の歪みの変化を測定したので、その結果を図9
に示す。図9から明らかなように、充放電を繰り返すこ
とによって生じる電池缶の体積変化(正極の体積変化)
によって、歪みの測定値に変化が生じるため、電池寿命
を予想することが可能である。 〔その他の事項〕上記実施例では、歪みゲージを締め付
け板と電池缶の間に設けていたがこれに限ることなく、
耐食処理を施した後、電池缶内に挿入する方法や、タイ
ロット内に引っ張り力を測定することにできる歪みゲー
ジを設ける方法等を行ってもよい。
It becomes possible to predict the cycle life. [Experiment 3] Using the battery (A) of the present invention, changes in strain during repeated charging and discharging were measured. The results are shown in FIG.
Shown in. As is clear from FIG. 9, the change in the volume of the battery can (the change in the volume of the positive electrode) caused by repeated charging and discharging.
As a result, the measured value of strain changes, so that it is possible to predict the battery life. (Other matters) In the above embodiment, the strain gauge was provided between the tightening plate and the battery can, but not limited to this.
After the anticorrosion treatment, a method of inserting the battery in a battery can, a method of providing a strain gauge capable of measuring the tensile force in the tie lot, or the like may be performed.

【0021】また、複数の電池缶を用いて電池を作製す
ることもでき、この場合、歪みゲージを電池缶と電池缶
の間に設けることができる。
A battery can also be manufactured using a plurality of battery cans, in which case a strain gauge can be provided between the battery cans.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、歪
みゲージが、ガス発生による電池内部圧力の上昇を感知
するため、電池の充電の終了を正確に制御することがで
きる。またこれと同時に、正極の膨化を感知することが
できるので、電池の寿命を予測することができる。
As described above, according to the present invention, the strain gauge senses an increase in the internal pressure of the battery due to the generation of gas, so that the end of battery charging can be controlled accurately. At the same time, since the swelling of the positive electrode can be detected, the life of the battery can be predicted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例に係る据置型ニッケル−水素アル
カリ蓄電池の要部断面斜視図である。
FIG. 1 is a cross-sectional perspective view of essential parts of a stationary nickel-hydrogen alkaline storage battery according to an example of the present invention.

【図2】本発明の一例に係る据置型ニッケル−水素アル
カリ蓄電池を示す概略図である。
FIG. 2 is a schematic diagram showing a stationary nickel-hydrogen alkaline storage battery according to an example of the present invention.

【図3】充電容量の変化に対する、歪み、電池内部圧
力、温度、電圧の変化を示したグラフである。
FIG. 3 is a graph showing changes in strain, battery internal pressure, temperature, and voltage with respect to changes in charging capacity.

【図4】本発明の歪みゲージによる制御方法で充電制御
を行った場合のサイクル数の変化と、充電終了後の充電
容量の幅を示したグラフである。
FIG. 4 is a graph showing changes in the number of cycles when charge control is performed by the strain gauge control method of the present invention, and a range of charge capacity after completion of charge.

【図5】電池内部圧力による制御方法で充電制御を行っ
た場合のサイクル数の変化と、充電終了後の充電容量の
幅を示したグラフである。
FIG. 5 is a graph showing changes in the number of cycles when charge control is performed by a control method based on the internal pressure of a battery, and a range of charge capacity after completion of charge.

【図6】電池内温度による制御方法で充電制御を行った
場合のサイクル数の変化と、充電終了後の充電容量の幅
を示したグラフである。
FIG. 6 is a graph showing changes in the number of cycles when charge control is performed by a control method based on the temperature inside the battery, and a range of charge capacity after completion of charge.

【図7】電圧による制御方法で充電制御を行った場合の
サイクル数の変化と、充電終了後の充電容量の幅を示し
たグラフである。
FIG. 7 is a graph showing changes in the number of cycles when charge control is performed by a voltage-based control method, and a range of charge capacity after completion of charge.

【図8】電圧降下量による制御方法で充電制御を行った
場合のサイクル数の変化と、充電終了後の充電容量の幅
を示したグラフである。
FIG. 8 is a graph showing changes in the number of cycles when charge control is performed by a control method based on a voltage drop amount, and a range of charge capacity after completion of charge.

【図9】サイクルによる歪みの変化を示すグラフであ
る。
FIG. 9 is a graph showing changes in strain with cycles.

【符号の説明】[Explanation of symbols]

2 正極 3 負極 12 歪みゲージ 2 Positive electrode 3 Negative electrode 12 Strain gauge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 古川 修弘 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Furukawa 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負極、正極、及びセパレータからなる電
極群が高さ方向に延設された電池缶に収納された据置型
金属−水素蓄電池において、 上記電池缶及び正極の体積変化を感知する歪み検出器を
有することを特徴とする据置型金属−水素蓄電池。
1. A stationary metal-hydrogen storage battery in which an electrode group including a negative electrode, a positive electrode, and a separator is housed in a battery can extending in the height direction, and a strain for sensing a volume change of the battery can and the positive electrode. A stationary metal-hydrogen storage battery having a detector.
JP20150992A 1992-07-28 1992-07-28 Stationary metal-hydrogen batteries Expired - Fee Related JP3291320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20150992A JP3291320B2 (en) 1992-07-28 1992-07-28 Stationary metal-hydrogen batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20150992A JP3291320B2 (en) 1992-07-28 1992-07-28 Stationary metal-hydrogen batteries

Publications (2)

Publication Number Publication Date
JPH0652901A true JPH0652901A (en) 1994-02-25
JP3291320B2 JP3291320B2 (en) 2002-06-10

Family

ID=16442230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20150992A Expired - Fee Related JP3291320B2 (en) 1992-07-28 1992-07-28 Stationary metal-hydrogen batteries

Country Status (1)

Country Link
JP (1) JP3291320B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340264A (en) * 1999-05-31 2000-12-08 Sanyo Electric Co Ltd Thin type battery and pack battery incorporating thin type battery
WO2002099922A1 (en) * 2001-06-05 2002-12-12 Japan Storage Battery Co., Ltd. Storage battery device and power source apparatus comprising it
JP2005285647A (en) * 2004-03-30 2005-10-13 Tdk Corp Power source
JP2006012761A (en) * 2004-05-25 2006-01-12 Toyota Motor Corp State estimation method of secondary battery and its system
JP2006128062A (en) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd Secondary battery
JP2010086911A (en) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd Performance detection device and control device of battery pack
GB2485638A (en) * 2010-11-19 2012-05-23 Gen Electric Device and method of determining safety in a battery pack
JP2012190600A (en) * 2011-03-09 2012-10-04 Mitsubishi Heavy Ind Ltd Battery system
DE112011101585T5 (en) 2010-11-30 2013-05-16 Tokai Rubber Industries, Ltd. Electricity accumulation device
JP2014120335A (en) * 2012-12-17 2014-06-30 Mitsubishi Heavy Ind Ltd Battery system, battery monitoring device, and battery monitoring method
WO2014100937A1 (en) * 2012-12-24 2014-07-03 Schneider Electric It Corporation Method for monitoring battery gas pressure and adjusting charging parameters
US9356325B1 (en) 2015-01-22 2016-05-31 Ford Global Technologies, Llc Electrified vehicle battery pack monitoring assembly and method
JP2020136149A (en) * 2019-02-22 2020-08-31 ミツミ電機株式会社 Electronic device and method of determining state of the same
KR20210069867A (en) * 2019-12-04 2021-06-14 중앙대학교 산학협력단 Method of prredicting cell life of secondary batteries or fuel cells

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518591B2 (en) * 1999-05-31 2010-08-04 三洋電機株式会社 Battery pack with built-in thin battery
JP2000340264A (en) * 1999-05-31 2000-12-08 Sanyo Electric Co Ltd Thin type battery and pack battery incorporating thin type battery
WO2002099922A1 (en) * 2001-06-05 2002-12-12 Japan Storage Battery Co., Ltd. Storage battery device and power source apparatus comprising it
US7510798B2 (en) 2001-06-05 2009-03-31 Gs Yuasa Corporation Storage battery device and power source apparatus comprising it
JP2005285647A (en) * 2004-03-30 2005-10-13 Tdk Corp Power source
JP4529516B2 (en) * 2004-03-30 2010-08-25 Tdk株式会社 Power supply
JP4655568B2 (en) * 2004-05-25 2011-03-23 トヨタ自動車株式会社 Secondary battery state estimation method and system
JP2006012761A (en) * 2004-05-25 2006-01-12 Toyota Motor Corp State estimation method of secondary battery and its system
JP2006128062A (en) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd Secondary battery
JP4603906B2 (en) * 2004-10-28 2010-12-22 三星エスディアイ株式会社 Secondary battery
US8691408B2 (en) 2004-10-28 2014-04-08 Samsung Sdi Co., Ltd. Secondary battery including protective circuit module to protect battery when swelling occurs
JP2010086911A (en) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd Performance detection device and control device of battery pack
US8395519B2 (en) 2010-11-19 2013-03-12 General Electric Company Device and method of determining safety in a battery pack
GB2485638A (en) * 2010-11-19 2012-05-23 Gen Electric Device and method of determining safety in a battery pack
DE112011101585T5 (en) 2010-11-30 2013-05-16 Tokai Rubber Industries, Ltd. Electricity accumulation device
US8986861B2 (en) 2010-11-30 2015-03-24 Sumitomo Riko Company Limited Electricity accumulation device
JP2012190600A (en) * 2011-03-09 2012-10-04 Mitsubishi Heavy Ind Ltd Battery system
JP2014120335A (en) * 2012-12-17 2014-06-30 Mitsubishi Heavy Ind Ltd Battery system, battery monitoring device, and battery monitoring method
WO2014100937A1 (en) * 2012-12-24 2014-07-03 Schneider Electric It Corporation Method for monitoring battery gas pressure and adjusting charging parameters
US9356325B1 (en) 2015-01-22 2016-05-31 Ford Global Technologies, Llc Electrified vehicle battery pack monitoring assembly and method
JP2020136149A (en) * 2019-02-22 2020-08-31 ミツミ電機株式会社 Electronic device and method of determining state of the same
KR20210069867A (en) * 2019-12-04 2021-06-14 중앙대학교 산학협력단 Method of prredicting cell life of secondary batteries or fuel cells

Also Published As

Publication number Publication date
JP3291320B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
EP3483978B1 (en) Apparatus for predicting deformation of battery module
JP5026406B2 (en) Secondary battery module with piezoelectric sensor
RU2364012C2 (en) Control of charging multiple-cell accumulator battery
JPH0652901A (en) Stationary type metal-hydrogen battery
KR20180087040A (en) Secondary battery evaluation apparatus
KR102361317B1 (en) Explosive pressure measurement system for middle or large sized cell and method for measuring explosive pressure of middle or large sized cell module using the same
KR102623517B1 (en) Apparatus and method for measuring mechanical property related to deformation of object
CN110988718A (en) Test system and method for measuring expansion stress of lithium ion battery
CN111656207B (en) Method for determining stage of generation acceleration of internal gas in secondary battery
JPH05326027A (en) Charge control method for secondary battery
JP3913385B2 (en) Secondary battery
US10020546B2 (en) Device for managing an accumulator
JPH08194037A (en) Residual capacity measuring method of alkali battery and its device
JP4088732B2 (en) Secondary battery
JPH09120845A (en) Sealed secondary battery
Majima et al. Design and characteristics of large-scale lithium ion battery
KR20220052093A (en) System for measuring internal pressure of pouch-type battery cell, and method for measuring internal pressure of battery cell using the same
JPH06290817A (en) Secondary battery device
EP4152461A1 (en) Assembled battery testing method
CN220960397U (en) Device for measuring expansion stress of cylindrical battery
JP2018133199A (en) Battery module
JPH0785892A (en) Method for charging storage battery and storage battery suitable for this method
EP4300626A1 (en) Method for recovering capacity of alkaline rechargeable battery
Lampe-Onnerud et al. Safety studies on lithium-ion batteries by accelerating rate calorimetry
JPH11329372A (en) Rectangular sealed alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees