JP4518591B2 - Battery pack with built-in thin battery - Google Patents

Battery pack with built-in thin battery Download PDF

Info

Publication number
JP4518591B2
JP4518591B2 JP15122099A JP15122099A JP4518591B2 JP 4518591 B2 JP4518591 B2 JP 4518591B2 JP 15122099 A JP15122099 A JP 15122099A JP 15122099 A JP15122099 A JP 15122099A JP 4518591 B2 JP4518591 B2 JP 4518591B2
Authority
JP
Japan
Prior art keywords
battery
outer package
film
current
film outer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15122099A
Other languages
Japanese (ja)
Other versions
JP2000340264A (en
Inventor
束 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15122099A priority Critical patent/JP4518591B2/en
Publication of JP2000340264A publication Critical patent/JP2000340264A/en
Application granted granted Critical
Publication of JP4518591B2 publication Critical patent/JP4518591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フィルム外装体を用いた薄型電池に関し、とくに、フィルム外装体の内圧が上昇したときに電流を遮断できる薄型電池とこの薄型電池を使用してなるパック電池に関するものである。
【0002】
【従来の技術】
フィルム外装体の薄型電池を、図1の平面図と図2の断面図に示す。これの図に示す薄型電池は、フィルム外装体5に発電要素7を内蔵している。発電要素7は、正極1と負極2の間に電解質層3を設けている。これ等の図に示す薄型電池は、発電要素7の外周を、フィルム外装体5の封口部4としている。発電要素7を密閉するフィルム外装体5は、2枚のラミネートフィルム5Aを発電要素7の両面に積層し、発電要素7の外周で積層して、積層部を熱溶着して密閉構造としている。
【0003】
この構造の薄型電池は、過充電などの異常な状態で使用されて、内圧が上昇することがある。内圧が上昇すると、図2の鎖線で示すように、フィルム外装体5が膨張し、さらに内圧が上昇すると破裂する危険性がある。フィルム外装体の破裂を防止するために、図3に示すように、フィルム外装体5の一部に圧力開放手段28を設けた薄型電池が、特開平9−199099号公報に記載される。
【0004】
この図に示す薄型電池は、破断用の溝を設けたラプチャーフィルムを圧力開放手段28としている。圧力開放手段28は、たとえば、フィルム外装体5の内圧が1.2〜20kgf/cmに上昇したときに、破断してフィルム外装体5を開放する。さらに、以上の公報は、フィルム外装体の溶着部を、所定の圧力で開口するようにして圧力開放手段とすることも記載している。
【0005】
【発明が解決しようとする課題】
しかしながら、図3に示すように、フィルム外装体に破断溝を設ける構造、あるいは、フィルム外装体の溶着部を剥離するように溶着して、内圧が上昇したときにフィルム外装体を開口する薄型電池は、開放圧力を正確に設定するのが難しい。さらに、フィルム外装体の一部に破断溝を設けている薄型電池は、衝撃を受けたときに破断溝が破損して使用できなくなることもある。この弊害が起こらないように、破断溝を浅くしてこの部分を強靭な構造にすると、内圧が上昇したときに破断できなくなって、内圧上昇を阻止できなくなる。
【0006】
さらに、図3に示す薄型電池は、内圧が上昇して圧力開放手段が開放されると、その後に内圧が正常な状態に低下しても、再使用できる構造とすることはできない。
【0007】
本発明は、このような欠点を解決することを目的に開発されたもので、本発明の重要な目的は、フィルム外装体の内圧上昇を有効に阻止できると共に、内圧が高くなったことを正確に検出して、内圧上昇を阻止できる薄型電池と薄型電池を内蔵するパック電池を提供することにある。
【0008】
【課題を解決するための手段】
本発明において、薄型電池は、前述の目的を達成するために以下の構成を備える。薄型電池は、正極1と負極2とを備える発電要素7と、この発電要素7を内部の密閉チャンバーに収納してなるフィルム外装体5とを備える。さらに、薄型電池は、フィルム外装体5の表面に歪センサー8を付着している。
【0009】
さらに、本発明において、薄型電池は、電池がリチウムイオン二次電池である。
【0010】
さらに、本発明において、薄型電池は、フィルム外装体5を、ラミネートフィルム5Aとしている。ラミネートフィルム5Aは、熱可塑性プラスチックフィルムの間にアルミニウムを積層して接着している。ラミネートフィルム5Aは、封口部4で熱溶着されている。
【0011】
さらに、本発明の薄型電池を内蔵するパック電池は、正極1と負極2とを備える発電要素7をフィルム外装体5の内部に収納している薄型電池と、この薄型電池の内圧が上昇したときに電流を遮断する保護回路21とを備える。保護回路21は、フィルム外装体5の表面に付着されてなる歪センサー8と、この歪センサー8の出力信号で電池18に流れる電流を遮断する遮断スイッチ16とを備える。さらに、保護回路21は、フィルム外装体5の内圧上昇による変形を歪センサー8で検出し、歪センサー8がフィルム外装体5の変形を検出すると、遮断スイッチ16をオフにして電池電流を遮断するように構成している。
【0012】
さらに、本発明の薄型電池を内蔵するパック電池は、保護回路21が、フィルム外装体5の表面に付着されてなる歪センサー8と、この歪センサー8の出力信号でスイッチングされる通電スイッチ23と、この通電スイッチ23で通電状態が制御される加熱抵抗24と、この加熱抵抗24に加熱される位置に配設されると共に、電池18と直列に接続されてなるヒューズ22とを備える。この保護回路21は、フィルム外装体5の内圧上昇による変形を歪センサー8で検出し、歪センサー8がフィルム外装体5の変形を検出すると、通電スイッチ23をオンにして加熱抵抗24に加熱電流を流し、加熱電流で加熱された加熱抵抗24がヒューズ22を溶断して、電池電流を遮断する。
【0013】
さらに、本発明の薄型電池を内蔵するパック電池は、保護回路21が、通電スイッチ23がオンの状態で加熱抵抗24に流れる電流を制御する定電流回路25を接続している。
【0014】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための薄型電池と薄型電池を内蔵するパック電池を例示するものであって、本発明は薄型電池とパック電池を以下のものに特定しない。
【0015】
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
【0016】
図4の平面図と図5の断面図に示す薄型電池は、フィルム外装体5の表面に歪センサー8を付着している。歪センサー8は、フィルム外装体5に接着して固定される。歪センサー8はフィルム外装体5の変形を検出する。図の薄型電池は、縦方向に延長して歪センサー8を固定している。この方向に固定された歪センサー8は、フィルム外装体5の変形を高い感度で検出できる。フィルム外装体5が縦方向に伸びて変形しやすいからである。ただ、歪センサーは、フィルム外装体に横方向に固定し、あるいは縦横の方向に対して傾斜する姿勢で固定することもできる。
【0017】
歪センサー8は、フィルム外装体5の変形を検出できる全てのセンサーが使用できる。歪センサー8は、フィルム外装体5の伸び、または形状の変化、あるいはその両方を検出するものが使用できる。薄型電池は、内圧が上昇して、フィルム外装体5が図5の鎖線で示すように膨れると、フィルム外装体5が伸びると共に、形状も変化する。したがって、歪センサー8は、フィルム外装体5の伸びを検出して、内圧の上昇を検出できる。ただ、歪センサーには、フィルム外装体の形状変化を検出するものも使用できるのは言うまでもない。
【0018】
フィルム外装体5に付着する歪センサー8を図6に示す。この図の歪センサー8は、可撓性の絶縁シート9に金属箔の線材9を固定した歪ゲージである。この図の歪ゲージは、金属箔の線材9を縦に延長して平行に配設して、全体を直列に接続している。この構造の歪ゲージは、金属箔の抵抗値変化で変形を検出する。金属箔は、伸ばされると抵抗が増加して、圧縮されると抵抗が小さくなる性質がある。金属箔には、たとえば、銅・ニッケル合金やニクロム系合金を使用する。
【0019】
この構造の歪ゲージは、縦方向の伸びを高感度に検出する。したがって、線材9がフィルム外装体5の縦方向を向くように、歪ゲージをフィルム外装体5に固定して、歪ゲージで高感度にフィルム外装体5の変形を検出できる。
【0020】
歪ゲージは、フィルム外装体5と一緒に伸ばされて、フィルム外装体5の変形を検出する。したがって、歪センサー8は、フィルム外装体5と一体となって伸びるように付着される。歪センサー8は、好ましくは、接着剤を介してフィルム外装体5に接着される。接着剤には、たとえば、シアノアクリレート系の瞬間接着剤、エポキシ系、アクリル系、シリコン系、ウレタン系等の接着剤が使用される。歪センサーは、両面に接着テープを介して、または、熱溶着してフィルム外装体に接着することもできる。
【0021】
歪センサー8の信号は、図7に示す検出回路11に入力される。この図の検出回路11は、ホイートストンブリッジ回路12とアンプ13とを内蔵している。歪センサー8は、ホイートストンブリッジ回路12の抵抗素子として接続される。ホイートストンブリッジ回路12は、好ましくは交流電源14を接続する。直流電源も使用できるが、出力信号を増幅する直流アンプやドリフト補正等が複雑になる。ホイートストンブリッジ回路12に接続している抵抗は、フィルム外装体5が変形しない状態で、バランスして出力を0とするように抵抗値を調整している。フィルム外装体5が変形して歪ゲージの抵抗値が変化すると、ホイートストンブリッジのバランスが崩れて出力電圧は高くなる。したがって、この検出回路11は、ホイートストンブリッジ回路12の出力信号の大きさで、フィルム外装体5の変形量を検出できる。ホイートストンブリッジ回路12の出力電圧は小さいので、アンプ13で増幅して制御回路15に入力される。
【0022】
検出回路11と制御回路15は、図4に示すように、パック電池のケース26に内蔵される。図8は、パック電池の回路図を示している。この図のパック電池は、検出回路11からの信号を制御回路15に入力し、制御回路15で遮断スイッチ16を制御して、フィルム外装体5が変形したときに、電流を遮断する。制御回路15は、電池18の内圧が上昇し、フィルム外装体5が膨れて検出回路11から信号が入力されると、遮断スイッチ16をオフにして電流を遮断する。電池18の内圧が上昇してフィルム外装体5が膨れるのは、主として充電しているときである。したがって、図8のパック電池は、遮断スイッチ16で充電電流を遮断する方向にFETを接続している。
【0023】
この図のパック電池は、遮断スイッチ16と直列に、放電電流を遮断するスイッチング素子17を接続している。遮断スイッチ16とスイッチング素子17は、電池18と出力端子19との間に接続されて、充電電流または放電充電を遮断する。遮断スイッチ16とスイッチング素子17はFETで、ドレインとソースが逆方向となるように直列に接続している。
【0024】
放電電流を遮断するスイッチング素子17は、電池電圧が設定電圧よりも低くなったときに、オンからオフに切り換えられて、放電電流を遮断する。したがって、制御回路15は、電池電圧を検出してスイッチング素子17を制御する。制御回路15は、電池18の内圧が高くなって、検出回路11から信号が入力されるときに、遮断スイッチ16とスイッチング素子17である両方のFETをオフに切り換えることができる。フィルム外装体5が変形したときに、両方のFETをオフにするパック電池は、電池18の内圧が上昇したときに、充電電流と放電電流の両方を遮断できる。
【0025】
制御回路15は、電池内圧が上昇して遮断スイッチ16をオフにした状態を保持するためのラッチング回路を内蔵している。ラッチング回路には、リセットスイッチ20を接続している。ラッチング回路は、リセットスイッチ20が操作されると、リセットされて、遮断スイッチ16をオフ状態に保持していた状態がリセットされる。電池18の内圧が高くなったときに、遮断スイッチ16とスイッチング素子17の両方をオフにする制御回路15は、ラッチング回路で遮断スイッチ16とスイッチング素子17の両方をオフ状態に保持する。この構造のパック電池は、電池内圧が上昇して遮断スイッチ16がオフになった後においても、電池内圧が正常な状態まで低下すると、再使用できる。リセットスイッチ20を操作して、ラッチング回路をリセットして遮断スイッチ16とスイッチング素子17をオン状態に復帰できるからである。
【0026】
この図のパック電池は、遮断スイッチ16を、過充電を防止するスイッチング素子にも併用できる。いいかえると、過充電を防止するスイッチング素子を、遮断スイッチに併用することができる。遮断スイッチ16で過充電を阻止するパック電池は、制御回路15で電池の過充電を検出し、電池18が過充電になると遮断スイッチ16をオフに切り換える。この構造のパック電池は、電池18が過充電になったとき、または、電池18の内圧が上昇したときに、遮断スイッチ16をオフに切り換える。図8のパック電池は、歪センサー8と、検出回路11と、制御回路15と、遮断スイッチ16で保護回路21を構成している。
【0027】
図9に示すパック電池は、電池18の過充電と過放電を防止する過充電過放電防止回路27とは別に、電池18の内圧が高くなったときに電流を遮断するヒューズ22を備えている。ヒューズ22は電池18と直列に接続されて、電池18に流れる電流を遮断する。
【0028】
この図のパック電池は、検出回路11の出力信号でオンオフに切り換えられる通電スイッチ23と、通電スイッチ23がオンになる状態でヒューズ22を加熱する加熱抵抗24と、加熱抵抗24で熱溶断されるヒューズ22とを備える。図に示すパック電池は、通電スイッチ23を、スイッチング素子であるFETとしている。さらに、図に示すパック電池は、通電スイッチ23と直列に定電流回路25を接続して、加熱抵抗24に流れる電流を制御している。
【0029】
定電流回路25は、通電スイッチ23がオンになったときに、電池電圧の変動による加熱抵抗24の加熱電流の変化を防止できる。定電流回路25が制御して加熱抵抗24に流す加熱電流は、加熱抵抗24を加熱して、ヒューズ22を熱溶断できる電流に設定される。図のパック電池は、パック電池の出力端子19と電池18との間に、ふたつのヒューズ22を直列に接続している。一方のヒューズ22は電池18に、他方のヒューズ22はパック電池の出力端子19に接続され、ヒューズ22の中間接続点は、加熱抵抗24に接続している。
【0030】
さらに、ヒューズ22に接近して、ふたつの加熱抵抗24を配設している。加熱抵抗24は二つあって、各々の加熱抵抗24は、各々のヒューズ22に接近して配設される。加熱抵抗24は、互いに並列に接続されて、一端をヒューズ22の中間接続点に、他端を通電スイッチ23に接続している。
【0031】
この構造のパック電池は、電池18の内圧が正常なとき、検出回路11の出力信号レベルが低く、通電スイッチ23をオフとしている。通電スイッチ23がオフ状態にあると、加熱抵抗24には電流が流れない。したがって、ヒューズ22は加熱抵抗24に加熱されることがなく、ヒューズ22が溶断されることはない。この状態で、パック電池は充電され、あるいは放電される。
【0032】
電池18の内圧が高くなって、フィルム外装体5が膨れると、このことが歪センサー8に検出されて、検出回路11の出力信号が高くなって通電スイッチ23をオフからオンに切り換える。オンになった通電スイッチ23は、加熱抵抗24に加熱電流を流す。加熱電流は、定電流回路25に制御されて、電池電圧に影響を受けない。定電流回路25は、加熱電流を設定された電流に制御する。加熱抵抗24は、加熱電流によるジュール熱で加熱されて、ヒューズ22を溶断する。ヒューズ22が溶断されると、電池18はパック電池の出力端子19から切り離されて、電流が遮断される。この構造のパック電池は、電池18の内圧が上昇したときに、ヒューズ22を溶断するので、確実に電流を遮断できる。図9に示すパック電池は、歪センサー8と検出回路11と通電スイッチ23と定電流回路25とヒューズ22と加熱抵抗24とで保護回路21を構成している。
【0033】
本発明は、薄型電池の種類を特定するものではないが、薄型電池には、図5に示す構造のものが使用される。この図の薄型電池は、フィルム外装体5の密閉チャンバー内に、発電要素7を内蔵している。この図において、1は正極、2は負極、3は電解質層、4はフィルム外装体の封口部、5はフィルム外装体、6は集電端子である。
【0034】
薄型電池は、リチウムポリマー二次電池、または、リチウムイオン二次電池である。リチウムポリマー二次電池は、電解質に固体、または常温ゲル状のものが使用される。リチウムポリマー二次電池は、正極と負極に以下の組合せを使用する。
正極……マンガン酸リチウム 負極……グラファイト系炭素
正極……酸化バナジウム 負極……リチウム合金
【0035】
リチウムイオン二次電池は、LiPF等の溶質と、溶媒からなる電解液が使用され、正極と負極に以下のものを使用する。
正極……コバルト酸リチウム 負極……グラファイト系炭素
正極……コバルト酸リチウム 負極……コークス系炭素
正極……ニッケル酸リチウム 負極……グラファイト系炭素
正極……マンガン酸リチウム 負極……グラファイト系炭素
正極……コバルト酸リチウム 負極……錫アモーファス酸化物
【0036】
発電要素7を密閉構造に内蔵するフィルム外装体5は、ラミネートフィルム5Aを、封口部4で気密に熱溶着して密閉している。ラミネートフィルム5Aは、図5の拡大断面図に示すように、アルミニウム箔5aの両面に、ポリプロピレンフィルム5bをラミネートしたフィルムである。
【0037】
この図に示すラミネートフィルム5Aは、ポリプロピレンフィルム5b/アルミニウム箔5a/ポリプロピレンフィルム5bの三層構造となっており、アルミニウム箔5aの両面に、同じプラスチックフィルムであるポリプロピレンフィルム5bをラミネートしている。
【0038】
リチウムポリマー二次電池、またはリチウムイオン二次電池である薄型電池は、以下のようにして製作される。
この薄型電池は、ラミネートフィルム5Aの各層の厚さを、フィルム外装体5の内側に位置する第一ポリプロピレンフィルム5bを50μm、アルミニウム箔5aを20μm、フィルム外装体5の外側に位置する第二ポリプロピレンフィルム5bを80μmとしている。アルミニウム箔5aとポリプロピレンフィルム5bの界面を接着するために、変性ポリプロピレンフィルムを用いている。
【0039】
薄型電池は、以下の工程で製作される。
(1) 図5と図10に示すように、ラミネートフィルム5Aを発電要素7の両側で折曲して筒状とし、両端部を発電要素7の表面となる位置で積層して積層部を熱溶着する。この工程で、ラミネートフィルム5Aを熱溶着する部分は、ラミネートフィルム5Aを筒状に連結する筒状封口部4Aとなる。ラミネートフィルム5Aの積層部は、発電要素7を入れないで熱溶着する。ただ、筒状封口部4Aとなる積層部は、発電要素7を入れた後に熱溶着することもできる。発電要素7を入れる前に積層部を熱溶着する方法は、積層部の表裏を、高周波誘導加熱装置の金型で挟着して熱溶着できる。発電要素7を入れた状態で熱溶着する方法は、発電要素7の表面でラミネートフィルム5Aを積層した積層部を、加熱された金型で表面から発電要素7に加熱しながら押圧して熱溶着する。筒状封口部4Aの幅は、20mmとなるように熱溶着する。
【0040】
(2) その後、円筒に熱溶着したラミネートフィルム5Aの片方の端部を、図10と図11に示すように、折り返して高周波誘導加熱装置の金型で熱溶着する。この封口部4は、集電端子6を挟着しない側の集電端子側封口部4Bとなる。集電端子6を挟着しない集電端子側封口部4Bは、筒状に連結されたラミネートフィルム5Aの一方の端縁を切断し、切断されない他方の舌片5Bを、切り取った側のラミネートフィルム5Aの表面に密着するように180度折り返して積層し、積層部を熱溶着して袋状に封口した。集電端子側封口部4Bの封口幅は20mmとした。180度折り返した舌片5Bを熱溶着するとき、発電要素7の両面に位置するラミネートフィルム5Aが熱溶着されないように、筒状に連結されたラミネートフィルム5Aの内部に薄い金属製の金型を挿入する。この金型と、舌片5Bを押圧する外部の金型とで積層部を押圧加熱状態に挟着して熱溶着する。
【0041】
(3) 積層部を熱溶着して袋状としたラミネートフィルム5A(以下、パウチ)に、予めアルゴン雰囲気中で組み立てた発電要素7を挿入する。発電要素7の外形は、約80×30mmの大きさとする。正極1・負極2の集電端子6を、図12の断面図に示すように、ラミネートフィルム5Aの間に挟着して、発電要素7の両面のラミネートフィルム5Aを積層部で熱溶着する。集電端子6は、2枚のラミネートフィルム5Aで挟着して、外部に引き出される。集電端子6を挟着して熱溶着される集電端子側封口部4Bの幅は、10mmとした。
以上の状態で製作された薄型電池は、封口部4が図13に示す状態となり、全体の厚さが1.5mmとなった。
【0042】
(4) フィルム外装体5の表面に歪センサー8を付着する。歪センサー8は、図5に示すように、フィルム外装体5の筒状封口部4Aと反対側の表面に接着して固定される。
【0043】
さらに、図14と図15に示す薄型電池は、発電要素7に、前述と同じものが使用される。ラミネートフィルム5Aには、ポリエチレンフィルム5c/アルミニウム箔5a/ポリエチレンフィルム5cの三層構造のものを使用する。アルミニウム5a箔の両面に積層されるポリエチレンフィルム5cは、同一の材質である。このラミネートフィルム5Aは、第一ポリエチレンフィルム5c(内側)が30μm、アルミニウム5aが9μm、第二ポリエチレンフィルム5c(外側)が80μmである。界面の接着には、変性ポリエチレンを用いている。
【0044】
図14と図15に示す、薄型電池は、下記のようにして製作される。
(1) 図16に示すように、二つ折りにした後、その両端の積層部を、発電要素7の上面となる位置に折り返し、3層のラミネートフィルム5Aが積層される積層部を、高周波誘導加熱装置の金型で熱溶着して袋状のパウチとする。熱溶着する筒状封口部4Aの幅は、20mmとする。発電要素7の上面に折り返した積層部を熱溶着するとき、発電要素7の両面に位置するラミネートフィルム5Aが熱溶着されないように、発電要素7を入れる部分に薄い金属製の金型を挿入する。
【0045】
(2) その後、前述の(3)と同じ工程、すなわち、袋状に連結されたパウチに、予めアルゴン雰囲気中で組み立てた発電要素7を挿入し、正極1・負極2の集電端子6を、ラミネートフィルム5Aの間に挟着して、発電要素7両面のラミネートフィルム5Aを積層部で熱溶着する。集電端子6を挟着して熱溶着する集電端子側封口部4Bの幅は10mmとした。
以上の状態で製作された薄型電池は、全体の厚さが1.7mmとなった。
【0046】
(3) フィルム外装体5の表面に歪センサー8を付着する。歪センサー8は、図15に示すように、フィルム外装体5の筒状封口部4Aと反対側の表面に接着して固定される。
【0047】
さらに、薄型電池は、図17と図18に示すように、ラミネートフィルム5Aを、発電要素7の外周で熱溶着することもできる。発電要素7とラミネートフィルム5Aには、前述の薄型電池と同じものが使用される。図17に示すように、フィルム外装体5の表面に歪センサー8を付着する。
【0048】
【発明の効果】
本発明の薄型電池と薄型電池を内蔵するパック電池は、フィルム外装体の内圧が高くなったことを正確に検出して、内圧上昇を阻止できる特長がある。それは、本発明の薄型電池と薄型電池を内蔵するパック電池が、発電要素を内部に収納してなるフィルム外装体の表面に歪センサーを付着しているからである。フィルム外装体の表面に付着される歪センサーは、フィルム外装体の変形を検出する。このため、薄型電池の内圧が上昇してフィルム外装体が膨れると、フィルム外装体が伸びてその形状が変化し、歪センサーで、フィルム外装体の伸びを検出して内圧の上昇を検出できる。このように、歪センサーで電池の内圧上昇を検出する本発明の薄型電池とパック電池は、電池の内圧上昇を正確に検出して、電池が危険な状態となるのを阻止でき、安全性を向上できる特長がある。
【0049】
さらに、本発明の薄型電池と薄型電池を内蔵するパック電池は、従来のように、フィルム外装体の破断溝や設溶着部を所定の圧力で開口することなく内圧上昇を検出できるので、正確に内圧上昇を検出できることに加えて、内圧が上昇した後、内圧が正常な状態に低下すると再使用できる構造にできる特長もある。
【図面の簡単な説明】
【図1】従来の薄型電池の平面図
【図2】図1に示す薄型電池のA−A線断面図
【図3】従来の他の薄型電池の斜視図
【図4】本発明の実施例の薄型電池を内蔵するパック電池の平面図
【図5】図4に示すパック電池の薄型電池の断面図
【図6】歪センサーの一例を示す拡大斜視図
【図7】歪センサーの信号を検出する検出回路の回路図
【図8】図4に示すパック電池の回路図
【図9】本発明の他の実施例のパック電池の回路図
【図10】図5に示す薄型電池の製造工程を示す斜視図
【図11】図5に示す薄型電池の製造工程を示す断面図
【図12】図5に示す薄型電池の製造工程を示す断面図
【図13】図5に示す薄型電池の底面図
【図14】本発明の他の実施例の薄型電池の平面図
【図15】図14に示す薄型電池の断面図
【図16】図14に示す薄型電池の製造工程を示す斜視図
【図17】本発明の他の実施例の薄型電池の平面図
【図18】図17に示す薄型電池の断面図
【符号の説明】
1…正極
2…負極
3…電解質層
4…封口部 4A…筒状封口部
4B…集電端子側封口部
5…フィルム外装体 5A…ラミネートフィルム
5a…アルミニウム箔
5b…ポリプロピレンフィルム
5c…ポリエチレンフィルム
6…集電端子
7…発電要素
8…歪センサー
9…絶縁シート
10…線材
11…検出回路
12…ホイートストンブリッジ回路
13…アンプ
14…交流電源
15…制御回路
16…遮断スイッチ
17…スイッチング素子
18…電池
19…出力端子
20…リセットスイッチ
21…保護回路
22…ヒューズ
23…通電スイッチ
24…加熱抵抗
25…定電流回路
26…ケース
27…過充電過放電防止回路
28…圧力開放手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin battery using a film outer package, and particularly to a thin battery capable of interrupting current when the internal pressure of the film outer package increases and a pack battery using the thin battery.
[0002]
[Prior art]
A thin battery having a film outer package is shown in the plan view of FIG. 1 and the cross-sectional view of FIG. The thin battery shown in this figure has a power generation element 7 incorporated in a film outer package 5. In the power generation element 7, the electrolyte layer 3 is provided between the positive electrode 1 and the negative electrode 2. In the thin battery shown in these drawings, the outer periphery of the power generation element 7 is used as the sealing portion 4 of the film outer package 5. The film outer package 5 that seals the power generation element 7 is formed by laminating two laminate films 5A on both surfaces of the power generation element 7, laminating the outer periphery of the power generation element 7, and heat-sealing the laminated portion.
[0003]
A thin battery having this structure may be used in an abnormal state such as overcharging, and the internal pressure may increase. When the internal pressure rises, as shown by the chain line in FIG. 2, the film outer package 5 expands, and when the internal pressure further rises, there is a risk of bursting. In order to prevent rupture of the film outer package, as shown in FIG. 3, a thin battery in which a pressure release means 28 is provided on a part of the film outer package 5 is described in Japanese Patent Laid-Open No. 9-199099.
[0004]
In the thin battery shown in this figure, a rupture film provided with a breaking groove is used as the pressure release means 28. The pressure release means 28 is, for example, an internal pressure of the film outer package 5 of 1.2 to 20 kgf / cm. 2 When it rises, the film exterior body 5 is broken and opened. Furthermore, the above publication also describes that the welded portion of the film outer package is opened as a pressure release means so as to open at a predetermined pressure.
[0005]
[Problems to be solved by the invention]
However, as shown in FIG. 3, a thin battery that has a structure in which a rupture groove is provided in the film outer package, or is welded so as to peel off the welded portion of the film outer package and the film outer package opens when the internal pressure increases. It is difficult to set the opening pressure accurately. Furthermore, a thin battery having a rupture groove formed in a part of the film outer package may be broken and cannot be used when subjected to an impact. If the breaking groove is made shallow to make this portion strong so that this problem does not occur, it will not be able to break when the internal pressure rises, and it will not be possible to prevent the internal pressure from rising.
[0006]
Furthermore, the thin battery shown in FIG. 3 cannot have a reusable structure when the internal pressure rises and the pressure release means is opened, even if the internal pressure subsequently decreases to a normal state.
[0007]
The present invention has been developed for the purpose of solving such drawbacks, and an important object of the present invention is to effectively prevent an increase in the internal pressure of the film outer package and to accurately determine that the internal pressure has increased. It is an object of the present invention to provide a thin battery capable of detecting the internal pressure and preventing an increase in internal pressure and a battery pack incorporating the thin battery.
[0008]
[Means for Solving the Problems]
The present invention In In order to achieve the above-described object, the thin battery has the following configuration. The thin battery includes a power generation element 7 including a positive electrode 1 and a negative electrode 2, and a film outer package 5 formed by housing the power generation element 7 in an internal sealed chamber. Further, the thin battery has a strain sensor 8 attached to the surface of the film outer package 5.
[0009]
Furthermore, the present invention In The thin battery is a lithium ion secondary battery.
[0010]
Furthermore, the present invention In In the thin battery, the film outer package 5 is a laminate film 5A. The laminate film 5A is formed by laminating and bonding aluminum between thermoplastic films. The laminate film 5 </ b> A is thermally welded at the sealing portion 4.
[0011]
Furthermore, the present invention Thin The battery pack with a built-in type battery cuts off the current when the internal pressure of the thin battery rises and the thin battery in which the power generation element 7 including the positive electrode 1 and the negative electrode 2 is housed in the film outer package 5. And a protection circuit 21. The protection circuit 21 includes a strain sensor 8 attached to the surface of the film exterior body 5, and a cutoff switch 16 that cuts off a current flowing through the battery 18 by an output signal of the strain sensor 8. Further, the protection circuit 21 detects the deformation due to the increase in the internal pressure of the film exterior body 5 by the strain sensor 8, and when the strain sensor 8 detects the deformation of the film exterior body 5, the cutoff switch 16 is turned off to interrupt the battery current. It is configured as follows.
[0012]
Furthermore, the present invention Thin The battery pack with a built-in battery includes a strain sensor 8 having a protective circuit 21 attached to the surface of the film outer package 5, an energizing switch 23 that is switched by an output signal of the strain sensor 8, and the energizing switch 23. The heating resistor 24 whose energized state is controlled by the heating resistor 24 and the fuse 22 which is disposed at a position heated by the heating resistor 24 and connected in series with the battery 18 are provided. The protection circuit 21 detects deformation due to an increase in internal pressure of the film outer package 5 by the strain sensor 8. When the strain sensor 8 detects deformation of the film outer package 5, the energization switch 23 is turned on to supply a heating current to the heating resistor 24. The heating resistor 24 heated by the heating current blows the fuse 22 to cut off the battery current.
[0013]
Furthermore, the present invention Thin In the battery pack incorporating the battery, the protection circuit 21 is connected to a constant current circuit 25 that controls the current flowing through the heating resistor 24 with the energization switch 23 turned on.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify a thin battery for embodying the technical idea of the present invention and a battery pack incorporating the thin battery, and the present invention includes the thin battery and the battery pack as follows. Not specified.
[0015]
Further, in this specification, in order to facilitate understanding of the scope of claims, the numbers corresponding to the members shown in the examples are referred to as “the scope of claims” and “the means for solving the problems”. It is added to the member shown by. However, the members shown in the claims are not limited to the members in the embodiments.
[0016]
The thin battery shown in the plan view of FIG. 4 and the cross-sectional view of FIG. 5 has a strain sensor 8 attached to the surface of the film outer package 5. The strain sensor 8 is bonded and fixed to the film outer package 5. The strain sensor 8 detects deformation of the film outer package 5. The thin battery shown in the figure extends in the vertical direction and fixes the strain sensor 8. The strain sensor 8 fixed in this direction can detect the deformation of the film outer package 5 with high sensitivity. This is because the film outer package 5 extends in the vertical direction and is easily deformed. However, the strain sensor can be fixed to the film exterior body in the horizontal direction or in a posture inclined with respect to the vertical and horizontal directions.
[0017]
As the strain sensor 8, all sensors that can detect the deformation of the film outer package 5 can be used. As the strain sensor 8, a sensor that detects the elongation of the film outer package 5 and / or the change in shape thereof can be used. In the thin battery, when the internal pressure rises and the film outer package 5 swells as shown by a chain line in FIG. 5, the film outer package 5 expands and the shape changes. Therefore, the strain sensor 8 can detect the increase in the internal pressure by detecting the elongation of the film outer package 5. However, it goes without saying that a strain sensor that detects a change in the shape of the film outer package can also be used.
[0018]
A strain sensor 8 attached to the film outer package 5 is shown in FIG. The strain sensor 8 in this figure is a strain gauge in which a metal foil wire 9 is fixed to a flexible insulating sheet 9. The strain gauge of this figure has a metal foil wire 9 extending vertically and arranged in parallel, and the whole is connected in series. The strain gauge having this structure detects deformation by a change in the resistance value of the metal foil. The metal foil has a property that the resistance increases when it is stretched and decreases when it is compressed. For the metal foil, for example, a copper / nickel alloy or a nichrome alloy is used.
[0019]
The strain gauge having this structure detects the elongation in the vertical direction with high sensitivity. Therefore, the strain gauge is fixed to the film exterior body 5 so that the wire 9 faces the longitudinal direction of the film exterior body 5, and the deformation of the film exterior body 5 can be detected with high sensitivity by the strain gauge.
[0020]
The strain gauge is extended together with the film outer package 5 to detect deformation of the film outer package 5. Therefore, the strain sensor 8 is attached so as to extend integrally with the film outer package 5. The strain sensor 8 is preferably bonded to the film outer package 5 via an adhesive. As the adhesive, for example, a cyanoacrylate-based instantaneous adhesive, an epoxy-based, acrylic-based, silicon-based, urethane-based adhesive, or the like is used. The strain sensor can be bonded to the film outer package via adhesive tape on both sides or by heat welding.
[0021]
The signal from the strain sensor 8 is input to the detection circuit 11 shown in FIG. The detection circuit 11 in this figure includes a Wheatstone bridge circuit 12 and an amplifier 13. The strain sensor 8 is connected as a resistance element of the Wheatstone bridge circuit 12. The Wheatstone bridge circuit 12 is preferably connected to an AC power source 14. Although a DC power supply can be used, a DC amplifier that amplifies the output signal, drift correction, and the like become complicated. The resistance connected to the Wheatstone bridge circuit 12 is adjusted so that the output is 0 in a balanced manner in a state where the film outer package 5 is not deformed. When the film outer package 5 is deformed and the resistance value of the strain gauge changes, the Wheatstone bridge is out of balance and the output voltage increases. Therefore, the detection circuit 11 can detect the amount of deformation of the film outer package 5 based on the magnitude of the output signal of the Wheatstone bridge circuit 12. Since the output voltage of the Wheatstone bridge circuit 12 is small, it is amplified by the amplifier 13 and input to the control circuit 15.
[0022]
As shown in FIG. 4, the detection circuit 11 and the control circuit 15 are built in a case 26 of a battery pack. FIG. 8 shows a circuit diagram of the battery pack. The battery pack in this figure inputs a signal from the detection circuit 11 to the control circuit 15 and controls the cutoff switch 16 by the control circuit 15 to cut off the current when the film outer package 5 is deformed. When the internal pressure of the battery 18 rises and the film outer casing 5 expands and a signal is input from the detection circuit 11, the control circuit 15 turns off the cutoff switch 16 to cut off the current. The internal pressure of the battery 18 rises and the film outer package 5 swells mainly during charging. Therefore, in the battery pack of FIG. 8, the FET is connected in the direction in which the charge current is cut off by the cut-off switch 16.
[0023]
In the battery pack of this figure, a switching element 17 that cuts off a discharge current is connected in series with a cut-off switch 16. The cutoff switch 16 and the switching element 17 are connected between the battery 18 and the output terminal 19 to cut off the charging current or discharging charge. The cutoff switch 16 and the switching element 17 are FETs and are connected in series so that the drain and the source are in opposite directions.
[0024]
The switching element 17 that cuts off the discharge current is switched from on to off when the battery voltage becomes lower than the set voltage, and cuts off the discharge current. Therefore, the control circuit 15 detects the battery voltage and controls the switching element 17. When the internal pressure of the battery 18 increases and a signal is input from the detection circuit 11, the control circuit 15 can switch off both the cutoff switch 16 and the FET that is the switching element 17. When the film outer package 5 is deformed, the battery pack that turns off both FETs can block both the charging current and the discharging current when the internal pressure of the battery 18 increases.
[0025]
The control circuit 15 has a built-in latching circuit for maintaining a state in which the battery internal pressure increases and the cutoff switch 16 is turned off. A reset switch 20 is connected to the latching circuit. The latching circuit is reset when the reset switch 20 is operated, and the state where the cutoff switch 16 is held in the OFF state is reset. When the internal pressure of the battery 18 becomes high, the control circuit 15 that turns off both the cutoff switch 16 and the switching element 17 holds both the cutoff switch 16 and the switching element 17 in the off state by a latching circuit. Even after the battery internal pressure rises and the shut-off switch 16 is turned off, the battery pack having this structure can be reused when the battery internal pressure decreases to a normal state. This is because the reset switch 20 can be operated to reset the latching circuit and return the cutoff switch 16 and the switching element 17 to the ON state.
[0026]
In the battery pack of this figure, the cutoff switch 16 can be used in combination with a switching element that prevents overcharge. In other words, a switching element for preventing overcharge can be used in combination with the cutoff switch. The battery pack that prevents overcharging by the cut-off switch 16 detects the overcharge of the battery by the control circuit 15, and switches off the cut-off switch 16 when the battery 18 is overcharged. In the battery pack having this structure, when the battery 18 is overcharged or when the internal pressure of the battery 18 rises, the cutoff switch 16 is switched off. In the battery pack of FIG. 8, a protection circuit 21 is configured by the strain sensor 8, the detection circuit 11, the control circuit 15, and the cutoff switch 16.
[0027]
The pack battery shown in FIG. 9 includes a fuse 22 that cuts off the current when the internal pressure of the battery 18 increases, in addition to the overcharge and overdischarge prevention circuit 27 that prevents overcharge and overdischarge of the battery 18. . The fuse 22 is connected in series with the battery 18 and interrupts the current flowing through the battery 18.
[0028]
The battery pack shown in this figure is thermally blown by the energizing switch 23 that is turned on and off by the output signal of the detection circuit 11, the heating resistor 24 that heats the fuse 22 when the energizing switch 23 is turned on, and the heating resistor 24. A fuse 22. In the battery pack shown in the figure, the energization switch 23 is an FET that is a switching element. Furthermore, the battery pack shown in the figure has a constant current circuit 25 connected in series with the energization switch 23 to control the current flowing through the heating resistor 24.
[0029]
The constant current circuit 25 can prevent a change in the heating current of the heating resistor 24 due to a change in battery voltage when the energization switch 23 is turned on. The heating current controlled by the constant current circuit 25 to flow through the heating resistor 24 is set to a current that can heat the heating resistor 24 and heat the fuse 22. In the illustrated battery pack, two fuses 22 are connected in series between the battery battery output terminal 19 and the battery 18. One fuse 22 is connected to the battery 18, the other fuse 22 is connected to the output terminal 19 of the battery pack, and an intermediate connection point of the fuse 22 is connected to the heating resistor 24.
[0030]
Further, two heating resistors 24 are disposed in proximity to the fuse 22. There are two heating resistors 24, and each heating resistor 24 is disposed close to each fuse 22. The heating resistors 24 are connected in parallel to each other, with one end connected to the intermediate connection point of the fuse 22 and the other end connected to the energizing switch 23.
[0031]
In the battery pack with this structure, when the internal pressure of the battery 18 is normal, the output signal level of the detection circuit 11 is low and the energization switch 23 is turned off. When the energization switch 23 is in the OFF state, no current flows through the heating resistor 24. Therefore, the fuse 22 is not heated by the heating resistor 24, and the fuse 22 is not blown. In this state, the battery pack is charged or discharged.
[0032]
When the internal pressure of the battery 18 increases and the film outer package 5 swells, this is detected by the strain sensor 8 and the output signal of the detection circuit 11 increases to switch the energization switch 23 from OFF to ON. The energizing switch 23 that is turned on causes a heating current to flow through the heating resistor 24. The heating current is controlled by the constant current circuit 25 and is not affected by the battery voltage. The constant current circuit 25 controls the heating current to a set current. The heating resistor 24 is heated by Joule heat generated by a heating current to blow the fuse 22. When the fuse 22 is blown, the battery 18 is disconnected from the output terminal 19 of the battery pack, and the current is cut off. Since the battery pack having this structure blows the fuse 22 when the internal pressure of the battery 18 rises, the current can be reliably interrupted. In the battery pack shown in FIG. 9, a protection circuit 21 is configured by the strain sensor 8, the detection circuit 11, the energization switch 23, the constant current circuit 25, the fuse 22, and the heating resistor 24.
[0033]
Although the present invention does not specify the type of the thin battery, a thin battery having a structure shown in FIG. 5 is used. The thin battery in this figure has a power generation element 7 built in a sealed chamber of the film outer package 5. In this figure, 1 is a positive electrode, 2 is a negative electrode, 3 is an electrolyte layer, 4 is a sealing portion of the film outer package, 5 is a film outer package, and 6 is a current collecting terminal.
[0034]
The thin battery is a lithium polymer secondary battery or a lithium ion secondary battery. As the lithium polymer secondary battery, a solid or room temperature gel is used as an electrolyte. The lithium polymer secondary battery uses the following combinations for the positive electrode and the negative electrode.
Positive electrode: Lithium manganate Negative electrode: Graphite carbon
Positive electrode …… Vanadium oxide Negative electrode …… Lithium alloy
[0035]
Lithium ion secondary battery is LiPF 6 The electrolyte solution which consists of solutes, such as a solvent, and a solvent is used, and the following are used for a positive electrode and a negative electrode.
Positive electrode: Lithium cobaltate Negative electrode: Graphite carbon
Positive electrode …… Lithium cobaltate Negative electrode …… Coke carbon
Positive electrode: Lithium nickelate Negative electrode: Graphite carbon
Positive electrode: Lithium manganate Negative electrode: Graphite carbon
Positive electrode …… Lithium cobaltate Negative electrode …… Tin amorphous oxide
[0036]
The film outer package 5 containing the power generation element 7 in a sealed structure is hermetically sealed by thermally sealing the laminated film 5A at the sealing portion 4. As shown in the enlarged sectional view of FIG. 5, the laminate film 5A is a film in which a polypropylene film 5b is laminated on both surfaces of an aluminum foil 5a.
[0037]
A laminate film 5A shown in this figure has a three-layer structure of polypropylene film 5b / aluminum foil 5a / polypropylene film 5b, and a polypropylene film 5b, which is the same plastic film, is laminated on both surfaces of the aluminum foil 5a.
[0038]
A thin battery which is a lithium polymer secondary battery or a lithium ion secondary battery is manufactured as follows.
In this thin battery, the thickness of each layer of the laminate film 5A is set such that the first polypropylene film 5b located inside the film outer package 5 is 50 μm, the aluminum foil 5a is 20 μm, and the second polypropylene located outside the film outer package 5. The film 5b is 80 μm. A modified polypropylene film is used to bond the interface between the aluminum foil 5a and the polypropylene film 5b.
[0039]
The thin battery is manufactured by the following process.
(1) As shown in FIGS. 5 and 10, the laminate film 5A is bent on both sides of the power generation element 7 to form a cylinder, and both ends are stacked at positions that become the surface of the power generation element 7 to heat the stack. Weld. In this step, the portion where the laminate film 5A is thermally welded becomes a cylindrical sealing portion 4A that connects the laminate film 5A in a cylindrical shape. The laminated portion of the laminate film 5 </ b> A is heat-welded without inserting the power generation element 7. However, the laminated portion that becomes the cylindrical sealing portion 4 </ b> A can be heat-welded after the power generation element 7 is inserted. The method of thermally welding the laminated portion before putting the power generating element 7 can be thermally welded by sandwiching the front and back of the laminated portion with a mold of a high frequency induction heating device. The method of heat welding with the power generation element 7 inserted is to heat-weld by pressing the laminated part where the laminate film 5A is laminated on the surface of the power generation element 7 while heating the power generation element 7 from the surface with a heated mold. To do. The width of the cylindrical sealing portion 4A is heat-welded so as to be 20 mm.
[0040]
(2) Thereafter, as shown in FIGS. 10 and 11, one end portion of the laminate film 5A thermally welded to the cylinder is folded and thermally welded with a mold of a high-frequency induction heating device. This sealing part 4 becomes the current collecting terminal side sealing part 4B on the side where the current collecting terminal 6 is not sandwiched. The current collecting terminal side sealing portion 4B that does not sandwich the current collecting terminal 6 cuts one end edge of the laminated film 5A connected in a cylindrical shape, and the laminated film on the side where the other tongue piece 5B that is not cut is cut off. The laminate was folded 180 degrees so as to be in close contact with the surface of 5A, and the laminated portion was thermally welded and sealed in a bag shape. The sealing width of the current collecting terminal side sealing part 4B was 20 mm. When the tongue piece 5B folded back 180 degrees is thermally welded, a thin metal mold is placed inside the laminated film 5A connected in a cylindrical shape so that the laminated film 5A located on both surfaces of the power generation element 7 is not thermally welded. insert. The laminated portion is sandwiched between the mold and an external mold that presses the tongue piece 5B, and is heat-welded by being pressed and heated.
[0041]
(3) The power generation element 7 assembled in advance in an argon atmosphere is inserted into a laminating film 5A (hereinafter referred to as a pouch) in which the laminated portion is thermally welded. The outer shape of the power generation element 7 is about 80 × 30 mm. As shown in the cross-sectional view of FIG. 12, the current collecting terminals 6 of the positive electrode 1 and the negative electrode 2 are sandwiched between the laminate films 5A, and the laminate films 5A on both surfaces of the power generation element 7 are heat-welded at the laminated portion. The current collecting terminal 6 is sandwiched between two laminated films 5A and pulled out to the outside. The width of the current collecting terminal side sealing portion 4B that is heat-welded with the current collecting terminal 6 interposed therebetween is 10 mm.
In the thin battery manufactured in the above state, the sealing portion 4 is in the state shown in FIG. 13, and the overall thickness is 1.5 mm.
[0042]
(4) The strain sensor 8 is attached to the surface of the film outer package 5. As shown in FIG. 5, the strain sensor 8 is adhered and fixed to the surface of the film outer package 5 opposite to the cylindrical sealing portion 4 </ b> A.
[0043]
Furthermore, the thin battery shown in FIGS. 14 and 15 is the same as that described above for the power generation element 7. The laminate film 5A has a three-layer structure of polyethylene film 5c / aluminum foil 5a / polyethylene film 5c. The polyethylene film 5c laminated on both surfaces of the aluminum 5a foil is the same material. In the laminate film 5A, the first polyethylene film 5c (inner side) is 30 μm, the aluminum 5a is 9 μm, and the second polyethylene film 5c (outer side) is 80 μm. Modified polyethylene is used for interfacial adhesion.
[0044]
The thin battery shown in FIGS. 14 and 15 is manufactured as follows.
(1) As shown in FIG. 16, after being folded in half, the laminated portions at both ends are folded back to the upper surface of the power generating element 7, and the laminated portion where the three layers of the laminate film 5A are laminated is subjected to high frequency induction. A bag-shaped pouch is formed by heat welding with a mold of a heating device. The width of the cylindrical sealing portion 4A to be heat-welded is 20 mm. When the laminated portion folded back on the upper surface of the power generation element 7 is thermally welded, a thin metal mold is inserted into the portion where the power generation element 7 is inserted so that the laminate films 5A located on both surfaces of the power generation element 7 are not thermally welded. .
[0045]
(2) After that, the power generation element 7 previously assembled in an argon atmosphere is inserted into the pouch connected in a bag shape in the same process as the above (3), and the current collecting terminals 6 of the positive electrode 1 and the negative electrode 2 are connected. Then, the laminate film 5A is sandwiched between the laminate films 5A, and the laminate films 5A on both sides of the power generation element 7 are heat-welded at the laminated portion. The width of the current collecting terminal side sealing portion 4B that is heat-welded by sandwiching the current collecting terminal 6 was 10 mm.
The thin battery manufactured in the above state has an overall thickness of 1.7 mm.
[0046]
(3) The strain sensor 8 is attached to the surface of the film outer package 5. As shown in FIG. 15, the strain sensor 8 is bonded and fixed to the surface of the film outer package 5 opposite to the cylindrical sealing portion 4 </ b> A.
[0047]
Furthermore, as shown in FIGS. 17 and 18, the thin battery can be heat-welded with the laminate film 5 </ b> A on the outer periphery of the power generation element 7. The same thing as the above-mentioned thin battery is used for the electric power generation element 7 and the laminate film 5A. As shown in FIG. 17, the strain sensor 8 is attached to the surface of the film outer package 5.
[0048]
【The invention's effect】
The thin battery and the battery pack incorporating the thin battery of the present invention have the advantage that it is possible to accurately detect that the internal pressure of the film exterior body has increased and to prevent the internal pressure from rising. This is because the thin battery of the present invention and the battery pack incorporating the thin battery have the strain sensor attached to the surface of the film outer package in which the power generation element is housed. The strain sensor attached to the surface of the film exterior body detects the deformation of the film exterior body. For this reason, when the internal pressure of the thin battery rises and the film exterior body expands, the film exterior body expands and changes its shape, and the strain sensor can detect the increase in the internal pressure by detecting the extension of the film exterior body. As described above, the thin battery and the battery pack according to the present invention, which detects the increase in the internal pressure of the battery with the strain sensor, can accurately detect the increase in the internal pressure of the battery and prevent the battery from entering a dangerous state. There is a feature that can be improved.
[0049]
In addition, the thin battery of the present invention and the battery pack incorporating the thin battery can detect an increase in the internal pressure without opening the fracture groove or the welded portion of the film outer package at a predetermined pressure as in the past. In addition to being able to detect an increase in internal pressure, there is a feature that can be reused when the internal pressure decreases to a normal state after the internal pressure has increased.
[Brief description of the drawings]
FIG. 1 is a plan view of a conventional thin battery.
2 is a cross-sectional view taken along line AA of the thin battery shown in FIG.
FIG. 3 is a perspective view of another conventional thin battery.
FIG. 4 is a plan view of a battery pack incorporating a thin battery according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view of a thin battery of the battery pack shown in FIG.
FIG. 6 is an enlarged perspective view showing an example of a strain sensor.
FIG. 7 is a circuit diagram of a detection circuit for detecting a strain sensor signal.
8 is a circuit diagram of the battery pack shown in FIG.
FIG. 9 is a circuit diagram of a battery pack according to another embodiment of the present invention.
10 is a perspective view showing a manufacturing process of the thin battery shown in FIG. 5. FIG.
11 is a cross-sectional view showing a manufacturing process of the thin battery shown in FIG.
12 is a sectional view showing a manufacturing process of the thin battery shown in FIG.
13 is a bottom view of the thin battery shown in FIG.
FIG. 14 is a plan view of a thin battery according to another embodiment of the present invention.
15 is a cross-sectional view of the thin battery shown in FIG.
16 is a perspective view showing a manufacturing process of the thin battery shown in FIG. 14;
FIG. 17 is a plan view of a thin battery according to another embodiment of the present invention.
18 is a cross-sectional view of the thin battery shown in FIG.
[Explanation of symbols]
1 ... Positive electrode
2 ... Negative electrode
3 ... electrolyte layer
4 ... Sealing part 4A ... Cylindrical sealing part
4B ... Current collecting terminal side sealing part
5 ... Film exterior 5A ... Laminate film
5a ... Aluminum foil
5b Polypropylene film
5c Polyethylene film
6 ... Current collector terminal
7 ... Power generation elements
8 ... Strain sensor
9 ... Insulation sheet
10 ... Wire
11 ... Detection circuit
12 ... Wheatstone bridge circuit
13 ... Amplifier
14 ... AC power supply
15 ... Control circuit
16 ... Cutoff switch
17 ... Switching element
18 ... Battery
19 ... Output terminal
20 ... Reset switch
21 ... Protection circuit
22 ... Fuse
23 ... Power switch
24 ... Heating resistance
25 ... Constant current circuit
26 ... Case
27. Overcharge and overdischarge prevention circuit
28 ... Pressure release means

Claims (3)

正極(1)と負極(2)とを備える発電要素(7)をフィルム外装体(5)の内部に収納している薄型電池と、この薄型電池の内圧が上昇したときに電流を遮断する保護回路(21)とを備えるパック電池において、
保護回路(21)が、フィルム外装体(5)の表面に付着されてなる歪センサー(8)と、この歪センサー(8)の出力信号で電池に流れる電流を遮断する遮断スイッチ(16)とを備えており、フィルム外装体(5)の内圧上昇による変形を歪センサー(8)で検出し、歪センサー(8)がフィルム外装体(5)の変形を検出すると、遮断スイッチ(16)をオフにして電池電流を遮断するように構成してなることを特徴とする薄型電池を内蔵するパック電池。
A thin battery in which a power generation element (7) having a positive electrode (1) and a negative electrode (2) is housed inside a film outer package (5), and protection that cuts off current when the internal pressure of the thin battery increases. In a battery pack comprising a circuit (21),
A strain sensor (8) having a protective circuit (21) attached to the surface of the film outer package (5), and a cutoff switch (16) for cutting off the current flowing to the battery by the output signal of the strain sensor (8) The deformation sensor (8) detects deformation due to an increase in internal pressure of the film outer package (5), and when the strain sensor (8) detects deformation of the film outer package (5), the cutoff switch (16) A battery pack with a built-in thin battery, which is configured to be turned off to cut off a battery current.
正極(1)と負極(2)とを備える発電要素(7)をフィルム外装体(5)の内部に収納している薄型電池と、この薄型電池の内圧が上昇したときに電流を遮断する保護回路(21)とを備えるパック電池において、
保護回路(21)が、フィルム外装体(5)の表面に付着されてなる歪センサー(8)と、この歪センサー(8)の出力信号でスイッチングされる通電スイッチ(23)と、この通電スイッチ(23)で通電状態が制御される加熱抵抗(24)と、この加熱抵抗(24)に加熱される位置に配設されると共に、電池(18)と直列に接続されてなるヒューズ(22)とを備え、
フィルム外装体(5)の内圧上昇による変形を歪センサー(8)で検出し、歪センサー(8)がフィルム外装体(5)の変形を検出すると、通電スイッチ(23)をオンにして加熱抵抗(24)に加熱電流を流し、加熱電流で加熱された加熱抵抗(24)がヒューズ(22)を溶断して、電池電流を遮断するようにしてなることを特徴とする薄型電池を内蔵するパック電池。
A thin battery in which a power generation element (7) having a positive electrode (1) and a negative electrode (2) is housed inside a film outer package (5), and protection that cuts off current when the internal pressure of the thin battery increases. In a battery pack comprising a circuit (21),
The strain sensor (8) in which the protective circuit (21) is attached to the surface of the film outer package (5), the energizing switch (23) that is switched by the output signal of the strain sensor (8), and the energizing switch A heating resistor (24) whose energization state is controlled in (23), and a fuse (22) disposed in a position heated by the heating resistor (24) and connected in series with the battery (18) And
When the deformation due to an increase in internal pressure of the film outer package (5) is detected by the strain sensor (8), and the strain sensor (8) detects the deformation of the film outer package (5), the energization switch (23) is turned on and the heating resistance A pack containing a thin battery characterized by passing a heating current through (24), and the heating resistor (24) heated by the heating current blows the fuse (22) to cut off the battery current. battery.
保護回路(21)が、通電スイッチ(23)がオンの状態で加熱抵抗(24)に流れる電流を制御する定電流回路(25)を接続している請求項2に記載される薄型電池を内蔵するパック電池。  The thin battery according to claim 2, wherein the protection circuit (21) is connected to a constant current circuit (25) for controlling a current flowing through the heating resistor (24) with the energization switch (23) turned on. Pack battery to play.
JP15122099A 1999-05-31 1999-05-31 Battery pack with built-in thin battery Expired - Fee Related JP4518591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15122099A JP4518591B2 (en) 1999-05-31 1999-05-31 Battery pack with built-in thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15122099A JP4518591B2 (en) 1999-05-31 1999-05-31 Battery pack with built-in thin battery

Publications (2)

Publication Number Publication Date
JP2000340264A JP2000340264A (en) 2000-12-08
JP4518591B2 true JP4518591B2 (en) 2010-08-04

Family

ID=15513882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15122099A Expired - Fee Related JP4518591B2 (en) 1999-05-31 1999-05-31 Battery pack with built-in thin battery

Country Status (1)

Country Link
JP (1) JP4518591B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313438A (en) * 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Battery, and method for determination of deterioration of the same battery
DE60227812D1 (en) * 2001-06-05 2008-09-04 Gs Yuasa Corp STORAGE BATTERY DEVICE AND A POWER SOURCE COMPRISING THIS
JP4529516B2 (en) * 2004-03-30 2010-08-25 Tdk株式会社 Power supply
KR100579377B1 (en) * 2004-10-28 2006-05-12 삼성에스디아이 주식회사 Secondary battery
JP2007066612A (en) * 2005-08-30 2007-03-15 Toyota Motor Corp Battery structure and battery module
KR100878702B1 (en) * 2005-11-30 2009-01-14 주식회사 엘지화학 Safety Device for Secondary Battery and Battery Pack Employed with the Same
JP5030429B2 (en) * 2006-01-31 2012-09-19 三洋電機株式会社 Protection element and battery pack provided with the protection element
JP5675045B2 (en) * 2008-11-26 2015-02-25 三洋電機株式会社 Battery system
DE102009058783A1 (en) * 2009-12-18 2011-06-22 Continental Automotive GmbH, 30165 Energy storage device
DE102010012936A1 (en) * 2010-03-26 2011-09-29 Daimler Ag Cell network with a predefinable number of parallel and / or series electrically interconnected single cells
DE102012207999A1 (en) * 2012-05-14 2013-11-14 Robert Bosch Gmbh Sheath foil for a galvanic cell, electrochemical storage, electrochemical storage system, flexible foil for a sheath of a galvanic cell and method for determining a state quantity of an electrochemical storage
DE102012209397A1 (en) * 2012-06-04 2013-12-05 Robert Bosch Gmbh Lithium ion battery cell for battery management system utilized for storing electrical power for electromotor in e.g. hybrid motor car, has electrode-coil arranged within cell housing, and partially covered by pressure-sensitive film sensor
KR101449306B1 (en) * 2013-06-28 2014-10-08 현대자동차주식회사 Safety unit for overcharge of battery
WO2016092839A1 (en) * 2014-12-10 2016-06-16 パナソニックIpマネジメント株式会社 Battery
CN106960984A (en) * 2017-02-16 2017-07-18 上海与德通讯技术有限公司 Battery, terminal and battery protecting method
CN106816929A (en) * 2017-02-16 2017-06-09 上海与德通讯技术有限公司 Battery, terminal and battery protecting method
WO2019048985A1 (en) 2017-09-06 2019-03-14 株式会社半導体エネルギー研究所 Power storage system, vehicle, electronic equipment and semiconductor device
JP7104939B2 (en) * 2018-07-27 2022-07-22 セイコーホールディングス株式会社 Biological information detection device and manufacturing method thereof, biological information detection module and manufacturing method thereof
JP7126159B2 (en) * 2018-07-27 2022-08-26 セイコーホールディングス株式会社 BIOLOGICAL INFORMATION DETECTION MODULE AND BIOLOGICAL INFORMATION DETECTION DEVICE INCLUDING THE SAME, METHOD FOR MANUFACTURING BIOLOGICAL INFORMATION DETECTION MODULE, AND METHOD FOR MANUFACTURING BIOMETRIC INFORMATION DETECTION DEVICE
KR20200139529A (en) * 2019-06-04 2020-12-14 주식회사 엘지화학 secondary battery, method of manufacturing the same and battery module including the same
KR20220093841A (en) * 2020-12-28 2022-07-05 주식회사 엘지에너지솔루션 A flexible printed circuit board for measuring the internal pressure of a pouch cell and a method for measuring the internal pressure of a pouch cell by using the same
TWI782661B (en) * 2021-08-12 2022-11-01 仁寶電腦工業股份有限公司 Battery detection device
CN113533970A (en) * 2021-08-20 2021-10-22 中国船舶重工集团衡远科技有限公司 Lead-acid storage battery state on-line monitoring system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834577A (en) * 1981-08-26 1983-03-01 Toshiba Corp Overcharge detection
JPS60212974A (en) * 1984-04-06 1985-10-25 Toyo Sakusesu Kk Quick charge control method of sealed battery
JPS63268445A (en) * 1987-04-24 1988-11-07 Nec Home Electronics Ltd Quick charging method of nickel-cadmium secondary battery
JPH0479732A (en) * 1990-07-20 1992-03-13 Hitachi Koki Co Ltd Boosting charger
JPH05152000A (en) * 1991-11-27 1993-06-18 Hitachi Maxell Ltd Set battery charging method
JPH0652901A (en) * 1992-07-28 1994-02-25 Sanyo Electric Co Ltd Stationary type metal-hydrogen battery
JPH09199099A (en) * 1996-01-19 1997-07-31 Japan Storage Battery Co Ltd Lithium ion battery
JPH1092476A (en) * 1996-09-18 1998-04-10 Hitachi Ltd Lithium secondary battery
JPH10208720A (en) * 1997-01-22 1998-08-07 Toshiba Battery Co Ltd Battery pack

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834577A (en) * 1981-08-26 1983-03-01 Toshiba Corp Overcharge detection
JPS60212974A (en) * 1984-04-06 1985-10-25 Toyo Sakusesu Kk Quick charge control method of sealed battery
JPS63268445A (en) * 1987-04-24 1988-11-07 Nec Home Electronics Ltd Quick charging method of nickel-cadmium secondary battery
JPH0479732A (en) * 1990-07-20 1992-03-13 Hitachi Koki Co Ltd Boosting charger
JPH05152000A (en) * 1991-11-27 1993-06-18 Hitachi Maxell Ltd Set battery charging method
JPH0652901A (en) * 1992-07-28 1994-02-25 Sanyo Electric Co Ltd Stationary type metal-hydrogen battery
JPH09199099A (en) * 1996-01-19 1997-07-31 Japan Storage Battery Co Ltd Lithium ion battery
JPH1092476A (en) * 1996-09-18 1998-04-10 Hitachi Ltd Lithium secondary battery
JPH10208720A (en) * 1997-01-22 1998-08-07 Toshiba Battery Co Ltd Battery pack

Also Published As

Publication number Publication date
JP2000340264A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
JP4518591B2 (en) Battery pack with built-in thin battery
US10985433B2 (en) Battery module having structure breaking connector by using venting gas
JP4622019B2 (en) Flat battery
JP5906354B2 (en) Secondary battery, secondary battery component applied to the secondary battery, and secondary battery manufacturing method
JP5248069B2 (en) Pouch type secondary battery
KR20120051579A (en) Battery pack
JP2003178745A (en) Secondary battery equipped with thermoprotector
JP3625773B2 (en) Pack battery
JP4830267B2 (en) Laminated battery
JPH1167188A (en) Lead terminal for secondary battery and lithium secondary battery
JP4923379B2 (en) Secondary battery and battery pack
JPH1167190A (en) Thermal fuse and lithium secondary battery provided therewith
JP5601253B2 (en) Battery internal pressure state detection device
JP4552414B2 (en) Film type battery
JP4373109B2 (en) Stacked battery pack
JPH11162527A (en) Sensor and secondary battery device equipped with sensor
JP4009806B2 (en) Sealed battery
KR101302430B1 (en) Secondary battery including fuse-inserted electrode lead
KR101302077B1 (en) Secondary battery including fuse-inserted electrode lead
JP3579206B2 (en) Sealed storage battery
KR100989839B1 (en) Secondary battery
JP2005174815A (en) Thermosensitive operation element
JP2007311163A (en) Film wrapped electric device
JP3890334B2 (en) Film exterior electrical device and internal pressure release system
JP3634657B2 (en) Pack battery with protective element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees