JP3913385B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP3913385B2
JP3913385B2 JP00538699A JP538699A JP3913385B2 JP 3913385 B2 JP3913385 B2 JP 3913385B2 JP 00538699 A JP00538699 A JP 00538699A JP 538699 A JP538699 A JP 538699A JP 3913385 B2 JP3913385 B2 JP 3913385B2
Authority
JP
Japan
Prior art keywords
battery
pressure
secondary battery
value
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00538699A
Other languages
Japanese (ja)
Other versions
JP2000173676A (en
Inventor
広一 佐藤
一成 大北
義人 近野
育郎 米津
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP00538699A priority Critical patent/JP3913385B2/en
Publication of JP2000173676A publication Critical patent/JP2000173676A/en
Application granted granted Critical
Publication of JP3913385B2 publication Critical patent/JP3913385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池に関し、特に充放電時の電池内圧測定の精度の向上を可能とする二次電池に関する。
【0002】
【従来の技術】
近年、小型、軽量であるにもかかわらず、電池電圧が高く、高エネルギー密度のリチウムイオン二次電池が注目を集めているが、高エネルギー密度であるが故に電池特性に注意を払う必要がある。特に充電に伴って電池内部に発生するガスにより電池内圧が大きく変化するため、この電池内圧の変化を精度良く測定し、充電を制御する必要がある。この電池内圧を測定するためには、電池外装缶に圧力センサを取り付ける方法や特開平5−152003号公報のように、充電に伴って各素電池の内部に発生するガスによる電池内圧の変化を検出するためのひずみゲージを各素電池の電池ケースに取り付ける方法が採られていた。
【0003】
【発明が解決しようとする課題】
しかしながら、電池の外装缶に圧力センサを取り付ける方法では、電池自身の重量を増加させ、大型化になるという問題点があり、また電池缶にひずみゲージを取り付けて電池内圧を測定するという方法では、電池外装缶が樹脂製の場合は弾性力があるので、電池内圧をひずみゲージにより測定することができるが、金属製の電池外装缶の場合、電池缶の厚みを薄くしないと測定の精度を低下させ、缶の厚みを薄くすると逆に測定精度は向上するが、電池缶の耐圧強度は減少するという問題点があった。
【0004】
【課題を解決するための手段】
本発明は、上述のような問題点に鑑みてなされたものであり、正極板、負極板、セパレータ及び電解液からなる発電要素を収納した電池外装缶と、外装缶を封口する蓋とよりなる二次電池であって、外装缶の外側面に凹凸部を形成し、少なくとも凹部の一部に電池内圧の上昇による前記電池外装缶の体積変化を検出する検出手段を取り付けている。また、本発明は電池外装缶の凸部(A)と凹部(B)の厚みの比(A/B)を1.5〜3としている。
【0005】
【発明の実施の形態】
以下、本発明に係る二次電池の実施例を図面を参照しながら詳細に説明する。図1は本発明二次電池の素電池の斜視図を示したものであり、例えばリチウム二次電池が使用される。このリチウム二次電池からなる素電池は、正極板と負極板がセパレータを介して重ねあわせられて巻回されてなる渦巻状の発電要素が、円筒型のアルミニウムなどの金属製電池外装缶1内に収納されている。この外装缶1は、その側面を凸部2と凹部3に形成し、図2の断面図に示すように内周部4の発電要素が接する部分は平滑状に形成させ、外周部5に凸部2と凹部3として形成している。尚、図2は本発明に使用する素電池の断面図である。
【0006】
また、この電池外装缶1は蓋6にて封口されている。
【0007】
そして、この凹凸状に形成された外装缶1の凹部3の少なくとも一部には、電池の内圧の上昇による外装缶1の体積変化を検出する検出手段となる歪みセンサ7を取り付けている。この歪みセンサ7からの信号は制御回路(図示せず)に入り、制御回路内で圧力値を判断している。
【0008】
この上記したリチウム二次電池の素電池の複数個を電気的に直列に接続し容器8に収納することで、図3に示すように組電池を構成する。図3は本発明の二次電池8本の配置状態を示す組電池の斜視図である。
【0009】
本発明による電池缶Aとして、缶直径65mm、長さ300mmのアルミニウム部材を使用して、その側面に凹凸部2、3を有する電池外装缶1を形成する。
【0010】
ここで、凸部2(A)の肉厚は2mm、凹部3(B)の肉厚は0.8mmであり、外装缶1における厚みの比(A/B)を2.5とし、この凹部3に歪みセンサ7を取り付けている。
【0011】
従来法による電池缶Bとして、缶直径65mm、長さ300mm、缶の肉厚2mmのアルミニウム部材を使用して、その側面が平滑な電池外装缶1を形成した。そして、この缶表面の平滑部に歪みセンサ7を装着している。
【0012】
また、従来法による電池缶Cとして、缶直径65mm、長さ300mm、缶の肉厚0.8mmのアルミニウム部材を使用して、その側面が平滑な電池外装缶1を形成した。そして、この缶表面の平滑部に歪みセンサ7を装着している。
【0013】
以上の3種類の電池缶を用いて組電池を各々作成し、電池外装缶の耐圧試験を行い、缶内部の圧力を測定した。
【0014】
耐圧試験は、水圧試験装置を用いて、加圧範囲:0〜30kg/cm2で行った。その測定結果を表1に示す。
【0015】
【表1】

Figure 0003913385
【0016】
表1から明らかなように、電池缶Aでは、歪みセンサの値は、低圧から高圧の範囲の全般において圧力センサの値とほぼ同じ値を示し、精度良く測定できている。
【0017】
次に電池缶Bでは、高圧になるに従い、歪みセンサの値は圧力値に近い値になるが、低圧になるに従い、歪みセンサの値の精度は低下していることがわかる。
【0018】
また、電池缶Cでは、外装缶1が肉厚0.8mmと薄いため、低圧時には歪みセンサの値と圧力センサの値とが一致しているが、圧力が20kg/cm2の時点で外装缶が塑性変形を起こし、大きく膨れ上がり測定不可能となった。
【0019】
以上のように、外装缶に凹部3を形成し、この凹部3に歪みセンサ7を装着した本発明に係る電池缶Aに依れば、内部圧力の変化を精度良く測定することが出来る。
【0020】
次に、電池缶Aの凸部2(A)と凹部3(B)の厚みの比(A/B)を変化させて電池外装缶1の耐圧試験を行い、そのときの缶内部の圧力を歪みセンサ7にて測定した。この凸部2(A)の肉厚は2mmとした。
【0021】
耐圧試験は、水圧試験装置を用いて、加圧範囲:0〜30kg/cm2で行った。その結果を表2に示す。
【0022】
【表2】
Figure 0003913385
【0023】
表2から明らかなように、凸部2(A)と凹部3(B)との厚みの比(A/B)が1.5より小さくなると、低圧時の圧力センサの指示値と歪みセンサによる測定値の誤差が非常に大きくなる。
【0024】
また、厚みの比(A/B)が3.0より大きくなると、耐圧基準値が20Kg/cm2であるにも拘わらず、缶自身の耐圧の値が20Kg/cm2以下になってしまう。
【0025】
従って、厚みの比(A/B)として1.5〜3.0の値を用いることが好ましい。
【0026】
次に、電池缶Aと電池缶Bを用いて円筒型リチウムイオン電池を作製した。各々を組電池A、組電池Cとする。これらの電池において、25℃中0.125Cで4.1Vまで充電した後、25℃において1Cで2.7Vまで放電した。そのときの電池缶表面温度を測定した。その結果を表3に示す。
【0027】
【表3】
Figure 0003913385
【0028】
表3より明らかなように、放電容量を70Ahとしたとき、組電池Aの温度は組電池Bよりも低温となるが、これは外装缶1が凹凸部2、3を有しているために、外装缶1の表面積が実質的に増加し、電池における放熱性が向上したものと思われる。
【0029】
さらに、この2種類の電池に対して、上述の条件で充放電サイクルを300サイクル行った。その結果を図4に示す。図4は充放電サイクル数と組電池A、Bの電池容量との関係を示すサイクル特性図である。
【0030】
この図4から明らかなように、組電池Aは組電池Bに比べてサイクル数が増加しても電池容量の低下が少ない。
【0031】
また、その時の容量の変化を確認した。その結果を表4に示す。
【0032】
【表4】
Figure 0003913385
【0033】
表4より明らかなように、組電池Bに比べ、組電池Aは300サイクル後の容量の維持率が0.06即ち、6%向上している。これは、組電池Aの外装缶が凹凸部を有する結果、外装缶の表面積が大きくなり放熱性が高まることにより、放電時の電池の温度上昇が小さくなり、電極の劣化が小さくなったためと思われる。
【0034】
【発明の効果】
本発明によれば、正極板、負極板、セパレータ及び電解液からなる発電要素を収納した電池外装缶と、外装缶を封口する蓋とよりなる二次電池であって、外装缶の外側面に、凸部(A)と凹部(B)の厚みの比(A/B)が1.5〜3である凹凸部を形成し、少なくとも凹部の一部に電池内圧の上昇による電池外装缶の体積変化を検出する検出手段を取り付けたので、外装缶の耐圧強度を損ねることなく、電池内圧を精度良く検出することができる。
【0035】
更に、凹凸部を形成することにより外装缶の表面積が増加するので、電池の放熱性を向上させることができ、電池の温度上昇に伴う電池特性の劣化を抑制することができる。
【図面の簡単な説明】
【図1】本発明による二次電池の素電池を示した斜視図である。
【図2】本発明に係る素電池の断面図である。
【図3】本発明による二次電池の組電池を示した斜視図である。
【図4】本発明による二次電池のサイクルに伴う電池容量の変化を示したサイクル特性図である。
【符号の説明】
1外装缶
2凸部
3凹部
4内周部
5外周部
6蓋
7歪みセンサ
8容器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery, and more particularly to a secondary battery capable of improving the accuracy of battery internal pressure measurement during charging and discharging.
[0002]
[Prior art]
In recent years, despite the small size and light weight, lithium-ion secondary batteries with high battery voltage and high energy density have attracted attention. However, due to the high energy density, it is necessary to pay attention to battery characteristics. . In particular, since the internal pressure of the battery greatly changes due to the gas generated inside the battery as the battery is charged, it is necessary to accurately measure the change in the internal battery pressure and control the charging. In order to measure the internal pressure of the battery, the method of attaching a pressure sensor to the battery outer can or the change in the internal pressure of the battery due to the gas generated inside each unit cell as charged as disclosed in JP-A-5-152003. A method of attaching a strain gauge for detection to a battery case of each unit cell has been adopted.
[0003]
[Problems to be solved by the invention]
However, in the method of attaching the pressure sensor to the battery outer can, there is a problem that the weight of the battery itself is increased and the size is increased, and the method of measuring the internal pressure of the battery by attaching a strain gauge to the battery can, If the battery outer can is made of resin, there is elasticity, so the internal pressure of the battery can be measured with a strain gauge. However, in the case of a metal battery outer can, the measurement accuracy decreases unless the thickness of the battery can is reduced. In contrast, when the can thickness is reduced, the measurement accuracy is improved, but the pressure resistance of the battery can is reduced.
[0004]
[Means for Solving the Problems]
The present invention has been made in view of the above-described problems, and includes a battery outer can that contains a power generation element including a positive electrode plate, a negative electrode plate, a separator, and an electrolyte, and a lid that seals the outer can. In the secondary battery, a concavo-convex portion is formed on the outer surface of the outer can, and at least a part of the concave portion is provided with detection means for detecting a change in the volume of the battery outer can due to an increase in battery internal pressure. Moreover, this invention sets the ratio (A / B) of the thickness (A / B) of the convex part (A) and concave part (B) of a battery exterior can to 1.5-3.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the secondary battery according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of a unit cell of the secondary battery of the present invention, for example, a lithium secondary battery is used. The unit cell composed of the lithium secondary battery has a spiral power generation element in which a positive electrode plate and a negative electrode plate are overlapped and wound via a separator inside a metal battery outer can 1 such as cylindrical aluminum. It is stored in. The outer can 1 is formed with a convex portion 2 and a concave portion 3 on its side surfaces, and the portion of the inner peripheral portion 4 that is in contact with the power generation element as shown in the cross-sectional view of FIG. The part 2 and the recessed part 3 are formed. FIG. 2 is a cross-sectional view of the unit cell used in the present invention.
[0006]
The battery outer can 1 is sealed with a lid 6.
[0007]
And the distortion sensor 7 used as the detection means which detects the volume change of the outer can 1 by the raise of the internal pressure of a battery is attached to at least one part of the recessed part 3 of the outer can 1 formed in this uneven | corrugated shape. The signal from the strain sensor 7 enters a control circuit (not shown), and the pressure value is determined in the control circuit.
[0008]
A plurality of the above-described lithium secondary battery cells are electrically connected in series and housed in a container 8 to form an assembled battery as shown in FIG. FIG. 3 is a perspective view of an assembled battery showing an arrangement state of eight secondary batteries of the present invention.
[0009]
As the battery can A according to the present invention, an aluminum member having a can diameter of 65 mm and a length of 300 mm is used to form the battery outer can 1 having the concavo-convex portions 2 and 3 on its side surface.
[0010]
Here, the thickness of the convex portion 2 (A) is 2 mm, the thickness of the concave portion 3 (B) is 0.8 mm, and the thickness ratio (A / B) in the outer can 1 is 2.5. A strain sensor 7 is attached to 3.
[0011]
As the battery can B according to the conventional method, an aluminum member having a can diameter of 65 mm, a length of 300 mm, and a can thickness of 2 mm was used to form a battery outer can 1 having a smooth side surface. The strain sensor 7 is attached to the smooth portion of the can surface.
[0012]
Moreover, as the battery can C according to the conventional method, an aluminum member having a can diameter of 65 mm, a length of 300 mm, and a can thickness of 0.8 mm was used, and the battery outer can 1 having a smooth side surface was formed. The strain sensor 7 is attached to the smooth portion of the can surface.
[0013]
An assembled battery was prepared using each of the above three types of battery cans, a pressure resistance test was performed on the battery outer can, and the pressure inside the can was measured.
[0014]
The pressure resistance test was performed using a water pressure test apparatus at a pressure range of 0 to 30 kg / cm 2 . The measurement results are shown in Table 1.
[0015]
[Table 1]
Figure 0003913385
[0016]
As is clear from Table 1, in the battery can A, the value of the strain sensor shows almost the same value as the value of the pressure sensor in the entire range from low pressure to high pressure, and can be measured with high accuracy.
[0017]
Next, in the battery can B, as the pressure increases, the value of the strain sensor becomes closer to the pressure value, but as the pressure decreases, the accuracy of the value of the strain sensor decreases.
[0018]
Further, in the battery can C, since the outer can 1 is as thin as 0.8 mm, the value of the strain sensor and the value of the pressure sensor coincide with each other at low pressure, but when the pressure is 20 kg / cm 2 , the outer can Caused plastic deformation and swollen greatly, making it impossible to measure.
[0019]
As described above, according to the battery can A according to the present invention in which the recess 3 is formed in the outer can and the strain sensor 7 is attached to the recess 3, a change in internal pressure can be measured with high accuracy.
[0020]
Next, the pressure resistance test of the battery outer can 1 was performed by changing the thickness ratio (A / B) of the convex portion 2 (A) and the concave portion 3 (B) of the battery can A, and the pressure inside the can at that time was changed. Measurement was performed with a strain sensor 7. The thickness of the convex portion 2 (A) was 2 mm.
[0021]
The pressure resistance test was performed using a water pressure test apparatus at a pressure range of 0 to 30 kg / cm 2 . The results are shown in Table 2.
[0022]
[Table 2]
Figure 0003913385
[0023]
As is clear from Table 2, when the thickness ratio (A / B) between the convex portion 2 (A) and the concave portion 3 (B) is smaller than 1.5, it depends on the indication value of the pressure sensor at the low pressure and the strain sensor. The measurement error is very large.
[0024]
Further, when the thickness ratio (A / B) is larger than 3.0, the pressure resistance value of the can itself becomes 20 Kg / cm 2 or less even though the pressure resistance reference value is 20 Kg / cm 2 .
[0025]
Therefore, it is preferable to use a value of 1.5 to 3.0 as the thickness ratio (A / B).
[0026]
Next, using the battery can A and the battery can B, a cylindrical lithium ion battery was produced. Let each be an assembled battery A and an assembled battery C. In these batteries, the battery was charged to 0.1 V at 0.125 C in 25 ° C. and then discharged to 2.7 V at 1 C at 25 ° C. The battery can surface temperature at that time was measured. The results are shown in Table 3.
[0027]
[Table 3]
Figure 0003913385
[0028]
As is apparent from Table 3, when the discharge capacity is 70 Ah, the temperature of the assembled battery A is lower than that of the assembled battery B. This is because the outer can 1 has the uneven portions 2 and 3. It seems that the surface area of the outer can 1 is substantially increased, and the heat dissipation in the battery is improved.
[0029]
Furthermore, 300 cycles of charge / discharge cycles were performed on these two types of batteries under the above-described conditions. The result is shown in FIG. FIG. 4 is a cycle characteristic diagram showing the relationship between the number of charge / discharge cycles and the battery capacities of the assembled batteries A and B.
[0030]
As apparent from FIG. 4, the assembled battery A has a smaller decrease in battery capacity than the assembled battery B even if the number of cycles is increased.
[0031]
Also, the change in capacity at that time was confirmed. The results are shown in Table 4.
[0032]
[Table 4]
Figure 0003913385
[0033]
As is clear from Table 4, the battery pack A has a capacity retention rate of 0.06, that is, 6% higher than that of the battery pack B after 300 cycles. This is probably because the battery case of the assembled battery A has uneven portions, and as a result, the surface area of the battery can increases and the heat dissipation increases, so that the temperature rise of the battery during discharge is reduced and the deterioration of the electrode is reduced. It is.
[0034]
【The invention's effect】
According to the present invention, there is provided a secondary battery comprising a battery outer can containing a power generation element composed of a positive electrode plate, a negative electrode plate, a separator, and an electrolyte, and a lid for sealing the outer can. The volume of the battery outer can is formed by forming a concavo-convex portion having a thickness ratio (A / B) of 1.5 to 3 between the convex portion (A) and the concave portion (B) and increasing the internal pressure of the battery at least in a part of the concave portion. Since the detecting means for detecting the change is attached, the battery internal pressure can be detected with high accuracy without impairing the pressure resistance of the outer can.
[0035]
Furthermore, since the surface area of the outer can is increased by forming the concavo-convex portion, the heat dissipation of the battery can be improved, and the deterioration of the battery characteristics accompanying the temperature rise of the battery can be suppressed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a unit cell of a secondary battery according to the present invention.
FIG. 2 is a cross-sectional view of a unit cell according to the present invention.
FIG. 3 is a perspective view showing an assembled battery of a secondary battery according to the present invention.
FIG. 4 is a cycle characteristic diagram showing a change in battery capacity with a cycle of a secondary battery according to the present invention.
[Explanation of symbols]
1 exterior can 2 convex part 3 concave part 4 inner peripheral part 5 outer peripheral part 6 lid 7 strain sensor 8 container

Claims (1)

正極板、負極板、セパレータ及び電解液からなる発電要素を収納した電池外装缶と、前記外装缶を封口する蓋とよりなる二次電池であって、
前記外装缶の外側面に、凸部(A)と凹部(B)の厚みの比(A/B)が1.5〜3である凹凸部を形成し、少なくとも凹部の一部に電池内圧の上昇による前記電池外装缶の体積変化を検出する検出手段を取り付けたことを特徴とする二次電池。
A battery outer can containing a power generation element composed of a positive electrode plate, a negative electrode plate, a separator and an electrolyte, and a secondary battery comprising a lid for sealing the outer can,
On the outer surface of the outer can , an uneven portion having a thickness ratio (A / B) of the convex portion (A) to the concave portion (B) of 1.5 to 3 is formed, and at least a part of the concave portion has a battery internal pressure. A secondary battery comprising a detecting means for detecting a change in volume of the battery outer can due to ascending.
JP00538699A 1998-09-29 1999-01-12 Secondary battery Expired - Fee Related JP3913385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00538699A JP3913385B2 (en) 1998-09-29 1999-01-12 Secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-275889 1998-09-29
JP27588998 1998-09-29
JP00538699A JP3913385B2 (en) 1998-09-29 1999-01-12 Secondary battery

Publications (2)

Publication Number Publication Date
JP2000173676A JP2000173676A (en) 2000-06-23
JP3913385B2 true JP3913385B2 (en) 2007-05-09

Family

ID=26339314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00538699A Expired - Fee Related JP3913385B2 (en) 1998-09-29 1999-01-12 Secondary battery

Country Status (1)

Country Link
JP (1) JP3913385B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1406340B1 (en) 2001-06-05 2008-07-23 GS Yuasa Corporation Storage battery device and power source apparatus comprising it
JP4291987B2 (en) * 2002-09-20 2009-07-08 パナソニック株式会社 Sealed secondary battery and battery module
JP4721628B2 (en) * 2003-08-29 2011-07-13 トヨタ自動車株式会社 Battery case and manufacturing method thereof
JP4182451B1 (en) 2007-07-23 2008-11-19 トヨタ自動車株式会社 Assembled battery
DE102007063188A1 (en) * 2007-12-20 2009-06-25 Daimler Ag Battery and method for operating a battery
JP4580037B1 (en) * 2010-03-29 2010-11-10 エンパイア テクノロジー ディベロップメント エルエルシー Battery system and battery safety alarm system
JP4580038B1 (en) 2010-04-27 2010-11-10 エンパイア テクノロジー ディベロップメント エルエルシー Battery system and battery safety alarm system
JP5721847B2 (en) 2010-10-29 2015-05-20 エンパイア テクノロジー ディベロップメント エルエルシー Energy storage device
JP5693302B2 (en) * 2011-03-09 2015-04-01 三菱重工業株式会社 Battery system

Also Published As

Publication number Publication date
JP2000173676A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
JP2008535174A (en) Secondary battery module with piezoelectric sensor
JP3913385B2 (en) Secondary battery
US20230207893A1 (en) Three-electrode battery and energy storage system
CN110988718A (en) Test system and method for measuring expansion stress of lithium ion battery
CN112350003A (en) Single battery and expansion testing method thereof
JP3291320B2 (en) Stationary metal-hydrogen batteries
KR102470882B1 (en) Unit battery module and measuring for state of health thereof
US10020546B2 (en) Device for managing an accumulator
JPH05326027A (en) Charge control method for secondary battery
KR20210136253A (en) Method for evaluating gas generation behavior of lithium secondary batteries using strain gauges
JP4088732B2 (en) Secondary battery
US10847980B2 (en) Battery module
JPH08194037A (en) Residual capacity measuring method of alkali battery and its device
CN218385376U (en) Battery module internal pressure detection device and battery module production device
WO2023155122A1 (en) Method and apparatus for measuring electrode sheet
CN107356880B (en) Battery electric quantity detection method
TWI797812B (en) Battery detection device and method therefor
JP2964745B2 (en) Inspection methods for sealed lead-acid batteries
JPH05109436A (en) Method of detecting liquid leaking from battery
KR20210081611A (en) A pouch for analyzing the swelling characteristics of the battery cells and methods of analyzing the battery cells using the same
JPH04267078A (en) Combined battery and charging method thereof
CN114964601B (en) A pressure change real-time supervision device for inside battery
US4198594A (en) Method of charging a vented alkaline electrolyte-containing electrochemical cell
CN217405508U (en) Three-electrode battery
CN218724931U (en) Test device and test system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees