JPH0652855A - Hydrogen storage alloy electrode and manufacture thereof - Google Patents

Hydrogen storage alloy electrode and manufacture thereof

Info

Publication number
JPH0652855A
JPH0652855A JP4238645A JP23864592A JPH0652855A JP H0652855 A JPH0652855 A JP H0652855A JP 4238645 A JP4238645 A JP 4238645A JP 23864592 A JP23864592 A JP 23864592A JP H0652855 A JPH0652855 A JP H0652855A
Authority
JP
Japan
Prior art keywords
powder
hydrogen storage
storage alloy
mill
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4238645A
Other languages
Japanese (ja)
Inventor
Takahiro Imai
高広 今井
Haruo Sawa
春夫 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4238645A priority Critical patent/JPH0652855A/en
Publication of JPH0652855A publication Critical patent/JPH0652855A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve reaction activity of the surface of a hydrogen storage alloy, maintain high discharging capacity for a long duration, and improve the durability and storage property of the alloy by mixing powder of the hydrogen storage alloy and powder of another metal by a mill in sealed condition. CONSTITUTION:A powder mixed by a mill is prepared by pulverizing and mixing a mixed powder of a hydrogen storage alloy powder and a powder of at least one of other metals by a mill apparatus in sealed condition. The mixed-by-mill powder is directly press-formed on a net or a porous plate made of a metal. In this case, a viscosity increasing agent is added to the mixed-by-mill powder in a prescribed ratio and the mixed-by-mill powder is press-formed on a conductive substrate and then heating treatment at highest 1100 deg.C is carried out. Consequently, the surface of the hydrogen absorbing alloy is coated with other metals without being oxidized. As a result, with no decrease of the reaction activity of the surface of the hydrogen storage alloy, the high discharging capacity is maintained for a long duration and at the same time hydrogen absorbing alloy electrodes with high durability and excellent storage property are easily obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電池等の負極に用い
る水素吸蔵合金電極およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used for a negative electrode of a secondary battery or the like and a method for producing the same.

【0002】[0002]

【従来の技術】エネルギー密度が大きく、かつ無公害の
二次電池として、負極に水素吸蔵合金を用い、正極にニ
ッケル酸化物を用い、電解液にアルカリ水溶液を用いた
ニッケル・水素電池が開発されている。負極に用いられ
る水素吸蔵合金としては、LaNi5 、MmNi5 (M
m:ミッシュメタル)をベースとした希土類・ニッケル
系のAB5 型合金、Ti2 NiおよびTiNiをベース
としたチタン・ニッケル系合金、AB2 の組成式で表さ
れ、ラベス(Laves )相を有する合金をベースとした合
金等が用いられている。
2. Description of the Related Art A nickel-hydrogen battery using a hydrogen storage alloy for the negative electrode, nickel oxide for the positive electrode, and an alkaline aqueous solution for the electrolytic solution has been developed as a secondary battery with high energy density and no pollution. ing. As the hydrogen storage alloy used for the negative electrode, LaNi 5 , MmNi 5 (M
m: misch metal) based rare earth / nickel based AB 5 type alloy, Ti 2 Ni and TiNi based titanium / nickel based alloy, represented by the composition formula of AB 2 and has a Laves phase Alloys based on alloys are used.

【0003】一般に、水素吸蔵合金を用いた電極の製造
方法としては、水素吸蔵合金インゴットを単に空気中で
ミル装置によって粉砕し、この水素吸蔵合金粉末を増粘
剤、結着剤と共に水を媒体としてペースト化し、それを
金属製の多孔体あるいは多孔板に充填あるいは塗布し、
乾燥するペースト式製造法が採用されている。また、水
素吸蔵合金粉末を金属製網と共に焼結する焼結式製造法
も行われている。
Generally, as a method of manufacturing an electrode using a hydrogen storage alloy, a hydrogen storage alloy ingot is simply crushed by a mill device in air, and this hydrogen storage alloy powder is mixed with a thickener and a binder in water as a medium. As a paste, fill or apply it to a metal porous body or plate,
A paste-type manufacturing method of drying is adopted. In addition, a sintering type manufacturing method is also performed in which the hydrogen storage alloy powder is sintered together with a metal net.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
方法により得られた水素吸蔵合金粉末は比較的活性が低
く、これを用いて製造した水素吸蔵合金電極は比較的放
電容量が低い。このため、最大の放電容量を示すまでに
充放電を多数回繰り返す必要がある。さらに、その水素
吸蔵合金粉末は、長期間保存すると放電容量が低下する
という問題もある。このような問題は、主に水素吸蔵合
金インゴットをミル装置により粉砕する時や、さらには
水素吸蔵合金粉末製造後の保存時に粉末粒子の表面に、
その成分元素であるLa、Ti、Zr等の安定した酸化
膜が生成し、これが電極反応を阻害することによると考
えられている。
However, the hydrogen storage alloy powder obtained by the conventional method has a relatively low activity, and the hydrogen storage alloy electrode produced by using the powder has a relatively low discharge capacity. For this reason, it is necessary to repeat charging and discharging a number of times until the maximum discharge capacity is exhibited. Further, the hydrogen storage alloy powder has a problem that the discharge capacity decreases when it is stored for a long period of time. Such a problem is mainly when crushing the hydrogen storage alloy ingot by a mill device, and further on the surface of the powder particles during storage after the hydrogen storage alloy powder is manufactured,
It is considered that a stable oxide film of La, Ti, Zr, etc., which are the constituent elements, is generated and this inhibits the electrode reaction.

【0005】また、従来のペースト式極板製造法は、増
粘剤、結着剤等の有機高分子を用いるので、これが水素
吸蔵合金の表面を覆ってしまう。このため、水素吸蔵合
金の表面における反応活性がさらに低下するという問題
がある。特に、水を媒体としてペーストを作製する場合
に用いられるカルボキシルメチルセルロース(CMC)
等の増粘剤は、親水性、保水性が高く、水素吸蔵合金の
表面を一様に濡らす作用を有するので、表面に被着した
CMCが負極(水素吸蔵合金電極)における酸素ガスの
還元吸収反応、あるいは水素ガスの吸収を妨げる。この
結果、過充電時の電池内圧の上昇につながる。さらに、
このようなペースト式製造法では、増粘剤や結着剤等を
含有させる分だけ水素吸蔵合金の充填量を低下させなけ
ればならないという問題もある。
Further, since the conventional paste-type electrode plate manufacturing method uses an organic polymer such as a thickener and a binder, it covers the surface of the hydrogen storage alloy. Therefore, there is a problem that the reaction activity on the surface of the hydrogen storage alloy is further reduced. In particular, carboxymethyl cellulose (CMC) used when preparing a paste using water as a medium
Thickeners such as have high hydrophilicity and water retention and have an effect of uniformly wetting the surface of the hydrogen storage alloy, so that CMC adhered to the surface reduces and absorbs oxygen gas in the negative electrode (hydrogen storage alloy electrode). Prevents reaction or absorption of hydrogen gas. As a result, the internal pressure of the battery rises during overcharging. further,
In such a paste-type manufacturing method, there is also a problem that the filling amount of the hydrogen storage alloy must be reduced by the amount of the thickening agent, the binder, etc. contained.

【0006】一方、焼結式製造法は、活物質以外の成分
の体積占有を極力抑えることができる。しかし、真空
下、あるいは還元雰囲気下において1100℃程度の熱
処理を必要とするため、電極製造設備が複雑となる。ま
た、高温での熱処理の際に、水素吸蔵合金の表面が酸化
等により汚染する。この表面の汚染により、水素吸蔵合
金の表面の反応活性が低下してしまう。
On the other hand, the sintering type manufacturing method can suppress the volume occupation of components other than the active material as much as possible. However, since a heat treatment of about 1100 ° C. is required under vacuum or in a reducing atmosphere, the electrode manufacturing equipment becomes complicated. Further, during the heat treatment at high temperature, the surface of the hydrogen storage alloy is contaminated by oxidation or the like. Due to this surface contamination, the reaction activity of the surface of the hydrogen storage alloy is reduced.

【0007】本発明はかかる点に鑑みてなされたもので
あり、水素吸蔵合金表面の反応活性を向上させ、長期間
にわたって高い放電容量を維持でき、しかも耐久性、保
存性に優れた水素吸蔵合金電極およびそれを簡易に得る
ことができる水素吸蔵合金電極の製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above points, and it is possible to improve the reaction activity of the surface of a hydrogen storage alloy, maintain a high discharge capacity for a long period of time, and further, have excellent durability and storability. It is an object of the present invention to provide an electrode and a method for manufacturing a hydrogen storage alloy electrode that can easily obtain the electrode.

【0008】[0008]

【課題を解決するための手段】本発明は、水素吸蔵合金
粉末と少なくとも1種の他の金属の粉末とを混合して混
合粉末を得る工程、前記混合粉末を密閉系のミル装置に
おいて粉砕混合することによりミル混合粉末を作製する
工程、前記ミル混合粉末を用いて水素吸蔵合金を得る工
程とを具備することを特徴とする水素吸蔵合金電極の製
造方法を提供する。
According to the present invention, there is provided a step of mixing a hydrogen storage alloy powder and a powder of at least one other metal to obtain a mixed powder, and pulverizing and mixing the mixed powder in a closed mill device. A method for producing a hydrogen storage alloy electrode, comprising the steps of producing a mill mixed powder by performing the above, and a step of obtaining a hydrogen storage alloy using the mill mixed powder.

【0009】また、本発明は、水素吸蔵合金粉末と少な
くとも1種の他の金属の粉末とを混合して混合粉末を得
る工程、前記混合粉末を密閉系のミル装置において粉砕
混合することによりミル混合粉末を作製する工程、前記
ミル混合粉末を導電性基板に直接加圧成形して水素吸蔵
合金を得る工程とを具備することを特徴とする水素吸蔵
合金電極の製造方法を提供する。
Further, according to the present invention, a step of mixing a hydrogen storage alloy powder and a powder of at least one other metal to obtain a mixed powder, and pulverizing and mixing the mixed powder in a closed mill device for milling A method for producing a hydrogen storage alloy electrode, comprising: a step of producing a mixed powder; and a step of directly press-molding the mill mixed powder on a conductive substrate to obtain a hydrogen storage alloy.

【0010】また、本発明は、導電性基板と、前記導電
性基板に直接加圧成形され、水素吸蔵合金粉末と少なく
とも1種の他の金属の粉末とを混合してなる混合粉末と
を具備し、前記混合粉末は密閉系のミル装置において粉
砕混合することにより得られたものである水素吸蔵合金
電極を提供する。
Further, the present invention comprises a conductive substrate and a mixed powder which is directly pressure-molded on the conductive substrate and which is obtained by mixing the hydrogen storage alloy powder and the powder of at least one other metal. Then, the mixed powder is obtained by crushing and mixing in a closed mill device to provide a hydrogen storage alloy electrode.

【0011】本発明において使用される水素吸蔵合金と
しては、希土類・ニッケル系AB5型合金、チタン・ニ
ッケル系合金、ジルコニウム・ニッケル系合金、ジルコ
ニウム基Laves 相合金、下記の組成式を有するZr−V
−Ni擬二次ラベス相系合金等を用いることができる。
The hydrogen storage alloy used in the present invention includes rare earth / nickel AB 5 type alloys, titanium / nickel alloys, zirconium / nickel alloys, zirconium-based Laves phase alloys, and Zr- having the following composition formula: V
A -Ni pseudo-secondary Laves phase-based alloy or the like can be used.

【0012】 Zr1-a Tia (V0.33+xNi0.67-x-bb 2+c 式中、 0≦a≦0.7、−0.05<x<0.07、0<b≦
0.4、0≦c≦1、A=Fe、Co、Mn なお、水素吸蔵合金粉末は、平均粒径が1μm程度のも
のでもよいし、平均粒径が1〜数mm程度の粗粒であって
もよい。粗粒を用いることにより粉砕工程での水素吸蔵
合金の酸化がよりいっそう抑えられるので、さらに活性
の向上した水素吸蔵合金電極を得ることができる。
[0012] Zr 1-a Ti a (V 0.33 + x Ni 0.67-xb A b) in 2 + c equation, 0 ≦ a ≦ 0.7, -0.05 <x <0.07,0 <b ≦
0.4, 0 ≦ c ≦ 1, A = Fe, Co, Mn The hydrogen storage alloy powder may have an average particle size of about 1 μm, or may be a coarse particle having an average particle size of about 1 to several mm. It may be. Oxidation of the hydrogen storage alloy in the pulverization step can be further suppressed by using coarse particles, so that a hydrogen storage alloy electrode with further improved activity can be obtained.

【0013】また、他の金属としては、銅、ニッケル、
コバルト、アルミニウム、銀、パラジウム、金、白金、
錫、アンチモン等を用いることができる。この金属の形
態は、平均粒径0.1μm程度の粉末でもよいし、平均
粒径1〜数mm程度の粗粒であってもよい。
Other metals include copper, nickel,
Cobalt, aluminum, silver, palladium, gold, platinum,
Tin, antimony, etc. can be used. The metal may be in the form of powder having an average particle diameter of about 0.1 μm or coarse particles having an average particle diameter of about 1 to several mm.

【0014】本発明において使用される密閉系のミル装
置としては、ステンレス製のボールミル、アトライター
等を用いることができる。
As the closed mill device used in the present invention, a stainless steel ball mill, an attritor or the like can be used.

【0015】ミル混合粉末に加える結着剤としては、ポ
リテトラフルオロエチレン粉末またはポリフッ化ビニリ
デン粉末等を用いることができる。また、ミル混合粉末
に加える結着剤の量は、1.5重量%以下であることが
好ましい。これは、結着剤の量が1.5重量%を超える
と電極板に対する合金粉末の充填量が少なくなるからで
ある。
As the binder to be added to the mill mixed powder, polytetrafluoroethylene powder, polyvinylidene fluoride powder or the like can be used. Further, the amount of the binder added to the mill mixed powder is preferably 1.5% by weight or less. This is because when the amount of the binder exceeds 1.5% by weight, the filling amount of the alloy powder in the electrode plate becomes small.

【0016】本発明において、導電性基板としては、金
属製の網、多孔板、発泡金属材等を用いることができ
る。
In the present invention, a metal net, a perforated plate, a foam metal material or the like can be used as the conductive substrate.

【0017】本発明において、得られる水素吸蔵合金電
極の強度を向上させるために加圧成形後に1100℃以
下の加熱処理を行うことが好ましい。これは、加熱温度
が1100℃を超えると水素吸蔵合金表面に被覆された
金属が内部に拡散してしまったり、系内の不純酸素によ
る著しい酸化が起こるからである。
In the present invention, in order to improve the strength of the hydrogen storage alloy electrode obtained, it is preferable to carry out a heat treatment at 1100 ° C. or lower after the pressure molding. This is because when the heating temperature exceeds 1100 ° C., the metal coated on the surface of the hydrogen storage alloy diffuses into the inside, or remarkable oxidation due to impure oxygen in the system occurs.

【0018】[0018]

【作用】本発明において、水素吸蔵合金粉末粒子表面に
生成した酸化膜は、混合粉末をミル装置によりミル混合
する際に、ミル混合の機械的衝撃により破壊または剥離
される。このとき、加えられた金属の粉末粒子が水素吸
蔵合金粉末粒子に強く圧着されるので、酸化膜の代わり
に水素吸蔵合金粉末粒子表面の少なくとも一部に金属が
被覆される。このようにして得られたミル混合粉末は、
その表面の少なくとも一部に金属が被覆されているの
で、水素吸蔵合金の酸化が防止される。このため、長期
の保存が可能となる。また、ミル混合粉末を用いて得ら
れた水素吸蔵合金電極は、少ない充放電サイクルで高い
放電容量を示す。なお、平均粒径が1〜数mm程度の水素
吸蔵合金の粗粒は、その粉末に比べて表面積が小さいの
で、空気酸化されることが少ない。このため、活性の高
いミル処理混合粉末を得ることができる。
In the present invention, the oxide film formed on the surface of the hydrogen storage alloy powder particles is broken or peeled by the mechanical impact of the mill mixing when the mixed powder is mill-mixed by the mill device. At this time, since the added powder particles of the metal are strongly pressed against the hydrogen storage alloy powder particles, at least a part of the surface of the hydrogen storage alloy powder particles is coated with the metal instead of the oxide film. The mill mixed powder thus obtained is
Since the metal is coated on at least a part of the surface, the hydrogen storage alloy is prevented from being oxidized. Therefore, long-term storage is possible. Further, the hydrogen storage alloy electrode obtained by using the mill-mixed powder shows a high discharge capacity in a few charge / discharge cycles. It should be noted that coarse particles of the hydrogen storage alloy having an average particle diameter of about 1 to several mm have a smaller surface area than the powder, and thus are less likely to be oxidized by air. Therefore, a highly active milled mixed powder can be obtained.

【0019】また、本発明においては、乳鉢等で行う開
放系ではなく、密閉系でミル混合を行うので、水素吸蔵
合金粉末粒子から酸化膜が剥離して金属が被覆される間
の水素吸蔵合金粉末粒子の酸化を抑制することができ
る。このため、水素吸蔵合金粉末粒子表面の活性を向上
させることができる。このため、このミル混合粉末を用
いた水素吸蔵合金電極は高い放電容量を示す。また、ミ
ル混合を密閉系で行うことにより水素吸蔵合金粉末の酸
化量の制御も行うことができる。
Further, in the present invention, since the mill mixing is performed in a closed system, not in an open system performed in a mortar or the like, the hydrogen storage alloy is formed while the oxide film is peeled off from the hydrogen storage alloy powder particles and coated with the metal. Oxidation of powder particles can be suppressed. Therefore, the activity of the hydrogen storage alloy powder particle surface can be improved. Therefore, the hydrogen storage alloy electrode using this mill mixed powder exhibits a high discharge capacity. Further, by performing the mill mixing in a closed system, the amount of oxidation of the hydrogen storage alloy powder can be controlled.

【0020】一般に、水素吸蔵合金は硬度が高いため、
加圧により他の材料に圧着する性質(圧着性)が乏し
い。したがって、無処理の水素吸蔵合金粉末のみを導電
性基板に加圧成形して電極シートを作製することは困難
である。そのため、従来の焼結式製法においては、加圧
成形すると共に1100℃程度の加熱処理を施さなけれ
ばならない。
Generally, hydrogen storage alloys have high hardness,
Poor property of crimping to other materials by pressure (crimpability). Therefore, it is difficult to produce an electrode sheet by pressure-molding only a non-treated hydrogen storage alloy powder on a conductive substrate. Therefore, in the conventional sintering-type manufacturing method, it is necessary to perform pressure molding and heat treatment at about 1100 ° C.

【0021】一方、上記のように表面に展性の高い金属
が被覆された水素吸蔵合金粒子は、圧着性が良くなるの
で、それに直接加圧成形を施すことによりかなり強度の
高い電極シートを得ることができる。この場合でも、さ
らに電極シートの強度を高めるためには加熱処理を施す
ことが好ましいが、表面が金属により被覆され、かつ粒
径の小さい粒子は、表面エネルギーが高いために、比較
的低温でも合金粒子間の結合が充分に起こる。また、ホ
ットプレス処理を施すことによって、より効果的に強度
の高い電極シートを作製することができる。
On the other hand, as described above, the hydrogen storage alloy particles whose surface is coated with a highly malleable metal have a good pressure-bonding property. Therefore, by directly press-molding the hydrogen-absorbing alloy particles, an electrode sheet having a considerably high strength is obtained. be able to. Even in this case, it is preferable to perform a heat treatment in order to further increase the strength of the electrode sheet, but particles whose surface is covered with a metal and whose particle size is small have a high surface energy, so that the alloy can be used even at a relatively low temperature. Bonding between particles occurs sufficiently. Further, by performing hot press treatment, an electrode sheet having high strength can be produced more effectively.

【0022】1100℃以下での加熱処理では酸化速度
が小さくなるために水素吸蔵合金表面の酸化汚染を抑え
ることができる。また、ニッケル酸化物、銅酸化物等の
金属酸化物は、アルカリ電解液中で電気化学的に容易に
還元されるので、たとえ表面の酸化汚染が起こったとし
ても電極充電時にもとの単体金属に戻る。したがって、
特に、ニッケル、銅等で覆われた水素吸蔵合金粉末は、
加熱時の酸化汚染による反応活性の低下が少ない。ただ
し、1100℃より高温での加熱は表面のニッケル、銅
等の被覆金属が内部に拡散合金化してしまうので好まし
くない。
The heat treatment at a temperature of 1100 ° C. or lower reduces the oxidation rate, so that the oxidation contamination of the surface of the hydrogen storage alloy can be suppressed. Also, metal oxides such as nickel oxide and copper oxide are easily electrochemically reduced in an alkaline electrolyte, so even if oxidative contamination of the surface occurs, the original elemental metal is charged when the electrode is charged. Return to. Therefore,
In particular, the hydrogen storage alloy powder covered with nickel, copper, etc.
Little decrease in reaction activity due to oxidative contamination during heating. However, heating at a temperature higher than 1100 ° C. is not preferable because the coating metal such as nickel and copper on the surface becomes a diffusion alloy inside.

【0023】また、水素吸蔵合金粉末にポリテトラフル
オロエチレン(以下、PTFEと省略する)、ポリフッ
化ビニリデン(PDVF)等の結着性高分子の粉末をあ
らかじめ混合し、この混合粉末を加圧成形することによ
っても、電極シートの強度を高めることができる。この
とき、ミル装置を用いた粉砕混合を採用すれば、混合粉
末の圧着性が高いために1.5重量%以下の少量の添加
でも充分な強度が得られるので、結着剤による体積占有
を低く抑えられる。
Further, a binder polymer powder such as polytetrafluoroethylene (hereinafter abbreviated as PTFE) or polyvinylidene fluoride (PDVF) is mixed in advance with the hydrogen storage alloy powder, and this mixed powder is pressure-molded. Also by doing so, the strength of the electrode sheet can be increased. At this time, if pulverization and mixing using a mill device is adopted, since the pressure-bonding property of the mixed powder is high, sufficient strength can be obtained even with the addition of a small amount of 1.5 wt% or less, so that the volume occupation by the binder is prevented. It can be kept low.

【0024】[0024]

【実施例】以下、本発明の実施例を具体的に説明する。EXAMPLES Examples of the present invention will be specifically described below.

【0025】実施例1 Zrを含むラベス相合金であるZr0.9 Ti0.1 (V
0.33Ni0.51Co0.08Mn0.082.4 合金のインゴット
をあらかじめ平均粒径1mm程度まで粉砕してなる水素吸
蔵合金粉末20gと、平均粒径0.3μmのニッケル粉
末2.8gとを混合して混合粉末を得て、その混合粉末
をステンレス製ボールミルにより空気中で1時間ミル混
合して、水素吸蔵合金とニッケルのミル混合粉末を作製
した。このミル混合粉末は粒径63μm以下であり、水
素吸蔵合金の表面の少なくとも一部はニッケルにより被
覆されていた。
Example 1 Zr 0.9 Ti 0.1 (V which is a Laves phase alloy containing Zr
0.33 Ni 0.51 Co 0.08 Mn 0.08 ) 2.4 alloy ingots crushed to an average particle size of about 1 mm in advance, 20 g of hydrogen storage alloy powder, and 2.8 g of nickel powder having an average particle size of 0.3 μm are mixed and mixed powder Then, the mixed powder was mill-mixed for 1 hour in air with a stainless ball mill to prepare a mill mixed powder of hydrogen storage alloy and nickel. This mill mixed powder had a particle size of 63 μm or less, and at least a part of the surface of the hydrogen storage alloy was covered with nickel.

【0026】このミル混合粉末0.97gに0.3gの
ポリテトラフルオロエチレン粉末を添加・混合し、その
後、これを多孔性ニッケル板に充填し、圧力3t/cm2
で加圧成形して直径20mmの円盤型の水素吸蔵合金電極
(実施例1)を作製した。
0.3g of polytetrafluoroethylene powder was added and mixed to 0.97g of this mill mixed powder, and then this was filled in a porous nickel plate and the pressure was 3t / cm 2.
Then, a disk-shaped hydrogen storage alloy electrode (Example 1) having a diameter of 20 mm was produced by pressure molding.

【0027】実施例2 ミル混合の時間を5時間にすること以外は実施例1と同
様にして水素吸蔵合金とニッケルのミル混合粉末を作製
した。このミル混合粉末を用い、実施例1と同様にして
水素吸蔵合金電極(実施例2)を作製した。
Example 2 A mill mixed powder of a hydrogen storage alloy and nickel was prepared in the same manner as in Example 1 except that the mill mixing time was 5 hours. Using this mill mixed powder, a hydrogen storage alloy electrode (Example 2) was prepared in the same manner as in Example 1.

【0028】実施例3 実施例1において使用した水素吸蔵合金粉末20gと、
平均粒径0.8〜1.2μmの銅粉末2.8gとを混合
して混合粉末を得て、その混合粉末をステンレス製ボー
ルミルにより空気中で1時間ミル混合して、水素吸蔵合
金と銅のミル混合粉末を作製した。このミル混合粉末は
平均粒径63μmであり、水素吸蔵合金の表面の少なく
とも一部は銅により被覆されていた。このミル混合粉末
を用い、実施例1と同様にして水素吸蔵合金電極(実施
例3)を作製した。
Example 3 20 g of hydrogen storage alloy powder used in Example 1,
A mixed powder was obtained by mixing with 2.8 g of copper powder having an average particle size of 0.8 to 1.2 μm, and the mixed powder was mill-mixed for 1 hour in air with a stainless ball mill to obtain a hydrogen storage alloy and copper. The mill mixed powder of This mill-mixed powder had an average particle size of 63 μm, and at least a part of the surface of the hydrogen storage alloy was covered with copper. Using this mill mixed powder, a hydrogen storage alloy electrode (Example 3) was produced in the same manner as in Example 1.

【0029】実施例4 ミル混合の時間を5時間にすること以外は実施例1と同
様にして水素吸蔵合金と銅のミル混合粉末を作製した。
このミル混合粉末を用い、実施例1と同様にして水素吸
蔵合金電極(実施例4)を作製した。
Example 4 A mill mixed powder of a hydrogen storage alloy and copper was produced in the same manner as in Example 1 except that the time of mill mixing was 5 hours.
Using this mill mixed powder, a hydrogen storage alloy electrode (Example 4) was produced in the same manner as in Example 1.

【0030】従来例1 実施例1において使用した水素吸蔵合金粉末20gをス
テンレス製ボールミルにより空気中で1時間ミル粉砕
し、平均粒径63μm以下の水素吸蔵合金粉末を作製
し、これに平均粒径0.2μmのニッケル粉末2.8g
を混合し、これをスチロール瓶に入れ、瓶中で振とうし
て水素吸蔵合金とニッケルの混合粉末を作製した。この
混合粉末を用い、実施例1と同様にして水素吸蔵合金電
極(従来例)を作製した。
Conventional Example 1 20 g of the hydrogen storage alloy powder used in Example 1 was milled in a stainless ball mill in air for 1 hour to prepare a hydrogen storage alloy powder having an average particle size of 63 μm or less. 2.8 g of 0.2 μm nickel powder
Was mixed, put in a styrene bottle, and shaken in the bottle to prepare a mixed powder of hydrogen storage alloy and nickel. Using this mixed powder, a hydrogen storage alloy electrode (conventional example) was produced in the same manner as in Example 1.

【0031】比較例1〜4 ボールミルの代わりに乳鉢を用いて粉砕混合すること以
外は実施例1〜4と同様にしてそれぞれのミル混合粉末
を作製した。この混合粉末を用い、実施例1と同様にし
て水素吸蔵合金電極(比較例1〜4)を作製した。
Comparative Examples 1 to 4 Mill mixed powders were produced in the same manner as in Examples 1 to 4 except that a mortar was used instead of the ball mill for pulverization and mixing. Using this mixed powder, hydrogen storage alloy electrodes (Comparative Examples 1 to 4) were produced in the same manner as in Example 1.

【0032】得られた実施例1〜4、比較例1〜4、お
よび従来例1の水素吸蔵合金電極について、それ最大放
電容量、サイクル数と放電容量との関係を調べた。その
結果を図1および2に示す。なお、最大放電容量は、水
素吸蔵合金電極にリード線を取り付けて負極とし、これ
を30重量%−水酸化カリウム電解液中に浸漬し、ニッ
ケル板を対極として配置してセルを構成し、次いで、水
素吸蔵合金1g当たり70mAの電流で充放電反復を行
うことにより測定した。このときの放電終止電位を−
0.75V vs Hg/HgO、充電時間は放電時間の
1.3倍とした。
With respect to the obtained hydrogen storage alloy electrodes of Examples 1 to 4, Comparative Examples 1 to 4 and Conventional Example 1, the maximum discharge capacity, and the relationship between the number of cycles and the discharge capacity were examined. The results are shown in FIGS. 1 and 2. The maximum discharge capacity was determined by attaching a lead wire to a hydrogen storage alloy electrode as a negative electrode, immersing this in a 30 wt% -potassium hydroxide electrolyte, arranging a nickel plate as a counter electrode to form a cell, and , Was measured by repeating charge and discharge at a current of 70 mA per gram of hydrogen storage alloy. The discharge end potential at this time is −
The charging time was 0.75 V vs. Hg / HgO and 1.3 times the discharging time.

【0033】図1および2から明らかなように、本発明
の方法により得られたの水素吸蔵合金電極(実施例1〜
4)は、いずれも従来の方法により得られた水素吸蔵合
金電極(従来例1)よりも著しく高い放電容量を有する
ものであった。また、従来例のの水素吸蔵合金電極で
は、最大放電容量に達するまでに40サイクル以上を要
したのに対して、実施例1〜4の水素吸蔵合金電極は、
わずか10サイクル未満で最大放電容量に達した。
As is apparent from FIGS. 1 and 2, the hydrogen storage alloy electrodes obtained by the method of the present invention (Examples 1 to 1)
All of 4) had a discharge capacity significantly higher than that of the hydrogen storage alloy electrode (conventional example 1) obtained by the conventional method. Further, in the hydrogen storage alloy electrode of the conventional example, it took 40 cycles or more to reach the maximum discharge capacity, whereas the hydrogen storage alloy electrodes of Examples 1 to 4
Maximum discharge capacity was reached in less than 10 cycles.

【0034】また、図1から分かるように、実施例1お
よび2の水素吸蔵合金電極は、比較例1および2の水素
吸蔵合金電極よりも少ないサイクル数で最大放電容量に
達し、かつ、大きい放電容量を示した。同様に、図2か
ら分かるように、実施例3および4の水素吸蔵合金電極
は、比較例3および4の水素吸蔵合金電極よりも少ない
サイクル数で最大放電容量に達し、かつ、大きい放電容
量を示した。
Further, as can be seen from FIG. 1, the hydrogen storage alloy electrodes of Examples 1 and 2 reach the maximum discharge capacity in a smaller number of cycles than the hydrogen storage alloy electrodes of Comparative Examples 1 and 2, and have a large discharge capacity. The capacity is indicated. Similarly, as can be seen from FIG. 2, the hydrogen storage alloy electrodes of Examples 3 and 4 reach the maximum discharge capacity in a smaller number of cycles and have a larger discharge capacity than the hydrogen storage alloy electrodes of Comparative Examples 3 and 4. Indicated.

【0035】これから明らかなように、本発明の方法に
より得られる水素吸蔵合金粉末は、その表面の酸化膜が
ミル混合の際に除去され、これに代わって銅、ニッケル
等の他の金属により被覆されるので、水素吸蔵合金の活
性が著しく向上する。
As is clear from the above, the hydrogen storage alloy powder obtained by the method of the present invention has the oxide film on its surface removed during mill mixing, and instead is coated with another metal such as copper or nickel. Therefore, the activity of the hydrogen storage alloy is remarkably improved.

【0036】したがって、このミル混合粉末を用いた本
発明の水素吸蔵合金電極は、従来の水素吸蔵合金電極に
比べ、初めから放電容量が大きく、最大放電容量に達す
るまでに要する充放電サイクル数を著しく軽減できる。
また、本実施例において、ミル混合の時間が長いと、よ
り水素吸蔵合金の活性の向上と放電容量の増大させるこ
とが判る。
Therefore, the hydrogen storage alloy electrode of the present invention using this mill mixed powder has a large discharge capacity from the beginning as compared with the conventional hydrogen storage alloy electrode, and the number of charge / discharge cycles required to reach the maximum discharge capacity is increased. It can be significantly reduced.
In addition, in this example, it can be seen that when the mill mixing time is long, the activity of the hydrogen storage alloy is improved and the discharge capacity is increased.

【0037】さらに、上記実施例と同じ方法で水素吸蔵
合金粉末に、コバルト粉末単独、コバルト粉末とニッケ
ル粉末、コバルト粉末と銅粉末、並びにニッケル粉末、
コバルト粉末および銅粉末をそれぞれ添加・混合して混
合粉末を得て、その混合粉末をミル混合した4種類のミ
ル混合粉末を作製し、それぞれを用いて水素吸蔵合金電
極を製造したものについて、上記と同様に最大放電容量
および充放電サイクルを調べたところ、図1および図2
に示す結果と同じであった。
Further, in the same manner as in the above embodiment, the hydrogen storage alloy powder was mixed with cobalt powder alone, cobalt powder and nickel powder, cobalt powder and copper powder, and nickel powder,
Cobalt powder and copper powder were respectively added and mixed to obtain a mixed powder, and the mixed powder was mill-mixed to prepare four types of mill mixed powders, each of which was used to manufacture a hydrogen storage alloy electrode. When the maximum discharge capacity and the charge / discharge cycle were examined in the same manner as in FIG.
The result was the same as that shown in.

【0038】また、実施例1〜4、比較例1〜4、およ
び従来例1において得られた水素吸蔵合金電極を負極と
し、公知のペースト式ニッケル極(容量1300mAh
-1)を正極とし、さらにセパレータを組み合わせてA
Aサイズの電池をそれぞれ作製した。この場合、負極
は、各混合粉末とポリテトラフルオロエチレン粉末とを
重量比99.5:0.5の割合で混練し、それを圧延し
てシートを成形し、これとニッケル製の網とを合わせて
さらに圧延し、所定の寸法に裁断することにより作製し
た。
Further, the hydrogen storage alloy electrodes obtained in Examples 1 to 4, Comparative Examples 1 to 4 and Conventional Example 1 were used as negative electrodes, and known paste type nickel electrodes (capacity 1300 mAh) were used.
g -1 ) is used as a positive electrode, and a separator is further combined to
Each A-size battery was manufactured. In this case, in the negative electrode, each mixed powder and polytetrafluoroethylene powder were kneaded at a weight ratio of 99.5: 0.5, and the mixture was rolled to form a sheet. It was produced by further rolling together and cutting into a predetermined size.

【0039】これらの電池について、0.2C(260
mA)の電流で充放電反復を繰り返した。このとき、充
電は設計容量(ニッケル極容量の1300mAhg-1
の150%とし、放電終止電圧は1.00Vとした。こ
のときの各電池の充放電反復初期のサイクル数と電池放
電容量との関係を調べた。その結果は図3および4に示
した通りである。
For these batteries, 0.2C (260
The charge / discharge cycle was repeated at a current of mA). At this time, charging is designed capacity (1300 mAhg -1 of nickel pole capacity)
And the final discharge voltage was 1.00V. At this time, the relationship between the number of cycles at the initial charge / discharge repetition of each battery and the battery discharge capacity was examined. The results are shown in FIGS. 3 and 4.

【0040】図3および4から明らかなように、実施例
1〜4の水素吸蔵合金電極を用いた電池は、初期の放電
容量が大きく、20サイクル以内で設計容量の1300
mAhg-1の放電容量に到達した。これに対して従来例
1の水素吸蔵合金電極を用いた電池は、充放電サイクル
数に伴う放電容量の上昇が極めて緩慢で、40サイクル
程度の反復でも100mAhg-1程度のわずかな放電容
量しか示さなかった。
As is clear from FIGS. 3 and 4, the batteries using the hydrogen storage alloy electrodes of Examples 1 to 4 had a large initial discharge capacity, and the designed capacity was 1300 within 20 cycles.
The discharge capacity of mAhg -1 was reached. On the other hand, the battery using the hydrogen storage alloy electrode of Conventional Example 1 shows an extremely slow increase in the discharge capacity with the number of charge / discharge cycles, and shows only a slight discharge capacity of about 100 mAhg −1 even after repeating about 40 cycles. There wasn't.

【0041】また、比較例1〜4の水素吸蔵合金電極を
用いた電池は、従来例1の水素吸蔵合金電極を用いた電
池よりも初期の放電容量は大きいが、実施例1〜4の水
素吸蔵合金電極を用いた電池よりはかなり小さい放電容
量しか得られず、設計容量の1300mAhg-1には到
達しなかった。
Further, the batteries using the hydrogen storage alloy electrodes of Comparative Examples 1 to 4 had a larger initial discharge capacity than the batteries using the hydrogen storage alloy electrode of Conventional Example 1, but the hydrogen of Examples 1 to 4 was used. The discharge capacity was much smaller than that of the battery using the occlusion alloy electrode, and the design capacity of 1300 mAhg -1 was not reached.

【0042】また、水素吸蔵合金としてラベス相合金で
あるZr0.9 Ti0.1 (V0.33Ni0.51Fe0.08Mn
0.082.4 を用いて上記と同様に電池を作製し、充放電
反復初期のサイクル数と電池放電容量との関係を調べた
ところ、上記と同様に初期の放電容量が大きく、20サ
イクル以内で設計容量の1300mAhg-1の放電容量
に到達したことが確認された。
As a hydrogen storage alloy, Zr 0.9 Ti 0.1 (V 0.33 Ni 0.51 Fe 0.08 Mn) which is a Laves phase alloy.
0.08 ) Using 2.4 , a battery was manufactured in the same manner as above, and the relationship between the number of cycles at the initial charging / discharging cycle and the battery discharge capacity was examined. As a result, the initial discharge capacity was large, and the battery was designed within 20 cycles. It was confirmed that the discharge capacity of 1300 mAhg -1 was reached.

【0043】実施例5 ミッシュメタル・ニッケル系合金であるMm4.0 Co
0.5 Al0.5 合金のインゴットを平均粒径1mm程度まで
粉砕してなる水素吸蔵合金粉末20gと、平均粒径0.
2μmのニッケル粉末2.8gとを混合して混合粉末を
得て、その混合粉末をステンレス製ボールミルにより空
気中で1時間ミル混合して、水素吸蔵合金とニッケルの
ミル混合粉末を作製した。
Example 5 Mm 4.0 Co which is a misch metal-nickel alloy
20 g of hydrogen storage alloy powder obtained by crushing an ingot of 0.5 Al 0.5 alloy to an average particle size of about 1 mm and an average particle size of 0.
2.8 g of 2 μm nickel powder was mixed to obtain a mixed powder, and the mixed powder was mill-mixed for 1 hour in the air by a stainless ball mill to prepare a mill mixed powder of hydrogen storage alloy and nickel.

【0044】このミル混合粉末0.97gに0.3gの
ポリテトラフルオロエチレン粉末を添加・混合し、その
後、これを多孔性ニッケル板に充填し、圧力3t/cm2
で加圧成形して直径20mmの円盤型の水素吸蔵合金電極
(実施例5)を作製した。
0.3 g of polytetrafluoroethylene powder was added to and mixed with 0.97 g of this mill mixed powder, and then this was filled in a porous nickel plate and the pressure was 3 t / cm 2.
Was pressed and formed into a disk-shaped hydrogen storage alloy electrode (Example 5) having a diameter of 20 mm.

【0045】実施例6 実施例5において使用した水素吸蔵合金粉末20gと、
平均粒径0.2μmのニッケル粉末1gと、平均粒径
1.2〜1.5μmのコバルト粉末1.8gとを混合し
て混合粉末を得て、その混合粉末をステンレス製ボール
ミルにより空気中で1時間ミル混合して、水素吸蔵合
金、ニッケル、およびコバルトのミル混合粉末を作製し
た。このミル混合粉末を用い、実施例1と同様にして水
素吸蔵合金電極(実施例6)を作製した。
Example 6 20 g of the hydrogen storage alloy powder used in Example 5,
1 g of nickel powder having an average particle diameter of 0.2 μm and 1.8 g of cobalt powder having an average particle diameter of 1.2 to 1.5 μm are mixed to obtain a mixed powder, and the mixed powder is in air by a stainless ball mill. The mixture was mill-mixed for 1 hour to prepare a mill-mixed powder of hydrogen storage alloy, nickel, and cobalt. Using this mill mixed powder, a hydrogen storage alloy electrode (Example 6) was produced in the same manner as in Example 1.

【0046】従来例2 実施例5において使用した平均粒径1mm程度の水素吸蔵
合金粉末を単独でボールミルにより空気中で1時間ミル
粉砕し、平均粒径63μm以下の水素吸蔵合金粉末を得
て、これに平均粒径0.2μmのニッケル粉末を2.8
g添加し、これをスチロール瓶に入れ、瓶中で振とうし
て水素吸蔵合金とニッケルの混合粉末を作製した。この
混合粉末を用い、実施例1と同様にして水素吸蔵合金電
極(従来例2)を作製した。
Conventional Example 2 The hydrogen-absorbing alloy powder used in Example 5 having an average particle size of about 1 mm was milled in a ball mill for 1 hour in air to obtain a hydrogen-absorbing alloy powder having an average particle size of 63 μm or less. 2.8 nickel powder with an average particle size of 0.2 μm was added to this.
g was added, and this was put in a styrene bottle and shaken in the bottle to prepare a mixed powder of a hydrogen storage alloy and nickel. Using this mixed powder, a hydrogen storage alloy electrode (conventional example 2) was produced in the same manner as in Example 1.

【0047】得られた実施例5,6および従来例2の水
素吸蔵合金電極について上記と同様の方法により最大放
電容量、サイクル数と放電容量との関係を調べた。その
結果は図5に示す通りとなる。
With respect to the obtained hydrogen storage alloy electrodes of Examples 5 and 6 and Conventional Example 2, the relationship between the maximum discharge capacity, the number of cycles and the discharge capacity was examined by the same method as described above. The result is as shown in FIG.

【0048】図5から明らかなように、本発明の方法に
より得られた水素吸蔵合金電極(実施例5,6)は、そ
の放電容量が250〜260mAhg-1で維持されてい
るのに対し、従来の方法により得られた水素吸蔵合金電
極(従来例2)は、放電容量が230mAhg-1とかな
り低かった。
As is apparent from FIG. 5, the hydrogen storage alloy electrodes (Examples 5 and 6) obtained by the method of the present invention have a discharge capacity of 250 to 260 mAhg −1 , whereas The hydrogen storage alloy electrode (conventional example 2) obtained by the conventional method had a discharge capacity of 230 mAhg −1, which was considerably low.

【0049】さらに、上記実施例と同じ方法で水素吸蔵
合金粉末に、銅粉末単独、銅粉末とニッケル粉末、コバ
ルト粉末と銅粉末、並びにニッケル粉末、コバルト粉末
および銅粉末をそれぞれ添加・混合して混合粉末を得
て、その混合粉末をミル混合した4種類のミル混合粉末
を作製し、それぞれを用いて水素吸蔵合金電極を製造し
たものについて、上記と同様に最大放電容量および充放
電サイクルを調べたところ、図5に示す結果と同じであ
った。
Furthermore, copper powder alone, copper powder and nickel powder, cobalt powder and copper powder, and nickel powder, cobalt powder and copper powder were added and mixed to the hydrogen storage alloy powder in the same manner as in the above-mentioned embodiment. Obtained mixed powder, prepared four kinds of mill mixed powder by mill-mixing the mixed powder, and examined the maximum discharge capacity and charge / discharge cycle in the same manner as above for the hydrogen storage alloy electrode manufactured using each. As a result, it was the same as the result shown in FIG.

【0050】本発明の方法によれば、水素吸蔵合金粉末
と他の金属粉末をミル混合して、水素吸蔵合金粉末粒子
の表面に金属を圧着被覆しているので、このミル混合粉
末は保存性が良い。このため、このミル混合粉末を用い
て水素吸蔵合金電極を製造する場合はもちろん、ミル混
合粉末を長期間にわたり保存しても初期の活性を維持す
ることができる。このため、ミル混合粉末を長期間保存
した後に、これを用いて水素吸蔵合金電極を作製した場
合でも、その放電容量は、ミル混合粉末を作製後ただち
に製造した水素吸蔵合金電極の放電容量と同等である。
以下、そのことを明確にするために行った実施例を示
す。
According to the method of the present invention, the hydrogen-absorbing alloy powder and the other metal powder are mill-mixed, and the surface of the hydrogen-absorbing alloy powder particles is pressure-bonded with the metal. Is good. Therefore, when the hydrogen storage alloy electrode is manufactured using this mill mixed powder, the initial activity can be maintained even if the mill mixed powder is stored for a long period of time. Therefore, even if the hydrogen-absorbing alloy electrode was produced using the mill-mixed powder after long-term storage, its discharge capacity was equivalent to that of the hydrogen-absorbing alloy electrode produced immediately after the mill-mixed powder was produced. Is.
Hereinafter, examples performed to clarify this will be described.

【0051】実施例7 実施例5において使用したMmNi4.0 Co0.5 Al
0.5 の合金インゴットを粉砕機で粉砕して平均粒径約1
0mmの粗粒を得た。この粗粒20gに下記表1に示す平
均粒径0.3mmの各種の金属粉末2.8gを添加し、こ
れをステンレス製ボールミルにより空気中で5時間ミル
混合して、水素吸蔵合金と下記表1に示す金属とのミル
混合粉末を作製した。このミル混合粉末は平均粒径63
μm以下であり、水素吸蔵合金の表面の少なくとも一部
は金属により被覆されていた。
Example 7 MmNi 4.0 Co 0.5 Al used in Example 5
An alloy ingot of 0.5 is crushed by a crusher and the average particle size is about 1
Coarse grains of 0 mm were obtained. To 20 g of the coarse particles, 2.8 g of various metal powders having an average particle size of 0.3 mm shown in Table 1 below was added, and this was mill-mixed in a stainless ball mill for 5 hours in the air to obtain a hydrogen storage alloy and the following table. A mill mixed powder with the metal shown in 1 was prepared. This mill mixed powder has an average particle size of 63
The thickness was not more than μm, and at least a part of the surface of the hydrogen storage alloy was covered with a metal.

【0052】このミル混合粉末0.97gに0.3gの
ポリテトラフルオロエチレン粉末を添加・混合し、その
後、これを多孔性ニッケル板に充填し、圧力3t/cm2
で加圧成形して直径20mmの円盤型の水素吸蔵合金電極
(テストNo. 1,2,5,6,9,10,13〜26)
を作製した。
To 0.97 g of this mill mixed powder, 0.3 g of polytetrafluoroethylene powder was added and mixed, and then this was filled in a porous nickel plate and the pressure was 3 t / cm 2.
Disc-shaped hydrogen storage alloy electrode with a diameter of 20 mm (Test Nos. 1, 2, 5, 6, 9, 10, 13 to 26)
Was produced.

【0053】比較例5 実施例7において使用した水素吸蔵合金粗粒20gをス
テンレス製ボールミルによって空気中で5時間ミル粉砕
して、平均粒径63μm以下の水素吸蔵合金粉末を得
た。この水素吸蔵合金粉末と平均粒径0.3mmである下
記表1に示す各種の金属粉末2.8gとをスチロール瓶
中に入れ、瓶中で5時間振とうして、それぞれの混合粉
末を作製した。これらの混合粉末を用いて実施例7と同
様にして水素吸蔵合金電極(テストNo. 3,4,7,
8,11,12)を作製した。
Comparative Example 5 20 g of the hydrogen storage alloy coarse particles used in Example 7 were milled in a stainless ball mill for 5 hours in air to obtain a hydrogen storage alloy powder having an average particle size of 63 μm or less. This hydrogen storage alloy powder and 2.8 g of various metal powders having an average particle size of 0.3 mm shown in Table 1 below were put in a styrene bottle and shaken in the bottle for 5 hours to prepare mixed powders. did. Using these mixed powders, hydrogen storage alloy electrodes (Test No. 3, 4, 7,
8, 11, 12) was produced.

【0054】実施例7および比較例5の水素吸蔵合金電
極にリード線と取り付け、30重量%水酸化カリウム電
解液中に浸漬し、ニッケル板を対極として組み合わせて
セルを構成した。このセルにおいて、水素吸蔵合金1g
当たり70mAの電流により充放電を3回行った。この
とき、放電終止電位は−0.75V vs Hg/HgO、
充電時間は放電時間の1.3倍とした。その各充放電サ
イクル毎に放電容量を測定した。その結果を下記表1に
併記する。
A lead wire was attached to the hydrogen storage alloy electrodes of Example 7 and Comparative Example 5, immersed in a 30 wt% potassium hydroxide electrolytic solution, and a nickel plate was combined as a counter electrode to form a cell. In this cell, hydrogen storage alloy 1g
The charging / discharging was carried out 3 times with a current of 70 mA. At this time, the discharge end potential is -0.75 V vs Hg / HgO,
The charging time was 1.3 times the discharging time. The discharge capacity was measured for each charge / discharge cycle. The results are also shown in Table 1 below.

【0055】さらに、ミル混合粉末の保存性を調べるた
めに、上記の実施例7のミル混合粉末および比較例5の
混合粉末を空気中で5か月放置した後、上記と同様にし
てそれぞれ水素吸蔵合金電極を作製し、各充放電サイク
ル毎の放電容量を測定した。その結果も下記表1に併記
する。なお、表1中、「放置時間」とは、水素吸蔵合金
を粉砕してから水素吸蔵合金電極を作製し、初回充電す
るまでの水素吸蔵合金が空気中に置かれている時間を意
味する。
Further, in order to examine the preservability of the mill mixed powder, after leaving the mill mixed powder of Example 7 and the mixed powder of Comparative Example 5 in the air for 5 months, hydrogen was respectively treated in the same manner as above. An occlusion alloy electrode was produced and the discharge capacity at each charge / discharge cycle was measured. The results are also shown in Table 1 below. In Table 1, the "standing time" means the time during which the hydrogen storage alloy is left in the air until the hydrogen storage alloy electrode is manufactured and the hydrogen storage alloy electrode is first charged.

【0056】[0056]

【表1】 表1から明らかなように、本発明の方法により得られた
水素吸蔵合金電極は、放電容量が大きいものであった。
しかも、長期間放置した後のミル混合粉末を用いて作製
した水素吸蔵合金電極も放電容量が大きいものであった
(テストNo. 1〜12参照)。したがって、その保存性
が極めて良いことが認められた(テストNo. 1,2;同
5,6;同9,10;同13,14;同15,16;同
17,18;同19,20;同21,22;同23,2
4;同25,26参照)。この結果、ミル混合粉末のま
ま長期間貯蔵でき、また、水素吸蔵合金電極の製造を安
定良好にかつ容易に行うことができる。さらにまた、水
素吸蔵合金電極も長期間保存できる。
[Table 1] As is clear from Table 1, the hydrogen storage alloy electrode obtained by the method of the present invention had a large discharge capacity.
Moreover, the hydrogen storage alloy electrode produced by using the mill mixed powder after being left for a long time also had a large discharge capacity (see Test Nos. 1 to 12). Therefore, it was confirmed that the preservability thereof was extremely good (Test Nos. 1, 2; 5,6; 9,10; 13,14; 15,16; 17,18; 19,20). The same 21,22; the same 23,2
4; ibid. 25, 26). As a result, the mill-mixed powder can be stored as it is for a long period of time, and the hydrogen storage alloy electrode can be manufactured stably and satisfactorily. Furthermore, the hydrogen storage alloy electrode can be stored for a long time.

【0057】これに対して、従来の方法により得られた
水素吸蔵合金電極は、5か月後の放電容量が著しく低下
しており、保存性がないことがわかった(テストNo.
3,4;同7,8;同11,12参照)。
On the other hand, the hydrogen storage alloy electrode obtained by the conventional method had a significantly reduced discharge capacity after 5 months and was found to have no storability (Test No.
3, 4; ibid. 7, 8; ibid., 11, 12).

【0058】なお、ミル混合に際し、平均粒径10mmの
水素吸蔵合金粉末に代え、平均粒径1mmの水素吸蔵合金
粉末を用いて上記の各種金属を添加し、ミル混合してミ
ル混合粉末を作製したものを5か月放置後、これを用い
て水素吸蔵合金電極を作製し、上記と同様にして放電容
量を測定した。その結果を表2に示す。
In mill mixing, the above hydrogen-absorbing alloy powder having an average particle diameter of 10 mm was used in place of the hydrogen-absorbing alloy powder having an average particle diameter of 10 mm, the above-mentioned various metals were added, and the mixture was mill mixed to prepare a mill mixed powder. After being left standing for 5 months, a hydrogen storage alloy electrode was produced using this, and the discharge capacity was measured in the same manner as above. The results are shown in Table 2.

【0059】[0059]

【表2】 表2から明らかなように、平均粒径が大きい水素吸蔵合
金粉末を用いて得られた水素吸蔵合金電極は、放電容量
が大きいものであった。これは、平均粒径が大きい、い
わゆる粗粒は表面積が比較的小さいので、それだけ酸化
を受けることが少ないからであると考えられる。
[Table 2] As is clear from Table 2, the hydrogen storage alloy electrode obtained by using the hydrogen storage alloy powder having a large average particle size had a large discharge capacity. It is considered that this is because so-called coarse particles having a large average particle size have a relatively small surface area and are less susceptible to oxidation.

【0060】上記実施例において、水素吸蔵合金として
MmNiをベースとした合金を使用したが、TiNi、
TiNiをベースとしたチタン・ニッケル系合金、Zr
をベースとしたラベス相合金等の合金についても同様の
効果が得られたことが確認された。
In the above examples, an alloy based on MmNi was used as the hydrogen storage alloy, but TiNi,
Titanium-nickel alloy based on TiNi, Zr
It was confirmed that similar effects were obtained also with an alloy such as a Laves phase alloy based on.

【0061】実施例8 Laves 相を有する代表的な合金であるZr0.9 Ti0.1
(V0.33Ni0.51Co0.08Mn0.082.4 合金をあらか
じめ平均粒径63μm程度まで粉砕してなる合金粉末
と、ニッケル粉末とを重量比96:4で撹拌混合し、次
いでこれをステンレス製ボールミルにより空気中で5時
間粉砕混合して混合粉末を作製した。次いで、ニッケル
製の網を外径20mmの円形状に切断して芯体とした。こ
の芯体に混合粉末1gを3t/cm2 の圧力で加圧成形し
て、外径20mmである実施例8の水素吸蔵合金電極シー
トを作製した。
Example 8 Zr 0.9 Ti 0.1 which is a typical alloy having a Laves phase
(V 0.33 Ni 0.51 Co 0.08 Mn 0.08 ) 2.4 The alloy powder obtained by previously pulverizing the alloy to an average particle size of about 63 μm and nickel powder are stirred and mixed at a weight ratio of 96: 4, and then this is air-mixed with a stainless ball mill. The mixture was pulverized and mixed in the mixture for 5 hours to prepare a mixed powder. Next, a net made of nickel was cut into a circular shape having an outer diameter of 20 mm to obtain a core. 1 g of the mixed powder was pressure-molded on the core body at a pressure of 3 t / cm 2 to prepare a hydrogen storage alloy electrode sheet of Example 8 having an outer diameter of 20 mm.

【0062】実施例9〜11 実施例8と同様にして芯体に混合粉末を加圧成形した。
これに、ロータリーポンプによる排気下で350℃×3
時間、600℃×3時間、または1100℃×3時間の
3種類の熱処理を個々に施して実施例9〜11の水素吸
蔵合金電極シートを作製した。
Examples 9 to 11 In the same manner as in Example 8, the mixed powder was pressure-molded on the core body.
In addition to this, 350 ° C x 3 under exhaust by rotary pump
The hydrogen storage alloy electrode sheets of Examples 9 to 11 were produced by individually performing three types of heat treatments for 1 hour, 600 ° C. × 3 hours, or 1100 ° C. × 3 hours.

【0063】実施例12 実施例8と同様にして芯体に混合粉末を加圧成形した。
これに、ロータリーポンプによる排気下で350℃のホ
ットプレス処理を施して実施例12の水素吸蔵合金電極
シートを作製した。
Example 12 In the same manner as in Example 8, the mixed powder was pressure-molded on the core.
This was hot-pressed at 350 ° C. under exhaust from a rotary pump to prepare a hydrogen storage alloy electrode sheet of Example 12.

【0064】実施例13 実施例8と同様にして混合粉末を作製した。この混合粉
末にPTFEの分散液およびCMCの分散液を加えてペ
ーストを作製した。このペーストを実施例8で使用した
芯体に塗布し、乾燥させ、その後これに実施例8と同様
にして加圧成形を施して実施例13の水素吸蔵合金電極
シートを作製した。
Example 13 A mixed powder was prepared in the same manner as in Example 8. A PTFE dispersion and a CMC dispersion were added to this mixed powder to prepare a paste. This paste was applied to the core used in Example 8, dried, and then pressure-molded in the same manner as in Example 8 to prepare a hydrogen storage alloy electrode sheet of Example 13.

【0065】比較例6 Zr0.9 Ti0.1 (V0.33Ni0.51Co0.08Mn0.08
2.4 合金をあらかじめ平均粒径63μm程度まで粉砕し
てなる合金粉末1gを、あらかじめ外径20mmの円形状
に切断したニッケル製の網からなる芯体に3t/cm2
圧力で加圧成形して比較例6の水素吸蔵合金電極シート
を作製した。
Comparative Example 6 Zr 0.9 Ti 0.1 (V 0.33 Ni 0.51 Co 0.08 Mn 0.08 )
2.4g of alloy powder made by crushing 2.4 alloy in advance to an average particle size of 63μm is pressure-molded at a pressure of 3t / cm 2 on a core made of a nickel net that has been cut into a circular shape with an outer diameter of 20mm. A hydrogen storage alloy electrode sheet of Comparative Example 6 was produced.

【0066】比較例7〜9 比較例6と同様にして芯体に合金粉末を加圧成形した。
これに、ロータリーポンプによる排気下で350℃×3
時間、600℃×3時間、または1100℃×3時間の
3種類の熱処理を個々に施して比較例7〜9の水素吸蔵
合金電極シートを作製した。
Comparative Examples 7 to 9 In the same manner as in Comparative Example 6, alloy powder was pressure-molded on the core body.
In addition to this, 350 ° C x 3 under exhaust by rotary pump
Time, 600 ° C. × 3 hours, or 1100 ° C. × 3 hours were individually applied to the three types of heat treatments to produce hydrogen storage alloy electrode sheets of Comparative Examples 7 to 9.

【0067】比較例10 Zr0.9 Ti0.1 (V0.33Ni0.51Co0.08Mn0.08
2.4 合金をあらかじめ平均粒径63μm程度まで粉砕し
てなる合金粉末と、ニッケル粉末とを重量比96:4で
撹拌混合して混合粉末を作製した。次いで、比較例6と
同様にして芯体に混合粉末を加圧成形して比較例10の
水素吸蔵合金電極シートを作製した。
Comparative Example 10 Zr 0.9 Ti 0.1 (V 0.33 Ni 0.51 Co 0.08 Mn 0.08 )
An alloy powder prepared by previously pulverizing the 2.4 alloy to an average particle size of about 63 μm and a nickel powder were stirred and mixed at a weight ratio of 96: 4 to prepare a mixed powder. Then, in the same manner as in Comparative Example 6, the mixed powder was pressure-molded on the core to prepare a hydrogen storage alloy electrode sheet of Comparative Example 10.

【0068】比較例11〜13 比較例10と同様にして芯体に混合粉末を加圧成形し
た。これに、ロータリーポンプによる排気下で350℃
×3時間、600℃×3時間、または1100℃×3時
間の3種類の熱処理を個々に施して比較例11〜13の
水素吸蔵合金電極シートを作製した。
Comparative Examples 11 to 13 In the same manner as in Comparative Example 10, the mixed powder was pressure-molded on the core body. In addition, 350 ° C under exhaust by rotary pump
The hydrogen storage alloy electrode sheets of Comparative Examples 11 to 13 were produced by individually performing three types of heat treatments of × 3 hours, 600 ° C × 3 hours, or 1100 ° C × 3 hours.

【0069】得られた実施例8〜13および比較例6〜
13の水素吸蔵合金電極シートについて、最大放電容
量、容量が10%減衰するまでのサイクル数、および電
極の状態(耐久性)を調べた。その結果を下記表3に示
す。なお、最大放電容量は、水素吸蔵合金電極シートに
リード線を取り付け、これを30重量%−水酸化カリウ
ム電解液中に浸漬し、ニッケル板を対極として配置して
セルを構成し、次いで、水素吸蔵合金1g当たり70m
Aの電流で充放電反復を行うことにより測定した。この
ときの放電終止電位を−0.75V vs Hg/HgO、
充電時間は放電時間の1.3倍とした。いずれの電極
も、はじめのうち放電容量が増加し、その後徐々に減衰
している挙動を示した。
The obtained Examples 8 to 13 and Comparative Examples 6 to
Regarding the hydrogen storage alloy electrode sheet of No. 13, the maximum discharge capacity, the number of cycles until the capacity decreased by 10%, and the state (durability) of the electrode were examined. The results are shown in Table 3 below. The maximum discharge capacity was determined by attaching a lead wire to a hydrogen-absorbing alloy electrode sheet, immersing the lead wire in a 30 wt% -potassium hydroxide electrolyte solution, arranging a nickel plate as a counter electrode to form a cell, and then using hydrogen. 70m per 1g of storage alloy
It was measured by repeating charge and discharge at a current of A. The discharge end potential at this time is -0.75 V vs Hg / HgO,
The charging time was 1.3 times the discharging time. All electrodes showed the behavior that the discharge capacity increased at first and then gradually decreased.

【0070】[0070]

【表3】 表3から明らかなように、本発明の方法により得られた
水素吸蔵合金電極シート(実施例8〜13)は、充放電
による電極からの合金の脱落がほとんどなく、10%の
容量低下が200サイクルでも起らず、しかも放電容量
も大きいものであった。なお、実施例13においては、
水素吸蔵合金をペースト化したので、耐久性は優れてい
たが放電容量は小さかった。
[Table 3] As is clear from Table 3, in the hydrogen storage alloy electrode sheets (Examples 8 to 13) obtained by the method of the present invention, there is almost no drop of the alloy from the electrodes due to charge and discharge, and the capacity decrease of 10% is 200. It did not occur even in a cycle, and the discharge capacity was large. In the thirteenth embodiment,
Since the hydrogen storage alloy was formed into a paste, the durability was excellent, but the discharge capacity was small.

【0071】これに対して水素吸蔵合金粉末のみを用い
て芯体に加圧成形したもの(比較例6〜9)は、充放電
による合金の脱落が激しく、このため放電容量が小さか
った。また、単にニッケル粉末を水素吸蔵合金粉末と混
合した混合粉末を用いて芯体に加圧成形したもの(比較
例10〜13)も、充放電による合金の脱落が多く、こ
のため放電容量が小さかった。この中で1100℃の加
熱処理を施したもの(比較例9,13)は、充放電によ
る電極からの合金の脱落は少なかったが、放電容量が小
さかった。
On the other hand, in the case where the core was pressure-molded by using only the hydrogen-absorbing alloy powder (Comparative Examples 6 to 9), the alloy dropped off remarkably due to charge and discharge, and therefore the discharge capacity was small. In addition, the one obtained by press-molding the core body using the mixed powder obtained by simply mixing the nickel powder with the hydrogen-absorbing alloy powder (Comparative Examples 10 to 13) has a large amount of alloy falling off due to charge and discharge, and therefore the discharge capacity is small. It was Among these, those subjected to the heat treatment at 1100 ° C. (Comparative Examples 9 and 13) had a small discharge capacity of the alloy from the electrodes due to charge and discharge, but had a small discharge capacity.

【0072】実施例14 Zr0.9 Ti0.1 (V0.33Ni0.51Co0.08Mn0.08
2.4 合金をあらかじめ平均粒径63μm程度まで粉砕し
てなる合金粉末と、ニッケル粉末とを重量比96:4で
撹拌混合し、次いでこれをステンレス製ボールミルによ
り空気中で5時間粉砕混合して混合粉末を作製した。次
いで、この混合粉末に対してPTFE粉末を1.5重量
%撹拌混合した。次いで、ニッケル製の網を外径20mm
の円形状に切断して芯体とした。この芯体に上記粉末1
gを3t/cm2 の圧力で加圧成形して実施例14の水素
吸蔵合金電極シートを作製した。
Example 14 Zr 0.9 Ti 0.1 (V 0.33 Ni 0.51 Co 0.08 Mn 0.08 )
2.4 The alloy powder obtained by pulverizing the alloy to an average particle size of 63 μm and nickel powder are mixed by stirring at a weight ratio of 96: 4, and then this is pulverized and mixed in the air for 5 hours in a stainless ball mill to obtain a mixed powder. Was produced. Next, the PTFE powder was mixed with this mixed powder by stirring at 1.5% by weight. Next, use a net made of nickel with an outer diameter of 20 mm.
Was cut into a circular shape to obtain a core. Powder 1 on this core
g was pressure-molded at a pressure of 3 t / cm 2 to prepare a hydrogen storage alloy electrode sheet of Example 14.

【0073】実施例15 PTFE粉末の混合量を3重量%にすること以外は実施
例14と同様にして実施例15の水素吸蔵合金電極シー
トを作製した。
Example 15 A hydrogen storage alloy electrode sheet of Example 15 was prepared in the same manner as in Example 14 except that the amount of PTFE powder mixed was 3% by weight.

【0074】実施例16 実施例14と同じ水素吸蔵合金電極シートに減圧下20
0℃で2時間の加熱処理を施して実施例16の水素吸蔵
合金電極シートを作製した。
Example 16 The same hydrogen storage alloy electrode sheet as in Example 14 was applied under reduced pressure to 20.
The hydrogen storage alloy electrode sheet of Example 16 was produced by performing a heat treatment at 0 ° C. for 2 hours.

【0075】比較例14 Zr0.9 Ti0.1 (V0.33Ni0.51Co0.08Mn0.08
2.4 合金をあらかじめ平均粒径63μm程度まで粉砕し
てなる合金粉末1gにPTFE粉末を1.5重量%撹拌
混合し、混合粉末を作製した。次いで、この混合粉末を
あらかじめ外径20mmの円形状に切断したニッケル製の
網からなる芯体に3t/cm2 の圧力で加圧成形して比較
例14の水素吸蔵合金電極シートを作製した。
Comparative Example 14 Zr 0.9 Ti 0.1 (V 0.33 Ni 0.51 Co 0.08 Mn 0.08 )
1.5% by weight of PTFE powder was agitated and mixed with 1 g of alloy powder obtained by previously pulverizing 2.4 alloy to an average particle size of about 63 μm to prepare a mixed powder. Next, this mixed powder was pressure-molded at a pressure of 3 t / cm 2 to a core body made of a nickel net previously cut into a circular shape having an outer diameter of 20 mm to prepare a hydrogen storage alloy electrode sheet of Comparative Example 14.

【0076】比較例15 PTFE粉末の混合量を3重量%にすること以外は比較
例14と同様にして比較例15の水素吸蔵合金電極シー
トを作製した。
Comparative Example 15 A hydrogen storage alloy electrode sheet of Comparative Example 15 was prepared in the same manner as Comparative Example 14 except that the mixing amount of PTFE powder was 3% by weight.

【0077】比較例16 Zr0.9 Ti0.1 (V0.33Ni0.51Co0.08Mn0.08
2.4 合金をあらかじめ平均粒径63μm程度まで粉砕し
てなる合金粉末にニッケル粉末を重量比96:4で撹拌
混合して混合粉末を作製し、この混合粉末に対してPT
FE粉末を1.5重量%撹拌混合した。比較例14と同
様にして芯体に混合粉末を加圧成形して比較例16の水
素吸蔵合金電極シートを作製した。
Comparative Example 16 Zr 0.9 Ti 0.1 (V 0.33 Ni 0.51 Co 0.08 Mn 0.08 )
2.4 The alloy powder is pulverized in advance to an average particle size of 63 μm and the nickel powder is stirred and mixed at a weight ratio of 96: 4 to prepare a mixed powder, and PT is added to this mixed powder.
The FE powder was mixed by stirring at 1.5% by weight. In the same manner as in Comparative Example 14, the mixed powder was pressure-molded on the core to prepare a hydrogen storage alloy electrode sheet of Comparative Example 16.

【0078】比較例17 PTFE粉末の混合量を3重量%にすること以外は比較
例16と同様にして比較例17の水素吸蔵合金電極シー
トを作製した。
Comparative Example 17 A hydrogen storage alloy electrode sheet of Comparative Example 17 was prepared in the same manner as Comparative Example 16 except that the mixing amount of PTFE powder was 3% by weight.

【0079】得られた実施例14〜16および比較例1
4〜17の水素吸蔵合金電極シートについて、最大放電
容量、容量が10%減衰するまでのサイクル数、および
電極の状態(耐久性)を上記のようにして調べた。その
結果を下記表4に示す。いずれの電極も、はじめのうち
放電容量が増加し、その後徐々に減衰している挙動を示
した。
Obtained Examples 14 to 16 and Comparative Example 1
With respect to the hydrogen storage alloy electrode sheets of Nos. 4 to 17, the maximum discharge capacity, the number of cycles until the capacity decreased by 10%, and the state of the electrode (durability) were examined as described above. The results are shown in Table 4 below. All electrodes showed the behavior that the discharge capacity increased at first and then gradually decreased.

【0080】[0080]

【表4】 表4から明らかなように、本発明の方法により得られた
水素吸蔵合金電極シート(実施例14〜16)は、充放
電による電極からの合金の脱落がほとんどなく、10%
の容量低下が200サイクルでも起らず、しかも放電容
量も大きいものであった。
[Table 4] As is clear from Table 4, the hydrogen-absorbing alloy electrode sheets (Examples 14 to 16) obtained by the method of the present invention show almost no fall of the alloy from the electrodes due to charge / discharge and 10%.
The capacity was not decreased even after 200 cycles, and the discharge capacity was large.

【0081】これに対して水素吸蔵合金粉末のみを用い
て芯体に加圧成形したもの(比較例14,15)は、充
放電による合金の脱落が起り、このため放電容量が小さ
かった。また、単にニッケル粉末を水素吸蔵合金粉末と
混合した混合粉末を用いて芯体に加圧成形したもの(比
較例16)も、充放電による合金の脱落が多く、このた
め放電容量が小さかった。混合粉末に3重量%のPTF
Eを混合したものを芯体に加圧成形したもの(比較例1
7)は、耐久性が良好であるが、放電容量が小さかっ
た。
On the other hand, in the case where the core was pressure-molded using only the hydrogen-absorbing alloy powder (Comparative Examples 14 and 15), the alloy dropped off due to charge and discharge, and therefore the discharge capacity was small. Also, the one obtained by press-molding the core body using the mixed powder obtained by simply mixing the nickel powder with the hydrogen-absorbing alloy powder (Comparative Example 16) had a large amount of the alloy falling off due to charge and discharge, and therefore the discharge capacity was small. 3% by weight of PTF in powder mixture
A mixture of E and a core body which is pressure-molded (Comparative Example 1)
In 7), the durability was good, but the discharge capacity was small.

【0082】上記実施例においては、水素吸蔵合金粉末
に混合する粉末としてニッケル粉末を用いたが、銅粉末
を用いても同等の効果が得られることが確認された。ま
た、PTFE粉末の代わりにポリフッ化ビニリデン粉末
を用いても同等の効果が得られることが確認された。
In the above examples, nickel powder was used as the powder to be mixed with the hydrogen storage alloy powder, but it was confirmed that the same effect can be obtained by using copper powder. It was also confirmed that the same effect can be obtained by using polyvinylidene fluoride powder instead of PTFE powder.

【0083】本発明の方法により得られた電極を、従来
のペースト式製法により得られた水酸化ニッケル正極と
組み合わせて、AAサイズの密閉型ニッケル・水素電池
を作製し、その特性を調べたところ、本実施例と同等の
効果が得られることが確認された。また、Zrを含む他
のLaves 相合金あるいはMmNi5 をベースとした合金
を用いた水素吸蔵合金電極シートも本実施例と同等の効
果が得られることが確認された。
The electrode obtained by the method of the present invention was combined with the nickel hydroxide positive electrode obtained by the conventional paste-type production method to prepare an AA size sealed nickel-hydrogen battery, and its characteristics were examined. It was confirmed that the same effect as that of this example was obtained. It was also confirmed that a hydrogen storage alloy electrode sheet using another Laves phase alloy containing Zr or an alloy based on MmNi 5 can achieve the same effect as this example.

【0084】[0084]

【発明の効果】以上説明した如く本発明の水素吸蔵合金
電極の製造方法によれば、水素吸蔵合金粉末と他の金属
粉末とを密閉系でミル混合するので、水素吸蔵合金粉末
表面が酸化することなく他の金属で被覆される。このた
め、水素吸蔵合金表面の反応活性を低下させることな
く、長期間にわたって高い放電容量を維持でき、しかも
耐久性、保存性に優れた水素吸蔵合金電極を簡易に得る
ことができる。
As described above, according to the method for producing a hydrogen storage alloy electrode of the present invention, the hydrogen storage alloy powder and the other metal powder are mill-mixed in a closed system, so that the surface of the hydrogen storage alloy powder is oxidized. Without being coated with other metals. Therefore, it is possible to easily obtain a hydrogen storage alloy electrode which can maintain a high discharge capacity for a long period of time without lowering the reaction activity of the surface of the hydrogen storage alloy and which is excellent in durability and storability.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素吸蔵合金電極についての放電容量と充放電
サイクルとの関係を示すグラフ。
FIG. 1 is a graph showing the relationship between discharge capacity and charge / discharge cycle for hydrogen storage alloy electrodes.

【図2】水素吸蔵合金電極についての放電容量と充放電
サイクルとの関係を示すグラフ。
FIG. 2 is a graph showing the relationship between discharge capacity and charge / discharge cycle for hydrogen storage alloy electrodes.

【図3】水素吸蔵合金電極を用いた電池についての放電
容量と充放電サイクルとの関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the discharge capacity and the charge / discharge cycle of a battery using a hydrogen storage alloy electrode.

【図4】水素吸蔵合金電極を用いた電池についての放電
容量と充放電サイクルとの関係を示すグラフ。
FIG. 4 is a graph showing the relationship between discharge capacity and charge / discharge cycle for a battery using a hydrogen storage alloy electrode.

【図5】水素吸蔵合金電極についての放電容量と充放電
サイクルとの関係を示すグラフ。
FIG. 5 is a graph showing the relationship between discharge capacity and charge / discharge cycle for hydrogen storage alloy electrodes.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末と少なくとも1種の他
の金属の粉末とを混合して混合粉末を得る工程、前記混
合粉末を密閉系のミル装置において粉砕混合することに
よりミル混合粉末を作製する工程、前記ミル混合粉末を
用いて水素吸蔵合金電極を得る工程とを具備することを
特徴とする水素吸蔵合金電極の製造方法。
1. A step of mixing a hydrogen storage alloy powder and a powder of at least one other metal to obtain a mixed powder, and pulverizing and mixing the mixed powder in a closed mill device to prepare a mill mixed powder. And a step of obtaining a hydrogen storage alloy electrode by using the mill mixed powder, the method of manufacturing a hydrogen storage alloy electrode.
【請求項2】 水素吸蔵合金粉末と少なくとも1種の他
の金属の粉末とを混合して混合粉末を得る工程、前記混
合粉末を密閉系のミル装置において粉砕混合することに
よりミル混合粉末を作製する工程、前記ミル混合粉末を
金属製の網もしくは多孔板に直接加圧成形して水素吸蔵
合金電極を得る工程とを具備することを特徴とする水素
吸蔵合金電極の製造方法。
2. A step of mixing a hydrogen storage alloy powder and a powder of at least one other metal to obtain a mixed powder, and pulverizing and mixing the mixed powder in a closed mill device to prepare a mill mixed powder. And a step of directly press-molding the mill-mixed powder onto a metal net or a porous plate to obtain a hydrogen-absorbing alloy electrode.
【請求項3】 ミル混合粉末に所定の割合で増粘剤を混
合する請求項1または2記載の水素吸蔵合金電極の製造
方法。
3. The method for producing a hydrogen storage alloy electrode according to claim 1, wherein a thickener is mixed with the mill mixed powder at a predetermined ratio.
【請求項4】 ミル混合粉末を導電性基板に加圧成形し
た後に、1100℃以下の加熱処理を施す請求項2また
は3記載の水素吸蔵合金電極の製造方法。
4. The method for producing a hydrogen storage alloy electrode according to claim 2, wherein after the milled mixed powder is pressure-molded on the conductive substrate, heat treatment at 1100 ° C. or lower is performed.
【請求項5】 導電性基板と、前記導電性基板に直接加
圧成形され、水素吸蔵合金粉末と少なくとも1種の他の
金属の粉末とを混合してなる混合粉末とを具備し、前記
混合粉末は密閉系のミル装置において粉砕混合すること
により得られたものである水素吸蔵合金電極。
5. A conductive substrate, and a mixed powder which is directly pressure-molded on the conductive substrate and is formed by mixing a hydrogen storage alloy powder and a powder of at least one other metal. The powder is a hydrogen storage alloy electrode obtained by pulverizing and mixing in a closed mill device.
JP4238645A 1992-06-04 1992-09-07 Hydrogen storage alloy electrode and manufacture thereof Pending JPH0652855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4238645A JPH0652855A (en) 1992-06-04 1992-09-07 Hydrogen storage alloy electrode and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14442592 1992-06-04
JP4-144425 1992-06-04
JP4238645A JPH0652855A (en) 1992-06-04 1992-09-07 Hydrogen storage alloy electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0652855A true JPH0652855A (en) 1994-02-25

Family

ID=26475838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4238645A Pending JPH0652855A (en) 1992-06-04 1992-09-07 Hydrogen storage alloy electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0652855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0754977A1 (en) * 1995-07-07 1997-01-22 Lexmark International, Inc. Electrophotographic photoconductor having improved cycling stability and oil resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0754977A1 (en) * 1995-07-07 1997-01-22 Lexmark International, Inc. Electrophotographic photoconductor having improved cycling stability and oil resistance

Similar Documents

Publication Publication Date Title
EP0647973B1 (en) Hydrogen-absorbing alloy electrode and process for producing the same
EP0645833A1 (en) Method for producing a hydrogen absorbing alloy electrode
EP0530659B1 (en) Method of manufacturing a hydrogen storage alloy electrode
JPH11162459A (en) Nickel-hydrogen secondary battery
JPH0652855A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2645889B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP2537084B2 (en) Hydrogen storage alloy electrode
KR960013374B1 (en) Hydrogen storage alloy electrode and method of manufacturing thereof
JP3043143B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3500031B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3343417B2 (en) Metal oxide / hydrogen secondary battery
JP3519836B2 (en) Hydrogen storage alloy electrode
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH0799055A (en) Hydrogen secondary battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JPH0613077A (en) Hydrogen storage electrode
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JP3322449B2 (en) Method for producing metal hydride electrode
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JPH0834100B2 (en) Hydrogen storage alloy electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JPH11191412A (en) Alkaline storage battery
JP3553752B2 (en) Method for producing hydrogen storage alloy electrode