JPH0652809B2 - Method for manufacturing thermoelectric conversion element - Google Patents
Method for manufacturing thermoelectric conversion elementInfo
- Publication number
- JPH0652809B2 JPH0652809B2 JP59186416A JP18641684A JPH0652809B2 JP H0652809 B2 JPH0652809 B2 JP H0652809B2 JP 59186416 A JP59186416 A JP 59186416A JP 18641684 A JP18641684 A JP 18641684A JP H0652809 B2 JPH0652809 B2 JP H0652809B2
- Authority
- JP
- Japan
- Prior art keywords
- conversion element
- thermoelectric conversion
- temperature
- glass tube
- type semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 title description 4
- 239000004065 semiconductor Substances 0.000 claims description 19
- 239000011521 glass Substances 0.000 claims description 18
- 229910015136 FeMn Inorganic materials 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 229910002546 FeCo Inorganic materials 0.000 claims 1
- 239000000843 powder Substances 0.000 description 18
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 229910005329 FeSi 2 Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910005347 FeSi Inorganic materials 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009931 pascalization Methods 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Powder Metallurgy (AREA)
- Silicon Compounds (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,N型およびP型半導体対からなり,ゼーベッ
ク効果を原理とする熱電気変換素子に関し,特に該熱電
気変換素子の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a thermoelectric conversion element based on the Seebeck effect, which is composed of an N-type and P-type semiconductor pair, and particularly to a method for manufacturing the thermoelectric conversion element. .
ゼーベック効果を原理とする熱電気変換素子の開発は古
くからなされている。最近,そのモジュール化の技術が
開発され,宇宙開発,海洋開発,廃熱発電,僻地用電
源,温度用センサーなど多くの分野で活発に利用され始
めてきている。The thermoelectric conversion element based on the Seebeck effect has been developed for a long time. Recently, the modularization technology has been developed and has been actively used in many fields such as space development, ocean development, waste heat power generation, remote power supply, and temperature sensor.
従来の熱電気変換素子の製造方法によると,例えばけい
素化合物のN型半導体(FeCo)Si2とP型半導体(FeMn)Si2
からなる熱電気変換素子は,まず通常Co粉末を含むFeSi
2粉体と,Mn粉末を含むFeSi2粉体とを,U字型に冷間プ
レスで成型し,焼結する。この様にしてつくられた(FeC
o)Si2と(FeMn)Si2の焼結体の結晶構造は殆んど金属的性
質を有するα相である。次に,これを900℃以下で数
10〜200時間加熱し半導体的性質を有するβ相に変
態させ,これに電極端子をつけて熱電気変換素子として
いる。According to the conventional method for manufacturing a thermoelectric conversion element, for example, N-type semiconductor (FeCo) Si 2 and P-type semiconductor (FeMn) Si 2 of silicon compounds are used.
The thermoelectric conversion element composed of FeSi is usually FeSi containing Co powder.
Two powders and FeSi 2 powder containing Mn powder are formed into a U shape by cold pressing and sintered. Made in this way (FeC
The crystal structure of the sintered body of o) Si 2 and (FeMn) Si 2 is almost α phase with metallic properties. Next, this is heated at 900 ° C. or lower for several tens to 200 hours to transform into β phase having semiconductor properties, and electrode terminals are attached to this to form a thermoelectric conversion element.
以上の様な方法でつくられた熱電気変換素子の相対密度
は99%以上にあげることは難しい。そのため,両半導
体の接合面の機械的強度が弱く,熱発電特性を劣化させ
ると云う欠点があった。It is difficult to increase the relative density of the thermoelectric conversion element manufactured by the above method to 99% or more. As a result, the mechanical strength of the joint surface between the two semiconductors is weak, and the thermoelectric power generation characteristics deteriorate.
本発明はこれらの欠点を除去するために,ガラス管に封
入された両半導体粉末素材に,最新の高温高圧加工装置
(以下HIP装置と略称する)を用いて,高温高圧下で焼
結成型加工を行うことにより,熱電気変換素子の製造工
程の簡略化を計るとともに,その発電特性をあげること
を目的としている。In order to eliminate these drawbacks, the present invention uses the latest high-temperature and high-pressure processing equipment (hereinafter abbreviated as HIP equipment) to sinter and mold both semiconductor powder materials enclosed in glass tubes under high-temperature and high-pressure processing. By doing so, it is intended to simplify the manufacturing process of the thermoelectric conversion element and to improve its power generation characteristics.
本発明によれば、実質的に1.6%Coを含むN型半導
体(FeCo)Si2と、実質的に3.3%Mnを含むP型半導
体(FeMn)Si2とを、ガラス管の中に真空封入
し、当該ガラス管の軟化温度よりも実質的に200℃高
い温度まで加熱した後、軟化温度より200℃高い前記
温度を維持しながら非酸化性雰囲気内で実質的に200
0気圧で加圧して焼結成型する工程を含むことを特徴と
する熱電気変換素子の製造方法が得られる。According to the present invention, an N-type semiconductor (FeCo) Si 2 containing substantially 1.6% Co and a P-type semiconductor (FeMn) Si 2 containing substantially 3.3% Mn are used in a glass tube. It is vacuum sealed and heated to a temperature that is substantially 200 ° C. higher than the softening temperature of the glass tube.
A method for manufacturing a thermoelectric conversion element is obtained which includes a step of pressurizing at 0 atm and performing sinter molding.
[実施例] 本発明の製造方法の詳細を以下に述べる。[Examples] The details of the manufacturing method of the present invention will be described below.
製造しようとする半導体対の粉末素材の焼結温度に合せ
て,適当な軟化温度を有するガラス管をY字型に加工
し,その両端を閉管する。そのガラス管の両枝の中にN
型およびP型半導体の粉末をそれぞれ下部より入れ排気
し,真空封入する。これをガラス管の軟化温度より充分
に高い温度で加熱する、即ち、“封入管”が軟化して大
気圧のためにガラスと素材粉末が密着し間隙がなくなる
程度の温度で加熱する。そして、この充分に高い温度を
維持しながら数時間非酸化性のアルゴン,窒素,ヘリウ
ム等の気体でもって,等方的に加圧すると素材粉末の相
対密度は99.9℃以上になる。また,ガラス管の形状が保
持されたまま焼結成型される。A glass tube having an appropriate softening temperature is processed into a Y shape according to the sintering temperature of the powder material of the semiconductor pair to be manufactured, and both ends thereof are closed. N in both branches of the glass tube
Type and P-type semiconductor powders are respectively put in from the lower part, evacuated, and vacuum-sealed. This is heated at a temperature sufficiently higher than the softening temperature of the glass tube, that is, at a temperature at which the "encapsulation tube" is softened and the glass and the material powder are adhered to each other due to the atmospheric pressure so that there is no gap. Then, while maintaining this sufficiently high temperature, isotropically pressurizing with a non-oxidizing gas such as argon, nitrogen or helium for several hours, the relative density of the raw material powder becomes 99.9 ° C or more. Further, the glass tube is sintered and molded while maintaining its shape.
真空封入の際に電極板を装入し,焼結成型後,電極端子
とリード線とを半田付け(又は銀ロー付け)出来る様に
することも可能である。It is also possible to insert an electrode plate during vacuum encapsulation, sinter and mold, and then solder (or silver braze) the electrode terminal and the lead wire.
次に第1図及び第2図を参照して本発明の一実施例を説
明する。Next, an embodiment of the present invention will be described with reference to FIGS.
第1図は,ガラス管2をY字型に加工し両枝に電極端子
1を封入した状態を示している。第2図は,第1図に示
されたY字型ガラス管の下端よりN型およびP型半導体
粉末3および4を両枝に入れ,真空ポンプで排気した
後,密閉する。この状態で上述のHIP処理を施す。その
後700〜900℃の温度領域で数10〜200時間熱
処理を施し,焼結半導体対を作製しこれを熱電気変換素
子とする。FIG. 1 shows a state in which the glass tube 2 is processed into a Y-shape and the electrode terminals 1 are enclosed in both branches. In FIG. 2, N-type and P-type semiconductor powders 3 and 4 are put into both branches from the lower end of the Y-shaped glass tube shown in FIG. 1, exhausted by a vacuum pump, and then sealed. In this state, the above HIP processing is performed. After that, heat treatment is performed in the temperature range of 700 to 900 ° C. for several 10 to 200 hours to produce a sintered semiconductor pair, which is used as a thermoelectric conversion element.
Mn粉末を含むFeSi2粉末とCo粉末を含むFeSi2粉末とをY
字型パイレックスガラス管(軟化温度約800℃)の下
端より,その両枝に入れ,そして真空封入する。この封
入管をHIP装置の中で、上述したパイレックスガラス
管の軟化温度より200℃高い1000℃まで加熱し、
その後この1000℃の温度を維持しながらアルゴンガ
スで2000気圧、約3時間加圧する。これを更に82
0℃で20時間熱処理するとガラス管の形状を保持した
ままのU字型の焼結半導体対が得られる。封入端に,封
着合金52%NiFeを封着することによって電極とした。And FeSi 2 powder containing FeSi 2 powder and Co powder containing Mn powder Y
Insert the Pyrex glass tube (softening temperature approx. 800 ° C) into both branches from the lower end, and vacuum seal. This enclosed tube is heated in the HIP device to 1000 ° C., which is 200 ° C. higher than the softening temperature of the Pyrex glass tube described above,
Thereafter, while maintaining the temperature of 1000 ° C., the pressure is increased to 2000 atm with argon gas for about 3 hours. 82 more
When heat-treated at 0 ° C. for 20 hours, a U-shaped sintered semiconductor pair which retains the shape of the glass tube is obtained. An electrode was formed by sealing a sealing alloy of 52% NiFe to the sealed end.
得られた熱電気変換素子に800℃の温度差を与え,そ
の熱起電力と最大出力とを測定した。その結果を第1表
に示す。比較のために従来の方法で製造された試料につ
いての結果をも第1表に併せ示す。ただし,熱電気変換
素子直径D=1.6mm,素子の長さL=25mmである。A temperature difference of 800 ° C. was applied to the obtained thermoelectric conversion element, and its thermoelectromotive force and maximum output were measured. The results are shown in Table 1. Table 1 also shows the results for the samples manufactured by the conventional method for comparison. However, the thermoelectric conversion element diameter D = 1.6 mm and the element length L = 25 mm.
〔発明の効果〕 以上説明したように本発明では,例えば,Y字型に加工
されたガラス管の両枝にN型およびP型半導体の粉末を
下端よりそれぞれ挿入し,真空封入する。この封入管を
高温高圧下で,HIP処理を施すことによって,その内部
の半導体粉末はガラス管の形状が保持されたまま焼結成
型される。この様にして製造された熱電気変換素子の相
対密度は99.9%以上となり接合面のもろさも補強され
る。またその発電特性もあがる。 [Effects of the Invention] As described above, in the present invention, for example, N-type and P-type semiconductor powders are respectively inserted from the lower end into both branches of a Y-shaped glass tube and vacuum sealed. By subjecting this enclosed tube to HIP treatment at high temperature and high pressure, the semiconductor powder inside is sintered and molded while the shape of the glass tube is maintained. The relative density of the thermoelectric conversion element manufactured in this way becomes 99.9% or more, and the brittleness of the joint surface is reinforced. In addition, its power generation characteristics also increase.
第1図及び第2図はそれぞれ本発明の一実施例による熱
電気変換素子の製造方法を説明するための断面図であ
る。 1…電極端子,2…ガラス管,3…N型半導体粉末,4
…P型半導体粉末。1 and 2 are cross-sectional views for explaining a method of manufacturing a thermoelectric conversion element according to an embodiment of the present invention. 1 ... Electrode terminal, 2 ... Glass tube, 3 ... N-type semiconductor powder, 4
... P-type semiconductor powder.
Claims (1)
(FeCo)Si2と、実質的に3.3%Mnを含むP
型半導体(FeMn)Si2とを、ガラス管の中に真空
封入し、 当該ガラス管の軟化温度よりも実質的に200℃高い温
度まで加熱した後、軟化温度より200℃高い前記温度
を維持しながら非酸化性雰囲気内で実質的に2000気
圧で加圧して焼結成型する工程を含むことを特徴とする
熱電気変換素子の製造方法。1. An N-type semiconductor (FeCo) Si 2 containing substantially 1.6% Co and P containing substantially 3.3% Mn.
Type semiconductor (FeMn) Si 2 is vacuum-sealed in a glass tube, heated to a temperature substantially 200 ° C. higher than the softening temperature of the glass tube, and then maintained at the temperature 200 ° C. higher than the softening temperature. However, the method for producing a thermoelectric conversion element is characterized by including a step of pressurizing at substantially 2000 atm in a non-oxidizing atmosphere and performing sinter molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59186416A JPH0652809B2 (en) | 1984-09-07 | 1984-09-07 | Method for manufacturing thermoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59186416A JPH0652809B2 (en) | 1984-09-07 | 1984-09-07 | Method for manufacturing thermoelectric conversion element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6165487A JPS6165487A (en) | 1986-04-04 |
JPH0652809B2 true JPH0652809B2 (en) | 1994-07-06 |
Family
ID=16188037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59186416A Expired - Lifetime JPH0652809B2 (en) | 1984-09-07 | 1984-09-07 | Method for manufacturing thermoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0652809B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2847123B2 (en) * | 1987-10-19 | 1999-01-13 | 三井金属鉱業株式会社 | Manufacturing method of thermoelectric material |
DE69132779T2 (en) * | 1990-04-20 | 2002-07-11 | Matsushita Electric Industrial Co., Ltd. | Vacuum insulated thermoelectric semiconductors and thermoelectric devices using P and N type thermoelectric semiconductors |
DE102011084442B4 (en) * | 2011-10-13 | 2018-05-03 | Schott Ag | Thermoelectric component with glass coated n- and p-conductors |
-
1984
- 1984-09-07 JP JP59186416A patent/JPH0652809B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6165487A (en) | 1986-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0211790B2 (en) | ||
JPH0652809B2 (en) | Method for manufacturing thermoelectric conversion element | |
KR101688529B1 (en) | Thermoelectric materials, and thermoelectric module and thermoelectric apparatus comprising same | |
JPH07202274A (en) | Thermoelectric device and its manufacture | |
CN116322261A (en) | Screening method of lead telluride device electrode material | |
CN207529976U (en) | Thermo-electric device and its electrode | |
CN109022863A (en) | A kind of based square cobalt mineral thermoelectric material and preparation method thereof for filling Ga | |
JP2811454B2 (en) | Copper-tungsten mixed sintered body and method for producing the same | |
JP3422570B2 (en) | CuSnS-based thermoelectric conversion semiconductor material and method of manufacturing the same | |
US3268330A (en) | Method for producing lead telluride thermoelectric elements by vacuum hot-pressing | |
JP3121400B2 (en) | Manufacturing method of tungsten sintered body | |
JP2564537B2 (en) | Black phosphorus-silicon crystal | |
JP2625280B2 (en) | Manufacturing method of oxide superconducting material | |
JP2002076450A (en) | Method for manufacturing thermoelectric material | |
US3060252A (en) | Encapsulated thermoelectric elements | |
JP4070108B2 (en) | Thermoelectric conversion material and manufacturing method thereof | |
JPH07105353B2 (en) | Semiconductor diamond and method for manufacturing the same | |
CN115285948B (en) | Copper selenium compound thermoelectric material and preparation method thereof | |
JP2623172B2 (en) | Method for producing silicon germanium alloy | |
US3260595A (en) | Process for the manufacture of vanadium-gallium intermetallic compound | |
JPS6030543A (en) | Manufacture of composite metallic wire | |
JPH0794787A (en) | Thrmoelectric transducer | |
JP3136657B2 (en) | Thermoelectric element manufacturing method | |
JPH012379A (en) | Method for manufacturing thermoelectric elements | |
JPS6347148B2 (en) |