JP3136657B2 - Thermoelectric element manufacturing method - Google Patents

Thermoelectric element manufacturing method

Info

Publication number
JP3136657B2
JP3136657B2 JP03171084A JP17108491A JP3136657B2 JP 3136657 B2 JP3136657 B2 JP 3136657B2 JP 03171084 A JP03171084 A JP 03171084A JP 17108491 A JP17108491 A JP 17108491A JP 3136657 B2 JP3136657 B2 JP 3136657B2
Authority
JP
Japan
Prior art keywords
particles
thermoelectric element
junction
type semiconductor
capsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03171084A
Other languages
Japanese (ja)
Other versions
JPH0521851A (en
Inventor
修 坂本
正 上村
敏和 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP03171084A priority Critical patent/JP3136657B2/en
Publication of JPH0521851A publication Critical patent/JPH0521851A/en
Application granted granted Critical
Publication of JP3136657B2 publication Critical patent/JP3136657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱電素子の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric element.

【0002】[0002]

【従来の技術】熱電素子は、熱エネルギーを電気エネル
ギーに変換する素子であり、図5に示すように、p型半
導体1とn型半導体2とをU字形に接合させ、その先端
のp−n接合部3を高温にさらして、発電させるもので
ある。
2. Description of the Related Art A thermoelectric element is an element for converting thermal energy into electric energy. As shown in FIG. 5, a p-type semiconductor 1 and an n-type semiconductor 2 are joined in a U-shape, and a p-type The n-junction 3 is exposed to high temperature to generate power.

【0003】そしてこの半導体の材料は、表1に示すよ
うに種々開発されており、製造するに際してはこれらの
粉末を加圧焼結して成形するのが一般的である。
[0003] Various semiconductor materials have been developed as shown in Table 1, and in the production thereof, these powders are generally formed by sintering under pressure.

【0004】[0004]

【表1】 [Table 1]

【0005】[0005]

【発明が解決しようとする課題】ところで熱電素子にお
いては、熱感応速度を速くするために、p−n接合部3
を細くする(断面積を小さく)ことが要求される。しか
しながら、細くすることはp−n接合部3に集中荷重が
加わることとなり、強度的に厳しい状態となる。
By the way, in the thermoelectric element, the pn junction 3
(Small cross section) is required. However, when the thickness is reduced, a concentrated load is applied to the pn junction 3, and the strength becomes severe.

【0006】そこで本発明は、上記事情に鑑み、強固な
p−n接合部を有する熱電素子を製造する方法を提供す
べく創案されたものである。
In view of the above circumstances, the present invention has been made in order to provide a method for manufacturing a thermoelectric element having a strong pn junction.

【0007】なお本発明に対比すべき従来技術として、
「熱電素子の製造法」(特公昭54−41315号公
報)がある。ただしこの方法は、単にp型或いはn型の
化合物粉末を混合した圧粉体を加圧焼結してp−n接合
部とする、としただけであり、実際には均一な圧粉体と
するのは難しく、強度等の信頼性に課題があると考えら
れる。
As a prior art to be compared with the present invention,
There is a "method of manufacturing a thermoelectric element" (Japanese Patent Publication No. 54-41315). However, in this method, a green compact in which a p-type or n-type compound powder is mixed is simply pressure-sintered to form a pn junction. Therefore, it is considered that there is a problem in reliability such as strength.

【0008】また「電熱変換素子」(特開平2−106
079号公報)では、低熱伝導材料から成る粒子の周り
に半導体を構成する材料から成る被覆層をメッキまたは
融着で形成し、これを焼結する手段が開示されている
が、この方法では湿式の特別な工程を必要し、製造工程
が複雑化するおそれがある。
Further, "Electrothermal conversion element" (JP-A-2-106)
No. 079) discloses a method of forming a coating layer made of a material constituting a semiconductor around particles made of a low thermal conductive material by plating or fusion and sintering the coating layer. Special process is required, and the manufacturing process may be complicated.

【0009】さらに「熱電気変換素子とその製造方法」
(特開昭61−203687号公報)は、半導体薄膜を
耐熱性絶縁薄板の両面に積層して、これを半導体粉末の
焼結板で挟んで、熱拡散により接合させるものである
が、これも数回の焼結と成膜工程が必要なために、工程
の複雑化、高コスト化が避け難い。
Further, "Thermoelectric conversion element and its manufacturing method"
(Japanese Patent Application Laid-Open No. 61-203687) discloses a method in which a semiconductor thin film is laminated on both sides of a heat-resistant insulating thin plate, sandwiched between sintered plates of semiconductor powder, and joined by thermal diffusion. Since several sintering and film forming steps are required, it is inevitable that the steps become complicated and costly.

【0010】本発明は、このような従来提案が有してい
る懸念がないものとして為されたものである。
[0010] The present invention has been made on the assumption that there is no such concern in the conventional proposal.

【0011】[0011]

【課題を解決するための手段】本発明は、p型半導体と
n型半導体とを適宜接合させた熱電素子を製造するに際
して、その両半導体の成分のうち電導性の低い物質を核
粒子とし、電導性の高い物質を被覆粒子としてカプセル
粒子を形成した後、このカプセル粒子の粉末をプラズマ
焼結してp−n接合部を成形するものである。
According to the present invention, when manufacturing a thermoelectric element in which a p-type semiconductor and an n-type semiconductor are appropriately joined, a substance having low conductivity among components of both semiconductors is used as a core particle, After forming capsule particles using a substance having high conductivity as coating particles, the powder of the capsule particles is subjected to plasma sintering to form a pn junction.

【0012】[0012]

【作用】上記方法によって、p−n接合部の成分はp型
半導体及びn型半導体に共通であるため焼結反応が促進
されると共に、粒子が均一に分散される。
According to the above-mentioned method, since the components of the pn junction are common to the p-type semiconductor and the n-type semiconductor, the sintering reaction is promoted and the particles are uniformly dispersed.

【0013】[0013]

【実施例】以下、本発明の実施例を添付図面に従って説
明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0014】図1及び図2は、本発明に係わる熱電素子
の製造方法第一の実施例を示したものであり、p型半導
体11としてFeSi2 を、n型半導体12としてCo
Siを用いる場合において示したものである。
FIGS. 1 and 2 show a first embodiment of a method of manufacturing a thermoelectric element according to the present invention, in which FeSi 2 is used as a p-type semiconductor 11 and Co as an n-type semiconductor 12.
This is a case where Si is used.

【0015】まず半導体11,12の成分のうち、電導
性の低い(電気抵抗の大きい)物質としてFeを、電導
性の高い(電気抵抗の小さい)物質としてCoを選択
し、図1に示したように、Fe粒子13を核粒子14と
し、Co粒子15を被覆粒子16としたカプセル粒子1
7を製造する。この製造工程では、Fe粒子13の径は
およそ40μmとし、Co粒子15の径は約1 μmとし
て、Fe粒子13にCo粒子15を付着させる。この付
着する力は、公知のファンデルワールス力によるもので
ある。このようにCo粒子15で囲まれたFe粒子13
を、2,000 〜7,000rpmの回転翼を備えた容器(図示せ
ず)に入れ、1 〜5 分間遠心転動させて、気流による衝
撃力を与える。この衝撃作用により、付着したCo粒子
15は、Fe粒子13の表面に強固に密着して、所望の
カプセル粒子17が得られる。
First, among the components of the semiconductors 11 and 12, Fe was selected as a substance having low conductivity (high electric resistance), and Co was selected as a substance having high conductivity (low electric resistance), as shown in FIG. Thus, the capsule particles 1 in which the Fe particles 13 are the core particles 14 and the Co particles 15 are the coating particles 16
7 is manufactured. In this manufacturing process, the diameter of the Fe particles 13 is about 40 μm, and the diameter of the Co particles 15 is about 1 μm, and the Co particles 15 are attached to the Fe particles 13. This adhering force is based on a known van der Waals force. The Fe particles 13 thus surrounded by the Co particles 15
Is placed in a container (not shown) equipped with a rotary blade of 2,000 to 7,000 rpm, and is centrifugally rolled for 1 to 5 minutes to give an impact force by an air current. Due to this impact action, the attached Co particles 15 are firmly adhered to the surface of the Fe particles 13, and desired capsule particles 17 are obtained.

【0016】次に熱電素子の本体部18,19を、それ
ぞれFeSi2 及びCoSiの粉末で焼結する。そして
その焼結体の間に、カプセル粒子17の粉末でp−n接
合部20の形状とした圧粉体を挿入し、プラズマ焼結法
を行う焼結装置(図示せず)にセットして、プラズマ焼
結する。この工程は、FeSi2 粉末、カプセル粉末、
CoSi粉末を順次所定の形枠に詰めて、同時に一体的
にプラズマ焼結してもよい。
Next, the main body portions 18 and 19 of the thermoelectric element are sintered with FeSi 2 and CoSi powders, respectively. Then, a green compact having the shape of the pn junction 20 with the powder of the capsule particles 17 is inserted between the sintered bodies, and set in a sintering apparatus (not shown) for performing a plasma sintering method. And plasma sintering. This process includes FeSi 2 powder, capsule powder,
The CoSi powder may be sequentially packed in a predetermined form and simultaneously plasma integrally sintered.

【0017】これでp−n接合部20がカプセル粒子1
7で焼結成形された熱電素子が得られ、p−n接合部2
0の成分が本体部18,19に共通であるため、焼結反
応が促進されて界面強度が高められる。そしてFe粒子
13及びCo粒子15が均一に分散された状態でプラズ
マ焼結されるので、強固な焼結品とすることができる。
また導電性の高いCo粒子15を被覆粒子としたので、
電子が流れ易く、性能のよい熱電素子が得られる。
Thus, the pn junction 20 becomes the capsule particle 1
7, a thermoelectric element formed by sintering is obtained.
Since the component 0 is common to the main body portions 18 and 19, the sintering reaction is promoted and the interface strength is increased. Since plasma sintering is performed in a state where the Fe particles 13 and the Co particles 15 are uniformly dispersed, a strong sintered product can be obtained.
Further, since the highly conductive Co particles 15 were used as the coated particles,
Electrons easily flow, and a high-performance thermoelectric element can be obtained.

【0018】なおこの実施例ではカプセル粒子17をF
e粒子13とCo粒子15とで製造するものとしたが、
被覆粒子をSi粒子としてもよい。このようにすれば、
p−n接合部の接合面はSiとなり、双方の本体部のS
i成分に必ず接することとなって、さらに接合強度が向
上する。
In this embodiment, the capsule particles 17 are
e particles 13 and Co particles 15 were used.
The coating particles may be Si particles. If you do this,
The bonding surface of the pn junction is Si, and the S
Since it always comes into contact with the i component, the bonding strength is further improved.

【0019】また上記したFe/Co及びFe/Siの
組み合わせのカプセル粒子を両方使用して、p−n接合
部20を成形するようにしてもよい。
Alternatively, the pn junction 20 may be formed by using both the capsule particles of the combination of Fe / Co and Fe / Si described above.

【0020】次に図3によって本発明の第二の実施例を
説明する。この製造方法は、前記第一の実施例のカプセ
ル粒子17で成るp−n接合部20に、高熱伝導高電気
伝導性セラミック粒子31を、また本体部18,19の
下端部32に低熱伝導高電気伝導性セラミック粒子33
をそれぞれ混合添加して、焼結させるものである。
Next, a second embodiment of the present invention will be described with reference to FIG. In this manufacturing method, the high thermal conductivity and high electric conductivity ceramic particles 31 are provided on the pn junction 20 composed of the capsule particles 17 of the first embodiment, and the low thermal conductivity is provided on the lower end portions 32 of the main body portions 18 and 19. Electrically conductive ceramic particles 33
Are mixed and added, and sintering is performed.

【0021】この第二の実施例の背景としては、次のよ
うな事情がある。熱電素子においては、高温側であるp
−n接合部20はできるだけ高温であること(高熱感応
性であること)、低温側の下端部32はできるだけ低温
であること(低熱感応性であること)が必要である。す
なわち温度勾配が大きいものであることが望ましい。こ
の第二の実施例によれば、強固なp−n接合部20とし
た上で、大きい温度勾配が得られるものである。なおセ
ラミック粒子31,33の添加の際は、一定の濃度で添
加しても、適宜な濃度勾配を付けて混合させても構わな
い。また高熱伝導高電気伝導性セラミック粒子31とし
てはTiB2 、ZrB2 などがあり、低熱伝導高電気伝
導性セラミック粒子33としてはZnC、SiC、Zr
2 などがある。
The background of the second embodiment is as follows. In the thermoelectric element, the high temperature side p
The −n junction 20 needs to be as hot as possible (high heat sensitivity), and the lower end 32 on the low temperature side needs to be as low temperature as possible (low heat sensitivity). That is, it is desirable that the temperature gradient is large. According to the second embodiment, a strong temperature gradient can be obtained with the strong pn junction 20. When the ceramic particles 31 and 33 are added, they may be added at a constant concentration or mixed with an appropriate concentration gradient. The high heat conductive high electric conductive ceramic particles 31 include TiB 2 and ZrB 2 , and the low heat conductive high electric conductive ceramic particles 33 include ZnC, SiC, Zr
O 2, and the like.

【0022】次に図4によって本発明の第三の実施例を
説明する。この製造方法は、前記第一の実施例で示した
本体部にも、カプセル粒子を使用するものである。すな
わちp型半導体の本体部41を形成するに際して、Fe
粒子を核粒子とし、それより小径のSi粒子を被覆粒子
としたカプセル粒子を、前記第一の実施例と同様にして
製造し、この粉末を所定形状に成形してプラズマ焼結す
る。この際これらFe粒子及びSi粒子のモル比を1:2
としておく。この焼結に伴う化学反応で半導体化合物た
るFeSi2 が生成される。またn型半導体の本体部4
2を、Co粒子を核粒子とし、これと同モルのSi粒子
を被覆粒子としたカプセル粒子で焼結成形し、CoSi
を得る。そしてこれら焼結体の間にp−n接合部20と
なるFe/Co或いはFe/Siのカプセル粒子の圧粉
体を挿入してプラズマ焼結し、熱電素子を製造する。
Next, a third embodiment of the present invention will be described with reference to FIG. This manufacturing method uses capsule particles also in the main body shown in the first embodiment. That is, when forming the main body 41 of the p-type semiconductor, Fe
Capsule particles are produced in the same manner as in the first embodiment, in which the particles are core particles and the Si particles having a smaller diameter are coated particles, and this powder is formed into a predetermined shape and plasma-sintered. At this time, the molar ratio of these Fe particles and Si particles was 1: 2
And keep it. The chemical reaction accompanying this sintering produces FeSi 2 as a semiconductor compound. Also, the main body 4 of the n-type semiconductor
2 was formed by sintering capsule particles using Co particles as core particles and the same moles of Si particles as coated particles,
Get. Then, a compact of Fe / Co or Fe / Si capsule particles to be the pn junction 20 is inserted between these sintered bodies and plasma sintered to manufacture a thermoelectric element.

【0023】この第三の実施例によれば、本体部41,
42の成分粒子であるFe粒子、Si粒子及びCo粒子
が均一に分散していることにより、電子の易動性及び熱
の伝導特性が断面方向ならびに長手方向において安定す
る。また核粒子/被覆粒子の組み合わせにおいて、電気
抵抗の小さい物質或いは熱伝導度の低い物質を被覆粒子
とすることにより、電子の通り道を作る、もしくは格子
振動による電子の散乱を少なくすることができる。すな
わち、従来より電子が流れ易く、かつ温度勾配が大きい
熱電素子とすることができ、熱電特性を向上させること
ができる。
According to the third embodiment, the main body 41,
Since the Fe particles, Si particles, and Co particles, which are the 42 component particles, are uniformly dispersed, electron mobility and heat conduction characteristics are stabilized in the cross-sectional direction and the longitudinal direction. In addition, in the combination of the core particles and the coated particles, by using a material having a small electric resistance or a material having a low thermal conductivity as the coated particles, it is possible to form a passage for electrons or to reduce scattering of electrons due to lattice vibration. That is, it is possible to obtain a thermoelectric element in which electrons flow more easily and a temperature gradient is larger than before, and the thermoelectric characteristics can be improved.

【0024】なお以上の実施例では、p型半導体の材料
としてFeSi2 を、n型半導体としてCoSiを用い
た場合において示したが、本発明はこれに限るものでは
なく、表2に示すように他のあらゆる組み合わせにおい
て適用できる。そしてp−n接合部のカプセル粒子の核
粒子及び被覆粒子の組み合わせは、同表に付記したよう
に選択することができる。
In the above embodiment, the case where FeSi 2 is used as the material of the p-type semiconductor and CoSi is used as the n-type semiconductor has been described. However, the present invention is not limited to this. Applicable in any other combination. The combination of the core particles and the coating particles of the capsule particles at the pn junction can be selected as described in the table.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0027】p型半導体及びn型半導体の成分のうち電
導性の低い物質を核粒子とし、電導性の高い物質を被覆
粒子としてカプセル粒子を形成し、その粉末をプラズマ
焼結してp−n接合部を成形するようにしたので、焼結
反応が促進されると共に、成分粒子が均一に分散され
て、強固なp−n接合部を有した熱電素子を得ることが
できる。
Among the components of the p-type semiconductor and the n-type semiconductor, capsule particles are formed by using a substance having low conductivity as core particles and a substance having high conductivity as coating particles. Since the joint is formed, the sintering reaction is promoted, and the component particles are uniformly dispersed, so that a thermoelectric element having a strong pn junction can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる熱電素子の製造方法の第一の実
施例を説明するためのカプセル粒子の断面図である。
FIG. 1 is a cross-sectional view of a capsule particle for explaining a first embodiment of a method for manufacturing a thermoelectric element according to the present invention.

【図2】図1のカプセル粒子により製造されたp−n接
合部を含む熱電素子の側面図である。
FIG. 2 is a side view of a thermoelectric device including a pn junction manufactured by the capsule particles of FIG. 1;

【図3】本発明の第二の実施例を説明するための熱電素
子の側面図である。
FIG. 3 is a side view of a thermoelectric element for explaining a second embodiment of the present invention.

【図4】本発明の第三の実施例を説明するための熱電素
子の側面図である。
FIG. 4 is a side view of a thermoelectric element for explaining a third embodiment of the present invention.

【図5】従来の熱電素子を示した側面図である。FIG. 5 is a side view showing a conventional thermoelectric element.

【符号の説明】[Explanation of symbols]

11 p型半導体 12 n型半導体 14 核粒子 16 被覆粒子 17 カプセル粒子 20 p−n接合部 Reference Signs List 11 p-type semiconductor 12 n-type semiconductor 14 core particle 16 coated particle 17 capsule particle 20 pn junction

フロントページの続き (56)参考文献 特開 昭50−115077(JP,A) 特開 平2−27779(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 35/32 G01K 7/02 Continuation of the front page (56) References JP-A-50-115077 (JP, A) JP-A-2-27779 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 35 / 32 G01K 7/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 p型半導体とn型半導体とを適宜接合さ
せた熱電素子を製造するに際して、上記両半導体の成分
のうち電導性の低い物質を核粒子とし、電導性の高い物
質を被覆粒子としてカプセル粒子を形成した後、該カプ
セル粒子の粉末をプラズマ焼結してp−n接合部を成形
することを特徴とする熱電素子の製造方法。
When manufacturing a thermoelectric element in which a p-type semiconductor and an n-type semiconductor are appropriately joined, a substance having a low conductivity among the components of the two semiconductors is used as a core particle, and a substance having a high conductivity is used as a coating particle. A method for manufacturing a thermoelectric element, comprising forming capsule particles by forming a pn junction by plasma sintering the powder of the capsule particles.
JP03171084A 1991-07-11 1991-07-11 Thermoelectric element manufacturing method Expired - Fee Related JP3136657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03171084A JP3136657B2 (en) 1991-07-11 1991-07-11 Thermoelectric element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03171084A JP3136657B2 (en) 1991-07-11 1991-07-11 Thermoelectric element manufacturing method

Publications (2)

Publication Number Publication Date
JPH0521851A JPH0521851A (en) 1993-01-29
JP3136657B2 true JP3136657B2 (en) 2001-02-19

Family

ID=15916710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03171084A Expired - Fee Related JP3136657B2 (en) 1991-07-11 1991-07-11 Thermoelectric element manufacturing method

Country Status (1)

Country Link
JP (1) JP3136657B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135715A (en) * 1999-08-24 2001-05-18 Ibiden Co Ltd Temperature measuring element and ceramic base material for semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JPH0521851A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
EP2377174B1 (en) High temperature, high efficiency thermoelectric module
EP3352233B1 (en) Thermoelectric conversion module and thermoelectric conversion device
KR102049011B1 (en) Thermoelectric module and method for manufacturing the same
CN102449790B (en) Thermoelectric material coated with a protective layer
JP2958451B1 (en) Thermoelectric conversion material and method for producing the same
US8569740B2 (en) High efficiency thermoelectric materials and devices
US20100024437A1 (en) High temperature compact thermoelectric module with gapless eggcrate
EP3432371A1 (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, thermoelectric conversion device, and method for manufacturing magnesium-based thermoelectric conversion material
EP0969526A1 (en) Thermoelectric element
JP2006228804A (en) Ceramic substrate for semiconductor module and its manufacturing method
JP3136657B2 (en) Thermoelectric element manufacturing method
JP2010098035A (en) Thermoelectric conversion element
JPH02106079A (en) Electricity heat conversion element
JPS5831755B2 (en) Base for electrical insulation
US20140360549A1 (en) Thermoelectric Module and Method of Making Same
JP2019169534A (en) Thermoelectric device, thermoelectric conversion module and method for manufacturing thermoelectric device
US20120024335A1 (en) Multi-layered thermoelectric device and method of manufacturing the same
JP6708339B2 (en) Thermoelectric conversion element, thermoelectric conversion module
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
JP3451456B2 (en) Thermoelectric generator, method of manufacturing the same, and thermoelectric generator
JPH11298052A (en) Thermoelectric element, thermoelectric material and manufacture thereof
JP2005191431A (en) Thermoelectric transducer
JP3476343B2 (en) Thermoelectric conversion material
JPH1022530A (en) Thermoplastic conversion element
JP2510158B2 (en) Thermoelectric element and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees