JP4070108B2 - Thermoelectric conversion material and manufacturing method thereof - Google Patents

Thermoelectric conversion material and manufacturing method thereof Download PDF

Info

Publication number
JP4070108B2
JP4070108B2 JP2002348798A JP2002348798A JP4070108B2 JP 4070108 B2 JP4070108 B2 JP 4070108B2 JP 2002348798 A JP2002348798 A JP 2002348798A JP 2002348798 A JP2002348798 A JP 2002348798A JP 4070108 B2 JP4070108 B2 JP 4070108B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
alkaline earth
earth metal
conversion material
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002348798A
Other languages
Japanese (ja)
Other versions
JP2004186241A (en
Inventor
伸治 平井
聡之 西村
揚一郎 上村
成紀 森田
道広 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nitto Denko Corp
National Institute for Materials Science
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Nitto Denko Corp
National Institute for Materials Science
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Nitto Denko Corp, National Institute for Materials Science, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002348798A priority Critical patent/JP4070108B2/en
Publication of JP2004186241A publication Critical patent/JP2004186241A/en
Application granted granted Critical
Publication of JP4070108B2 publication Critical patent/JP4070108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、熱電変換材料として有用な、高いパワーファクターを有する、アルカリ土類金属六ホウ化物焼結体とその製造方法に関する。
【0002】
【従来の技術】
熱電変換現象を利用して、温度差を電気に変換する技術は、将来のエネルギー源の候補として今や欠かせない。また、この熱電変換材料に電流を流すと、発熱又は吸熱現象を示すことから、小型冷蔵庫、小型冷凍庫、IC素子の吸熱板、恒温槽、電熱用等の利用が見込まれ、一部は実用化に至っている。
【0003】
熱電変換材料としては、BiTe,PbTe,Si−Ge,FeSi、炭化珪素系材料など既に多くの熱電変換材料が報告されており、これらに半導体形成元素をドープした各種の2元,3元化合物からなる熱電変換材料についての出願がなされている(特許文献1)。これらの熱電変換材料は、通常、結晶インゴット育成法、粉末焼結法、薄膜結晶生成法などで製造されている。
【0004】
アルカリ土類金属六ホウ化物は高融点化合物でありその熱起電力係数(μV/deg)は、CaBは−32.0、SrBは−30、BaBは−26.2であることが知られている(非特許文献1)。また、単結晶においては、大きなゼーベック係数を持ち、温度の上昇と共に、その値が増加することが報告されている(特許文献2)。
【0005】
【特許文献1】
特開2001-223392号公報
【非特許文献1】
ゲ・ヴェ・サムソノフ他「データブック高融点化合物便覧」,253頁,日・ソ通信社,昭和52年12月20日発行
【非特許文献2】
K.Gianno,et al.,"Low-temperature thermoelectric power of CaB6"J.Phys.,Condens.Mtter,14(2002)1035-1043
【0006】
【発明が解決しようとする課題】
既に多くの熱電変換材料が報告されているが、それらが有効に作動する温度領域は限定されている。特に、400℃以上の高温領域において、利用可能な熱電変換材料は極めて少ない。
この温度領域で代表的な材料はSi−Ge合金であるが、電気伝導度を大きくするために添加した不純物が、長時間の使用中に偏析を起こして、性能を劣化させる等の問題がある。また、一般に焼結材料は焼結助剤を用いないと良質な焼結体が和えられないため、助剤成分が焼結体に残存し、高温で長時間利用した場合の偏析の問題が生じる。
【0007】
熱起電力は、2種の電気伝導体を接合させたとき、2接点間の温度差ΔTに比例して発生する電圧Vで、それらの間の比例定数をゼーベック係数という。それをαで表すと、V=αΔTの関係式が成り立つ。
【0008】
熱電材料を熱電変換素子として利用する際の有効性を示す指標として、パワーファクターfpがある。熱電材料の比抵抗をρとした時に、パワーファクタ−fpは、fp=α2/ρで表される。さらに、性能指数Zは、Z=α2/ρ・κ(熱伝導率)で表される。
【0009】
熱電変換材料を用いて、より大きな電力を得るためには、熱電変換素子の両端により大きな温度差を与える必要がある。そのため、高温部の温度は出来るだけ高いことが望ましく、熱電変換材料には、高温で、大きな性能指数、又は、大きなパワーファクターを有することが要求されると共に、高温での耐熱性に優れ、またドーパントが高温で、偏析等の現象を起こすことによる性能の劣化が生じないことが重要である。
【0010】
【課題を解決するための手段】
本発明者らは、B12からなるクラスターを構成単位としたホウ素が、単体で、大きなゼーベック係数を持つことから金属の六ホウ化物の研究を進めている過程で、難焼結材料であるホウ化物の中で、アルカリ土類金属のホウ化物を焼結助剤を用いないで加圧焼結したものが、高温安定で耐熱性に優れており、高温長時間の使用でも偏析等の現象を起こすことによる性能の劣化がない熱電変換材料として使用できることを見出した。
【0011】
すなわち、本発明は、化学組成がAB6(ただし、AはBa,Ca,Srから選ばれるアルカリ土類金属、Bはホウ素)で示されるアルカリ土類金属六ホウ化物粉末の焼結体からなり、ドーピングした不純物を含まず、100〜460℃の温度範囲においてパワーファクターが1.2×10−4W/mK以上であることを特徴とする熱電変換材料、である。
【0012】
このアルカリ土類金属六ホウ化物焼結体からなる熱電変換材料は、融点が2000℃を越えており、何らの不純物の添加を必要としないで、高い性能指数を示すことから、室温から1000℃を超える高温度までの広い温度領域において、熱電変換材料として使用が可能である。
通常、熱電変換材料には電気抵抗を下げる目的で不純物を添加することが行われており、高温、長時間利用での偏析の問題が避けられないが、本発明の焼結体はこのような不純物を含まないので、偏析の問題が生じない。
【0013】
また、本発明は、化学組成がAB6(ただし、Aは、Ba,Ca,Srから選ばれるアルカリ土類金属、Bはホウ素)で示されるアルカリ土類金属六ホウ化物粉末を焼結助剤を用いないで、真空中又は不活性ガス中で、1500℃以上の温度範囲で焼結することを特徴とする上記の熱電変換材料の製造方法、である。
【0014】
本発明は、上記の通りの構成からなるものであるが、熱電変換性を発揮させるために、不純物のドーピングを必要としないことから、経時変化が少なく、安定した利用が可能となり、種々の用途を持った、熱電変換システムへの応用が期待される。
【0015】
【発明の実施の形態】
本発明の熱電変換材料は、市販品として入手できるアルカリ土類金属六ホウ化物からなる原料粉末を、焼結助剤を用いないでホットプレス法、プラズマ焼結法、常圧焼結法等により、焼結体として製造する。ホウ素単体を始め、ホウ化物の一般的傾向であるが、特にB12クラスターを構成単位としたホウ化物は、難焼結性であるため、上記の方法で1500℃以上で焼結した場合、かさ密度60〜75%程度の焼結体が得られる。焼結温度が1500℃未満では焼結時間やホットプレスにより圧力を高めても良質な焼結体を得るのが困難である。温度の上限は特に限定されないが、装置の能力や省エネルギーを考慮して1700℃以下程度とすることが好ましい。
【0016】
例えば、アルカリ土類金属六ホウ化物粉末を高純度炭素の型に入れ、常温で加圧成型し、その成形体を内面に六方晶型BN粉末を塗布した炭素製ダイを使用し、真空中又は不活性ガス中で20MPa以上の圧力を加えてホットプレスする。ホットプレス法による熱電変換材料の製造は、緻密性が向上し、電気抵抗が低くなることから、性能指数の大きな熱電変換素子を得ることが可能となる。
【0017】
常圧焼結法の場合は、例えば、アルカリ土類金属六ホウ化物粉末をステンレス鋼製の押し型を用いて、室温で加圧成型した後、その成形体を真空中又は不活性ガス中で焼結する。常圧焼結法の場合には、その形態を自由に選べることから、応用からの形態の要求に答えて、熱電変換素子を製造することが容易である。
【0018】
【実施例】
次に、実施例により、さらに詳しくこの発明について説明する。
実施例1
純度99%のBaB6粉末(Si:0.2%,Ca:0.02%,Al:0.01%,Fe:0.06%,Mg:0.005%,高純度化学(株)製:BAI05XB)約3gを、六方晶窒化ホウ素の粉末を塗布した炭素坩堝に入れ、高周波誘導加熱炉内の炭素製サセプター中にセットする。1×10-5Torr以下に真空引きした後、試料に20MPaの圧力を印加し、温度を10K/minで1500℃まで上昇させ、この状態で45分間加熱処理して、ホットプレス焼結体を得た。焼結体のかさ密度は約70%であった。
図1に、得られた焼結体のパワーファクターの温度依存性を示すとおり、100〜460℃の温度範囲においてパワーファクターは1.2×10−4W/mK以上であった。室温の性能指数は1.2×10−5/Kであった。
【0019】
実施例2
また、純度99%のSrB6粉末(高純度化学(株)製:SRI01PB)約3gを、六方晶窒化ホウ素の粉末を塗布した炭素坩堝に入れ、高周波誘導加熱炉内の炭素製サセプター中にセットする。1×10-5Torr以下に真空引きした後、試料に20MPaの圧力を印加し、温度を10K/minで1500℃まで上昇させ、この状態で30分間加熱処理して、ホットプレス焼結体を得た。焼結体のかさ密度は約70%であった。
【0020】
この試料の室温での、ゼーべック係数、比抵抗、パワーファクターの値は、それぞれ89μV/K、2×10-4Ω・cm、4×10-5W/mKであった。室温の性能指数は1.2×10−5/Kであった。
【0021】
実施例3
また、純度99.5%のCaB6粉末(添川理化(株)製)約3gを、六方晶窒化ホウ素の粉末を塗布した炭素坩堝に入れ、高周波誘導加熱炉内の炭素製サセプター中にセッ卜する。1×10-5Torr以下に真空引きした後、試料に20MPaの圧力を印加し、温度をI0K/minで1500℃まで上昇させ、この状態で45分間加熱処理して、ホットプレス焼結体を得た。焼結体のかさ密度は約70%であった。
【0022】
この試料の室温での、ゼーベック係数、比抵抗、パワーファクターの値は、それぞれ42μV/K、9×10-6Ω・cm、2×10-4W/mKであった。室温の性能指数は1.2×10−5/Kであった。
【0023】
【発明の効果】
以上詳しく説明したとおり、この発明では化学組成がAB6(ただし、AはAは、Ba,Ca,Srから選ばれるアルカリ土類金属、Bはホウ素)で示される、アルカリ土類金属六ホウ化物粉末の焼結体が、焼結助剤無添加の焼結体として提供されることから、化学的耐性に優れ、高温で安定で、長時間の使用に耐えうる熱電変換材料として利用され、クリーンエネルギーとしての熱電発電が実現される。
【図面の簡単な説明】
【図1】実施例1で得られたBaB6焼結体の熱電特性(パワーファクター)の温度依存性を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline earth metal hexaboride sintered body having a high power factor, useful as a thermoelectric conversion material, and a method for producing the same.
[0002]
[Prior art]
Technology that uses thermoelectric conversion to convert temperature differences into electricity is now indispensable as a candidate for future energy sources. In addition, when current is passed through this thermoelectric conversion material, it will generate heat or endotherm, so it is expected to be used for small refrigerators, small freezers, heat sinks for IC elements, thermostats, electric heating, etc. Has reached.
[0003]
As thermoelectric conversion materials, many thermoelectric conversion materials such as Bi 2 Te 3 , PbTe, Si—Ge, FeSi 2 , silicon carbide-based materials have already been reported, and various binary elements doped with semiconductor forming elements, An application for a thermoelectric conversion material comprising a ternary compound has been made (Patent Document 1). These thermoelectric conversion materials are usually manufactured by a crystal ingot growing method, a powder sintering method, a thin film crystal forming method, or the like.
[0004]
Alkaline earth metal hexaboride is a high melting point compound thereof thermoelectric power factor (μV / deg) is, CaB 6 is -32.0, be SrB 6 is -30, BaB 6 is -26.2 It is known (Non-Patent Document 1). Moreover, it has been reported that a single crystal has a large Seebeck coefficient and increases as the temperature increases (Patent Document 2).
[0005]
[Patent Document 1]
JP 2001-223392 A [Non-Patent Document 1]
Ge We Samsonov et al., "Data Book Handbook for High-Melting Compounds", page 253, published by Nihon-So News Agency, December 20, 1977 [Non-patent Document 2]
K. Gianno, et al., “Low-temperature thermoelectric power of CaB 6 ” J. Phys., Condens. Mtter, 14 (2002) 1035-1043
[0006]
[Problems to be solved by the invention]
Many thermoelectric conversion materials have already been reported, but the temperature range in which they operate effectively is limited. In particular, there are very few available thermoelectric conversion materials in a high temperature region of 400 ° C. or higher.
A typical material in this temperature range is a Si-Ge alloy, but there is a problem that impurities added to increase electrical conductivity cause segregation during long-term use and deteriorate performance. . In general, a sintered material cannot be used to maintain a high-quality sintered body unless a sintering aid is used, so that the auxiliary component remains in the sintered body, causing a problem of segregation when used for a long time at a high temperature. .
[0007]
The thermoelectromotive force is a voltage V generated in proportion to a temperature difference ΔT between two contact points when two kinds of electric conductors are joined, and a proportional constant between them is called a Seebeck coefficient. If it is expressed by α, the relational expression of V = αΔT is established.
[0008]
There is a power factor fp as an index indicating the effectiveness of using a thermoelectric material as a thermoelectric conversion element. When the specific resistance of the thermoelectric material is ρ, the power factor −fp is expressed by fp = α 2 / ρ. Furthermore, the figure of merit Z is expressed by Z = α 2 / ρ · κ (thermal conductivity).
[0009]
In order to obtain larger electric power using the thermoelectric conversion material, it is necessary to give a large temperature difference to both ends of the thermoelectric conversion element. Therefore, it is desirable that the temperature of the high temperature part is as high as possible, and the thermoelectric conversion material is required to have a high figure of merit or a large power factor at high temperature, and is excellent in heat resistance at high temperature. It is important that the dopant does not deteriorate in performance due to a phenomenon such as segregation at a high temperature.
[0010]
[Means for Solving the Problems]
The present inventors have boron was cluster of B 12 and the structural unit is alone, in the process of being investigated the hexaboride metal because of its large Seebeck coefficient, a sintering-material boric Alkaline earth metal borides that are pressure-sintered without using a sintering aid are stable at high temperatures and have excellent heat resistance. It has been found that it can be used as a thermoelectric conversion material that does not deteriorate in performance due to waking.
[0011]
That is, the present invention comprises a sintered body of an alkaline earth metal hexaboride powder having a chemical composition of AB 6 (where A is an alkaline earth metal selected from Ba, Ca, and Sr, and B is boron). A thermoelectric conversion material characterized by not containing doped impurities and having a power factor of 1.2 × 10 −4 W / mK 2 or more in a temperature range of 100 to 460 ° C.
[0012]
The thermoelectric conversion material composed of this alkaline earth metal hexaboride sintered body has a melting point of over 2000 ° C., and shows a high figure of merit without adding any impurities. It can be used as a thermoelectric conversion material in a wide temperature range up to a high temperature exceeding.
Usually, an impurity is added to the thermoelectric conversion material for the purpose of lowering the electric resistance, and the problem of segregation at high temperatures and for a long time is inevitable. Since it does not contain impurities, segregation problems do not occur.
[0013]
The present invention also provides a sintering aid for alkaline earth metal hexaboride powder having a chemical composition of AB 6 (where A is an alkaline earth metal selected from Ba, Ca and Sr, and B is boron). The above-described method for producing a thermoelectric conversion material, characterized in that sintering is performed in a temperature range of 1500 ° C. or higher in a vacuum or in an inert gas without using the above.
[0014]
Although the present invention is configured as described above, it does not require doping of impurities in order to exert thermoelectric conversion properties, so that there is little change over time, and stable use is possible, and various uses are possible. It is expected to be applied to a thermoelectric conversion system.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The thermoelectric conversion material of the present invention is a raw material powder made of alkaline earth metal hexaboride, which is available as a commercial product, by a hot press method, a plasma sintering method, a normal pressure sintering method, etc. without using a sintering aid. It is manufactured as a sintered body. Although it is a general tendency of borides including simple boron, especially borides having B 12 clusters as constituent units are difficult to sinter, so when sintered at 1500 ° C. or higher by the above method, bulk is required. A sintered body having a density of about 60 to 75% is obtained. If the sintering temperature is less than 1500 ° C., it is difficult to obtain a high-quality sintered body even if the pressure is increased by sintering time or hot pressing. The upper limit of the temperature is not particularly limited, but is preferably about 1700 ° C. or less in consideration of the capability of the apparatus and energy saving.
[0016]
For example, an alkaline earth metal hexaboride powder is placed in a high purity carbon mold, pressure molded at room temperature, and the molded body is used in a vacuum or Hot pressing is performed by applying a pressure of 20 MPa or more in an inert gas. Production of a thermoelectric conversion material by the hot press method improves the denseness and lowers the electric resistance, so that a thermoelectric conversion element having a large figure of merit can be obtained.
[0017]
In the case of the atmospheric pressure sintering method, for example, after alkaline earth metal hexaboride powder is pressure-molded at room temperature using a stainless steel pressing mold, the molded body is vacuumed or in an inert gas. Sinter. In the case of the atmospheric pressure sintering method, since the form can be freely selected, it is easy to manufacture the thermoelectric conversion element in response to the request of the form from the application.
[0018]
【Example】
Next, the present invention will be described in more detail with reference to examples.
Example 1
About 3 g of 99% pure BaB 6 powder (Si: 0.2%, Ca: 0.02%, Al: 0.01%, Fe: 0.06%, Mg: 0.005%, manufactured by High Purity Chemical Co., Ltd .: BAI05XB), hexagonal nitriding It is placed in a carbon crucible coated with boron powder and set in a carbon susceptor in a high frequency induction heating furnace. After evacuating to 1 × 10 −5 Torr or less, a pressure of 20 MPa was applied to the sample, the temperature was raised to 1500 ° C. at 10 K / min, and heat treatment was performed in this state for 45 minutes to obtain a hot press sintered body. Obtained. The bulk density of the sintered body was about 70%.
As shown in FIG. 1, the power factor of the obtained sintered body was 1.2 × 10 −4 W / mK 2 or more in the temperature range of 100 to 460 ° C. The figure of merit at room temperature was 1.2 × 10 −5 / K.
[0019]
Example 2
Also, about 3 g of 99% pure SrB 6 powder (manufactured by High Purity Chemical Co., Ltd .: SRI01PB) is placed in a carbon crucible coated with hexagonal boron nitride powder and set in a carbon susceptor in a high frequency induction heating furnace. To do. After evacuating to 1 × 10 −5 Torr or less, a pressure of 20 MPa was applied to the sample, the temperature was increased to 1500 ° C. at 10 K / min, and heat treatment was performed for 30 minutes in this state to obtain a hot press sintered body. Obtained. The bulk density of the sintered body was about 70%.
[0020]
The values of the Seebeck coefficient, specific resistance, and power factor of this sample at room temperature were 89 μV / K, 2 × 10 −4 Ω · cm, and 4 × 10 −5 W / mK 2 , respectively. The figure of merit at room temperature was 1.2 × 10 −5 / K.
[0021]
Example 3
Also, about 3 g of 99.5% pure CaB 6 powder (manufactured by Soekawa Rika Co., Ltd.) is placed in a carbon crucible coated with hexagonal boron nitride powder and placed in a carbon susceptor in a high frequency induction heating furnace. To do. After evacuating to 1 × 10 −5 Torr or less, a pressure of 20 MPa was applied to the sample, the temperature was raised to 1500 ° C. at 10 K / min, and heat treatment was performed in this state for 45 minutes to obtain a hot-press sintered body. Obtained. The bulk density of the sintered body was about 70%.
[0022]
The values of the Seebeck coefficient, specific resistance, and power factor at room temperature of this sample were 42 μV / K, 9 × 10 −6 Ω · cm, and 2 × 10 −4 W / mK 2 , respectively. The figure of merit at room temperature was 1.2 × 10 −5 / K.
[0023]
【The invention's effect】
As described above in detail, in the present invention, an alkaline earth metal hexaboride having a chemical composition of AB 6 (where A is an alkaline earth metal selected from Ba, Ca and Sr, and B is boron) is represented by AB 6. Since the powder sintered body is provided as a sintered body without the addition of a sintering aid, it is used as a thermoelectric conversion material that has excellent chemical resistance, is stable at high temperatures, and can withstand long-term use. Thermoelectric power generation as energy is realized.
[Brief description of the drawings]
FIG. 1 is a graph showing temperature dependence of thermoelectric properties (power factor) of a BaB 6 sintered body obtained in Example 1. FIG.

Claims (2)

化学組成がAB6(ただし、Aは、Ba,Ca,Srから選ばれるアルカリ土類金属、Bはホウ素)で示されるアルカリ土類金属六ホウ化物粉末の焼結体からなり、ドーピングした不純物を含まず、100〜460℃の温度範囲においてパワーファクターが1.2×10−4W/mK以上であることを特徴とする熱電変換材料。It consists of a sintered body of an alkaline earth metal hexaboride powder having a chemical composition of AB 6 (where A is an alkaline earth metal selected from Ba, Ca, and Sr, and B is boron). A thermoelectric conversion material characterized by having a power factor of 1.2 × 10 −4 W / mK 2 or more in a temperature range of 100 to 460 ° C. 化学組成がAB6(ただし、Aは、Ba,Ca,Srから選ばれるアルカリ土類金属、Bはホウ素)で示されるアルカリ土類金属六ホウ化物粉末を焼結助剤を用いないで、真空中又は不活性ガス中で、1500℃以上の温度範囲で焼結することを特徴とする請求項1記載の熱電変換材料の製造方法。An alkaline earth metal hexaboride powder having a chemical composition of AB 6 (where A is an alkaline earth metal selected from Ba, Ca and Sr, and B is boron) is vacuumed without using a sintering aid. The method for producing a thermoelectric conversion material according to claim 1, wherein sintering is performed in a temperature range of 1500 ° C. or higher in a medium or an inert gas.
JP2002348798A 2002-11-29 2002-11-29 Thermoelectric conversion material and manufacturing method thereof Expired - Lifetime JP4070108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348798A JP4070108B2 (en) 2002-11-29 2002-11-29 Thermoelectric conversion material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348798A JP4070108B2 (en) 2002-11-29 2002-11-29 Thermoelectric conversion material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004186241A JP2004186241A (en) 2004-07-02
JP4070108B2 true JP4070108B2 (en) 2008-04-02

Family

ID=32751612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348798A Expired - Lifetime JP4070108B2 (en) 2002-11-29 2002-11-29 Thermoelectric conversion material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4070108B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356658B (en) 2006-11-30 2011-02-16 松下电器产业株式会社 Power generation method employing thermal power generation element, thermal power generation element and method for fabricating the same, thermal power generation device
WO2008108034A1 (en) 2007-03-06 2008-09-12 Panasonic Corporation Power generation method employing thermoelectric generating element, thermoelectric generating element and its manufacturing method, and thermoelectric generating device
IN2014DN10526A (en) * 2012-06-21 2015-08-21 Trophy

Also Published As

Publication number Publication date
JP2004186241A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP5042245B2 (en) Doped lead telluride for thermoelectric applications
KR101042575B1 (en) In-Co-Fe-Sb BASED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
KR101042574B1 (en) In-Co-Ni-Sb BASED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
KR101995917B1 (en) Power factor enhanced thermoelectric material and method of producing same
Zhu et al. A new method of synthesis for thermoelectric materials: HPHT
JP2006523019A (en) Pb-Ge-Te-compound for thermoelectric generator or Peltier arrangement
KR101663183B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
Chae et al. Thermal conductivity of rutile germanium dioxide
JP4070108B2 (en) Thermoelectric conversion material and manufacturing method thereof
KR101688529B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric apparatus comprising same
CN105633267B (en) A kind of Cu2‑xS/CNT composite thermoelectric materials and preparation method thereof
CN109004079B (en) Preparation method of P-type Y-doped pseudo-ternary thermoelectric material
JPS6337065B2 (en)
CN103247752A (en) Ge-Pb-Te-Se composite thermoelectric material and preparation method thereof
JP5051412B2 (en) Rare earth polyboride-based high-temperature acid-resistant n-type thermoelectric material doped with carbon and nitrogen and method for producing the same
JP2019149545A (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and manufacturing method of thermoelectric conversion material
CN111653662B (en) GeTe-based thermoelectric material with pseudo-cubic phase structure and preparation method thereof
KR102562659B1 (en) Method for manufacturing of Bi-Sb-Te thermoelectric materials having a maximum efficiency temperature of 200 degrees or more
JP2549307B2 (en) Thermoelectric material
JP2009040649A (en) Clathrate compound and thermoelectric conversion element using the same
KR20110092762A (en) MANUFACTURING METHOD OF Mg2Si THERMOELECTRIC MATERIAL USING MECHANICAL ALLOYING AND Mg2Si THERMOELECTRIC MATERIAL
KR20160137848A (en) Thermoelectric materials, and thermoelectric module and thermoelectric apparatus comprising the same
KR20150044808A (en) Thermoelectric materials and their manufacturing method
Choi et al. Thermoelectric properties of n-type (Pb/sub 1-x/Ge/sub x/) Te fabricated by hot pressing method
JP2007073640A (en) Clathrate compound and thermoelectric conversion element using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

R150 Certificate of patent or registration of utility model

Ref document number: 4070108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term