JPH065141B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH065141B2
JPH065141B2 JP60227519A JP22751985A JPH065141B2 JP H065141 B2 JPH065141 B2 JP H065141B2 JP 60227519 A JP60227519 A JP 60227519A JP 22751985 A JP22751985 A JP 22751985A JP H065141 B2 JPH065141 B2 JP H065141B2
Authority
JP
Japan
Prior art keywords
oil
compressor
compressors
dome
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60227519A
Other languages
Japanese (ja)
Other versions
JPS6287770A (en
Inventor
和生 米本
功 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP60227519A priority Critical patent/JPH065141B2/en
Publication of JPS6287770A publication Critical patent/JPS6287770A/en
Publication of JPH065141B2 publication Critical patent/JPH065141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸入管によりドーム内に吸入された冷媒ガス
を圧縮して吐出管により吐出させる複数基の可変容量型
圧縮機を1系統の冷媒回路に並列に接続してなる冷凍装
置に関し、特に圧縮機間の均油を図る対策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a plurality of variable displacement compressors that compress refrigerant gas sucked into a dome by a suction pipe and discharge it by a discharge pipe. The present invention relates to a refrigerating device connected in parallel to a refrigerant circuit, and particularly to a measure for achieving oil equalization between compressors.

(従来の技術) 一般に、このような冷凍装置では、各圧縮機から吐出さ
れた冷媒ガスは互いに集合されて1個の油分離器に送出
され、ここで冷媒ガス中に分散している潤滑油が分離さ
れた後、凝縮器へ供給され、一方、上記油分離器で分離
された潤滑油は油戻し管を介して各圧縮機にほぼ均等に
返油されるようになされている。
(Prior Art) Generally, in such a refrigeration system, the refrigerant gas discharged from each compressor is collected and sent to one oil separator, where the lubricating oil dispersed in the refrigerant gas is collected. Is separated and then supplied to the condenser, while the lubricating oil separated by the oil separator is returned to the compressors substantially evenly through the oil return pipe.

ところで、各圧縮機の稼動時間が異なる場合には、稼動
時間の長い圧縮機側では稼動中に冷媒ガス中に分散され
る潤滑油の量が稼動時間の短い圧縮機側よりも多くな
る。しかし、この冷媒ガス中に分散された潤滑油は上述
の如く各圧縮機にほぼ均等に分配して返油されることか
ら、稼動時間の長い圧縮機内の潤滑油の量が漸減する一
方、稼動時間の短い圧縮機内の潤滑油の量が漸増して、
各圧縮機内に油量のアンバランスが生ずることとなる。
そして、圧縮機内の油量が漸減して油面が運転油面レベ
ル以下に下がると、潤滑油の潤滑部への供給が絶たれて
圧縮機が損傷するおそれがあった。
By the way, when the operating time of each compressor is different, the amount of lubricating oil dispersed in the refrigerant gas during operation is larger on the side of the compressor having a long operating time than on the side of a compressor having a short operating time. However, since the lubricating oil dispersed in this refrigerant gas is distributed almost evenly to each compressor as described above and returned, the amount of lubricating oil in the compressor with a long operating time gradually decreases while The amount of lubricating oil in the compressor with a short time gradually increases,
An imbalance in the amount of oil will occur in each compressor.
When the amount of oil in the compressor gradually decreases and the oil level drops below the operating oil level, the supply of lubricating oil to the lubrication section is cut off, which may damage the compressor.

そこで、従来、上記各圧縮機内における油量のアンバラ
ンスを解消するために、各圧縮機を均油管でもって連通
させ、油量の多い方から少ない方へと潤滑油を移動させ
ることにより、各圧縮機内の油量の均一化を図るように
したものが、例えば特公昭40−25038号公報や実
公昭53−36600号公報に開示されている。
Therefore, conventionally, in order to eliminate the imbalance of the oil amount in each of the compressors, each compressor is communicated with an oil equalizing pipe, and by moving the lubricating oil from the one with a large amount of oil to the one with a small amount of oil, A device designed to make the amount of oil in the compressor uniform is disclosed in, for example, Japanese Patent Publication No. 40-25038 and Japanese Utility Model Publication No. 53-36600.

(発明が解決しようとする課題) ところで、上記の従来のものでは、各圧縮機の運転容量
が異なる場合には、運転容量の大きい側の圧縮機に対す
る吸入管の圧力損失が大きくなるため、圧縮機のドーム
内圧は逆に運転容量の小さい側の圧縮機の方が高くな
り、その結果、冷媒ガスは運転容量の小さい圧縮機から
大きい圧縮機へ均油管を通じて移動するとともに、機内
の潤滑油も同方向に移動する。そして、上記運転容量の
小さい圧縮機内における油の戻り量が吐出量よりも多い
ときには、均油管レベル以上の潤滑油は均油管を介して
運転容量の大きい圧縮機内に移動し、各圧縮機内の油面
レベルは均油管位置で等しくなるが、逆に、油の戻り量
が吐出量よりも少ないときには、運転容量の小さい圧縮
機内の油面レベルが時間の経過と共に低下し(このと
き、運転容量の大きい圧縮機内の潤滑油は、各圧縮機の
ドーム内圧の差により運転容量の小さい圧縮機への移動
が阻止されている)、遂には油面レベルの運転油面レベ
ル以下への低下により潤滑油の潤滑部への供給が絶たれ
て圧縮機の損傷を招くことになる。
(Problems to be solved by the invention) By the way, in the above-mentioned conventional compressor, when the operating capacities of the compressors are different from each other, the pressure loss of the suction pipe with respect to the compressor on the side of the large operating capacity becomes large, and therefore, On the contrary, the dome internal pressure of the machine becomes higher in the compressor with the smaller operating capacity, and as a result, the refrigerant gas moves from the compressor with the smaller operating capacity to the compressor with the larger operating capacity through the oil equalizing pipe, and the lubricating oil in the machine also increases. Move in the same direction. When the return amount of oil in the compressor with a small operating capacity is larger than the discharge amount, the lubricating oil above the oil equalizing pipe level moves into the compressor with a large operating capacity through the oil equalizing pipe, and the oil in each compressor The oil level becomes equal at the oil level pipe position, but conversely, when the oil return amount is less than the discharge amount, the oil level in the compressor with a small operating capacity decreases with the passage of time (at this time, the operating capacity The lubricating oil in the large compressor is prevented from moving to the compressor with a small operating capacity due to the difference in the dome internal pressure of each compressor.) Finally, the lubricating oil is reduced by the oil level falling below the operating oil level. The supply of oil to the lubrication section is cut off, resulting in damage to the compressor.

そこで、この問題点を解決すべく、各圧縮機内を連通す
る均油管を大径のものとすることにより、上述の如き油
戻り量が吐出量よりも少ないときであっても、潤滑油
を、ドーム内圧の差により運転容量の小さい圧縮機から
大きい圧縮機へと流れる冷媒ガスの流動方向とは逆方向
すなわち運転容量の大きい圧縮機から小さい圧縮機へ移
動できるようになすことが考えられる。
Therefore, in order to solve this problem, by making the oil equalizing pipes communicating with each compressor have a large diameter, even when the oil return amount as described above is smaller than the discharge amount, the lubricating oil is It is conceivable that due to the difference in the dome internal pressure, the refrigerant gas flowing from a compressor with a small operating capacity to a compressor with a large operating capacity can move in the opposite direction, that is, from a compressor with a large operating capacity to a compressor with a small operating capacity.

ところが、この大径の均油管を用いる場合には、一方の
圧縮機に発生する振動が均油管を介して他方の圧縮機に
伝わり易く、振動モードが複雑になるとともに、均油管
内おけるトラップの発生を防止するために複雑な管形状
を採用することができず、均油管の強度を十分に確保す
ることが困難になるという問題が生じる。
However, when using this large-diameter oil equalizing pipe, the vibration generated in one compressor is easily transmitted to the other compressor via the oil equalizing pipe, the vibration mode becomes complicated, and the trap in the oil equalizing pipe becomes complicated. Since a complicated pipe shape cannot be adopted to prevent the occurrence, there arises a problem that it becomes difficult to secure sufficient strength of the oil equalizing pipe.

また、均油管で連結した各圧縮機内の油量を均一にする
他の解決手段として、油分離器から各圧縮機内に戻る潤
滑油の油量を、例えばフロート式レギュレータを使用し
て調整する方法や、各圧縮機内の油面を検知する油面セ
ンサからの信号により電磁弁を開閉して制御する方法な
どが考えられるが、その分、制御部品が増加することか
ら、装置のコストアップ化を招くとともに、制御面にお
いても信頼性に欠けるきらいがある。
Further, as another solution for equalizing the amount of oil in each compressor connected by an oil equalizing pipe, a method of adjusting the amount of lubricating oil returning from the oil separator into each compressor by using, for example, a float type regulator. Alternatively, a method of controlling by opening and closing the solenoid valve by a signal from an oil level sensor that detects the oil level in each compressor can be considered, but since the number of control parts increases by that amount, it is possible to increase the cost of the device. In addition to this, there is a tendency to lack reliability in terms of control.

さらに、各圧縮機から吐出された冷媒ガス中の潤滑油は
油分離器で常に完全に分離されるとは限らず、ここで分
離されない潤滑油があると、この分離されない潤滑油は
吸入管から吸入冷媒ガスと共に各圧縮機内に吸入され、
これにより時間の経過と共に各圧縮機のドーム内に油量
のアンバランスが生ずるおそれがある。
Furthermore, the lubricating oil in the refrigerant gas discharged from each compressor is not always completely separated by the oil separator.If there is lubricating oil that is not separated here, this lubricating oil that is not separated is taken from the suction pipe. Inhaled into each compressor together with the suction refrigerant gas,
This may cause imbalance of the oil amount in the dome of each compressor over time.

本発明はかかる諸点に鑑みてなされたものであり、その
目的とするところは、上記した油分離器を各圧縮機に個
別に対応させて設けるとともに、複数基の圧縮機の各々
の運転容量を適切に変化させるようにすることにより、
大径の均油管を用いることによる圧縮機への振動増大や
均油管の強度低下を防止し、しかも制御部品の増加によ
るコストアップ化や信頼性の低下を防止しつつ、各圧縮
機内における油量の均一化を図るとともに、均油運転の
間隔を延長化することにある。さらには、均油運転時の
運転容量変化を少なくして均油運転による能力変化を少
なくすることにある。
The present invention has been made in view of the above points, and an object thereof is to provide the above-described oil separators individually corresponding to each compressor, and to set the operating capacity of each of a plurality of compressors. By making appropriate changes,
The amount of oil in each compressor is prevented while preventing the vibration of the compressor from increasing and the strength of the oil equalizing pipe from decreasing due to the use of a large-diameter oil equalizing pipe, and preventing cost increase and reliability deterioration due to the increase of control parts. The aim is to make the oil leveling uniform and to extend the interval of oil equalizing operation. Furthermore, it is to reduce the change in operating capacity during the oil equalizing operation to reduce the change in capacity due to the oil equalizing operation.

(課題を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、第1
図に示すように、吸入管(8)によりドーム(4)内に
吸入された冷媒ガスを圧縮して吐出管(9)により吐出
させる複数基の可変容量型圧縮機(1),(2),
(3)を1系統の冷媒回路に並列に接続してなる冷凍装
置に対し、上記各圧縮機(1),(2),(3)のドー
ム(4)内を潤滑油(A)の運転油面レベル位置にて連
通する均油管(10),(10)と、上記吐出管(9)
に各圧縮機(1),(2),(3)毎にそれぞれ個別に
介設され、吐出管(9)により各圧縮機(1),
(2),(3)のドーム(4)外に吐出された冷媒ガス
から潤滑油(A)を分離する複数の油分離器(11),
(11),(11)と、この油分離器(11),(1
1),(11)で分離された潤滑油(A)を上記対応す
る各圧縮機(1),(2),(3)のドーム(4)内に
それぞれ戻す油戻し管(12),(12),(12)と
を設ける。さらに、上記各圧縮機(1),(2),
(3)の運転容量を所定の運転モードに基づいて所定時
間毎に少なくとも1基の圧縮機(1),(2),(3)
のドーム(4)内の潤滑油(A)の均油に必要な差圧が
確保される運転容量差に順次変化させるように制御する
コントローラ(14)を設ける構成とする。
(Means for Solving the Problem) In order to achieve the above object, the solution means of the present invention is
As shown in the figure, a plurality of variable displacement compressors (1), (2) that compress the refrigerant gas sucked into the dome (4) by the suction pipe (8) and discharge it by the discharge pipe (9). ,
Operation of lubricating oil (A) in the dome (4) of each of the compressors (1), (2), and (3) for a refrigeration system in which (3) is connected in parallel to a single-system refrigerant circuit Oil equalizing pipes (10), (10) communicating with each other at the oil level level and the discharge pipe (9)
The compressors (1), (2), and (3) are individually installed in the
A plurality of oil separators (11) for separating the lubricating oil (A) from the refrigerant gas discharged to the outside of the dome (4) of (2) and (3),
(11), (11) and this oil separator (11), (1
Oil return pipes (12), (1) for returning the lubricating oil (A) separated by (11) into the dome (4) of the corresponding compressors (1), (2), (3), respectively. 12) and (12) are provided. Further, the above compressors (1), (2),
The operation capacity of (3) is based on a predetermined operation mode, and at least one compressor (1), (2), (3) is set every predetermined time.
The dome (4) is provided with a controller (14) for controlling to sequentially change the differential pressure necessary for equalizing the lubricating oil (A) to an operating capacity difference that is secured.

(作用) 上記の構成により、本発明では、冷凍装置の通常運転
時、1系統の冷媒回路に並列に接続された複数基の可変
容量型圧縮機(1),(2),(3)の各ドーム(4)
内に吸入管(8)により吸入された冷媒ガスは、各圧縮
機(1),(2),(3)により圧縮された後、吐出管
(9)を介して吐出されて油分離器(11)で潤滑油
(A)が分離され、この油分離器(11)で分離された
潤滑油(A)は油戻し管(12),(12),(12)
を経て上記各圧縮機(1),(2),(3)のドーム
(4)内にそれぞれ戻される。
(Operation) According to the present invention, according to the present invention, in the normal operation of the refrigeration system, the plurality of variable capacity compressors (1), (2), (3) connected in parallel to the refrigerant circuit of one system are connected. Each dome (4)
The refrigerant gas sucked into the inside by the suction pipe (8) is compressed by the compressors (1), (2) and (3) and then discharged through the discharge pipe (9) to the oil separator ( The lubricating oil (A) is separated in 11), and the lubricating oil (A) separated in this oil separator (11) is returned to the oil return pipes (12), (12), (12).
And then returned to the inside of the dome (4) of each of the compressors (1), (2) and (3).

その際、上記各圧縮機(1),(2),(3)の夫々に
はそれぞれ油分離器(11)が個別に設けられているの
で、各圧縮機(1),(2),(3)から吐出された潤
滑油(A)は上記対応する各油分離器(11)で分離さ
れて、吐出元の各圧縮機(1),(2),(3)のドー
ム(4)内に各油戻し管(12)を介してそれぞれ個別
に戻されるようになり、よって、各圧縮機(1),
(2),(3)内の運転容量の差異に基づく油量のアン
バランスが解消されて、各圧縮機(1),(2),
(3)内の油量が長時間に亘って一定に確保されること
となる。
At this time, since each of the compressors (1), (2), (3) is individually provided with an oil separator (11), the compressors (1), (2), ( Lubricating oil (A) discharged from 3) is separated by each corresponding oil separator (11), and inside the dome (4) of each compressor (1), (2), (3) of discharge source. Are returned individually to the respective oil return pipes (12), and thus the compressors (1),
The imbalance of the oil amount based on the difference in the operating capacities in (2) and (3) is eliminated, and each compressor (1), (2),
The amount of oil in (3) will be kept constant over a long period of time.

また、上述の如くして各圧縮機(1),(2),(3)
内の油量バランスを保つようにしても、上記各油分離器
(11)で一部分離されない潤滑油(A)により各圧縮
機(1),(2),(3)内の油量バランスが崩れるお
それがあるが、上記各圧縮機(1),(2),(3)の
運転容量はコントローラ(14)により予め設定された
所定の運転モードに基づいて所定時間毎に少なくとも1
基の圧縮機(1),(2),(3)のドーム(4)内の
潤滑油(A)の均油に必要な差圧が確保される運転容量
差に順次変化するように制御されるので、圧縮機
(1),(2),(3)の運転容量の変化に基づくドー
ム内圧の差により、潤滑油(A)が各圧縮機(1),
(2),(3)のドーム(4)内を均油管(10),
(10)を介して移動せしめられることになり、これに
より、均油運転時の運転容量変化が少なくなって均油運
転による能力変化が少なくなり、各圧縮機(1),
(2),(3)内における油量の均一化がより一層確実
に図られることとなる。
Further, as described above, each compressor (1), (2), (3)
Even if the oil amount balance inside is maintained, the oil amount balance inside each compressor (1), (2), (3) is maintained by the lubricating oil (A) that is not partially separated by each oil separator (11). Although there is a risk of collapse, the operating capacity of each of the compressors (1), (2), and (3) is at least 1 every predetermined time based on a predetermined operation mode preset by the controller (14).
The compressors (1), (2), and (3) are controlled so that the differential pressure necessary for equalizing the lubricating oil (A) in the dome (4) of the compressors (1), (2), and (3) is sequentially changed to ensure a difference in operating capacity. Therefore, due to the difference in the dome internal pressure due to the change in the operating capacity of the compressors (1), (2), and (3), the lubricating oil (A) is
Inside the dome (4) of (2) and (3), the oil equalizing pipe (10),
(10), which reduces the change in operating capacity during oil equalizing operation and reduces the change in capacity due to oil equalizing operation.
The amount of oil in (2) and (3) can be made more uniform.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図は本発明の実施例に係る冷凍装置の概略構成を示
し、(1),(2),(3)は1系統の冷媒回路に互い
に並列に接続された可変容量型の第1,第2および第3
圧縮機であって、該各圧縮機(1),(2),(3)は
密閉ドーム(4)内に電動モータ(5)および電動モー
タ(5)の駆動軸(6)に連結された圧縮機本体(7)
を備えてなり、各ドーム(4)内底部には圧縮機本体
(7)の潤滑部に供給される潤滑油(A)が貯留されて
いる。
FIG. 1 shows a schematic configuration of a refrigerating apparatus according to an embodiment of the present invention, in which (1), (2), and (3) are first and second variable-capacity type refrigerant circuits connected in parallel to one system. Second and third
A compressor, wherein each compressor (1), (2), (3) is connected to an electric motor (5) and a drive shaft (6) of the electric motor (5) in a closed dome (4). Compressor body (7)
And the lubricating oil (A) supplied to the lubricating portion of the compressor body (7) is stored in the inner bottom portion of each dome (4).

また、上記第1,第2圧縮機(1),(2)のドーム
(4),(4)間および第2,第3圧縮機(2),
(3)のドーム(4),(4)間はそれぞれその内部を
潤滑油(A)の運転油面レベル位置にて連通するよう均
油管(10),(10)で連結されており、潤滑油
(A)が均油管(10),(10)を介して各圧縮機
(1),(2),(3)間を移動可能なようになされて
いる。
In addition, between the domes (4) and (4) of the first and second compressors (1) and (2), and between the second and third compressors (2),
Lubricating pipes (10) and (10) are connected so that the insides of the dome (4) and (4) of (3) communicate with each other at the operating oil level level of the lubricating oil (A). The oil (A) can move between the compressors (1), (2) and (3) via the oil equalizing pipes (10) and (10).

さらに、(8)は上記各圧縮機(1),(2),(3)
のドーム(4)内部に冷媒ガスを吸入するための吸入管
であって、該吸入管(8)は、メイン配管部(8a)
と、該メイン配管部(8a)に分岐接続された3本のサ
ブ配管部(8b),(8b),(8b)とからなり、各
サブ配管部(8b)の下流端はそれぞれ圧縮機(1),
(2),(3)のドーム(4)内上部に開口されてい
る。また、(9)は上記各圧縮機(1),(2),
(3)の圧縮機本体(7)で圧縮された冷媒ガスを各ド
ーム(4)外に吐出するための吐出管であって、該吐出
管(9)は、各圧縮機(1),(2),(3)の圧縮機
本体(7)に接続されたサブ配管部(9b),(9b)
(9b)と、該サブ配管部(9b),(9b),(9
b)の下流端に接続されたメイン配管部(9a)とから
なる。よって、各圧縮機(1),(2),(3)では吸
入管(8)によりドーム(4)内に吸入された冷媒ガス
を圧縮機本体(7)で圧縮した後、吐出管(9)を介し
てドーム(4)外に吐出するように構成されている。
Furthermore, (8) is each of the above compressors (1), (2), (3)
Is a suction pipe for sucking the refrigerant gas into the dome (4) of the main pipe portion (8a).
And three sub-pipes (8b), (8b), (8b) branched and connected to the main pipe (8a), and the downstream end of each sub-pipe (8b) is a compressor ( 1),
It is opened in the upper part in the dome (4) of (2) and (3). Further, (9) is each of the compressors (1), (2),
A discharge pipe for discharging the refrigerant gas compressed in the compressor body (7) of (3) to the outside of each dome (4), wherein the discharge pipe (9) is provided for each compressor (1), ( Sub piping parts (9b) and (9b) connected to the compressor body (7) of (2) and (3)
(9b) and the sub-pipe parts (9b), (9b), (9
It consists of the main piping part (9a) connected to the downstream end of b). Therefore, in each of the compressors (1), (2), and (3), the refrigerant gas sucked into the dome (4) by the suction pipe (8) is compressed by the compressor body (7) and then discharged by the discharge pipe (9). ) And is discharged to the outside of the dome (4).

また、上記吐出管(9)の各サブ配管部(9b)には、
サブ配管部(9b)によりドーム(4)外に吐出された
冷媒ガスから潤滑油(A)を分離する油分離器(11)
が各圧縮機(1),(2),(3)毎にそれぞれ個別に
介設され、該各油分離器(11)はそれぞれ油戻し管
(12)を介して上記吸入管(8)の対応する各サブ配
管部(8b)に接続されており、各油分離器(11)で
分離された潤滑油(A)を油戻し管(12)および吸入
管(8)を介して上記対応する各圧縮機(1),
(2),(3)へそれぞれ戻すようになされている。ま
た、上記各油戻し管(12)にはキャピラリ(13)が
それぞれ介設されており、このキャピラリ(13)でも
って上記各圧縮機(1),(2),(3)のドーム
(4)内への返油量がコントロールされる。
In addition, in each sub piping portion (9b) of the discharge pipe (9),
An oil separator (11) for separating the lubricating oil (A) from the refrigerant gas discharged to the outside of the dome (4) by the sub-pipe section (9b).
Are individually provided for each of the compressors (1), (2), (3), and each of the oil separators (11) is connected to the suction pipe (8) through an oil return pipe (12). Lubricating oil (A), which is connected to each corresponding sub-pipe section (8b) and separated by each oil separator (11), corresponds to the above through the oil return pipe (12) and the suction pipe (8). Each compressor (1),
It is designed to return to (2) and (3) respectively. Further, capillaries (13) are respectively installed in the oil return pipes (12), and the capillaries (13) are used to form the dome (4) of the compressors (1), (2), (3). The amount of oil returned to the inside is controlled.

さらに、上記各圧縮機(1),(2),(3)は、均油
運転時、コントローラ(14)によりその運転容量が予
め設定され運転モードに基づいて所定時間毎に少なくと
も1基の圧縮機(1),(2),(3)のドーム(4)
内の潤滑油(A)の均油に必要な差圧が確保される運転
容量差に順次変化するように制御される。その制御の具
体例を第2図により説明するに、均油運転前において、
例えば第1および第3圧縮機(1),(3)のドーム
(4),(4)内の油面が均油管(10)の位置よりも
下側にあり、その分、第2圧縮機(2)側の油面が均油
管(10)の位置よりも上側にある場合、すなわち、第
2圧縮機(2)側に油量が片寄った場合を想定すると、
先ず、各圧縮機(1),(2),(3)の運転容量が共
に100%である均油運転前の状態から均油運転開始に
よる第1のステップSに移行させ、第1圧縮機(1)
の運転容量を50%に低下させるが、第2および第3圧
縮機(2),(3)の運転容量は以前と変わらずに10
0%に維持する。
Further, each of the compressors (1), (2), and (3) has its operating capacity preset by the controller (14) during the oil-equalizing operation, and at least one compressor is compressed every predetermined time based on the operation mode. Dome (4) of machine (1), (2), (3)
It is controlled so that the differential pressure required for oil leveling of the lubricating oil (A) therein is gradually changed to an operating capacity difference that is secured. A specific example of the control will be described with reference to FIG.
For example, the oil level in the domes (4) and (4) of the first and third compressors (1) and (3) is below the position of the oil equalizing pipe (10), and the second compressor is correspondingly provided. Assuming that the oil level on the (2) side is above the position of the oil equalizing pipe (10), that is, if the oil amount deviates to the second compressor (2) side,
First, the compressor (1), (2), (3) is shifted first to step S 1 according to the oil equalizing operation begins with the oil-equalizing operation state before it is operating capacity both 100%, the first compression Machine (1)
Although the operating capacity of the compressors is reduced to 50%, the operating capacities of the second and third compressors (2) and (3) remain the same as before.
Keep at 0%.

したがって、この第1のステップSでは、運転容量の
低下した第1圧縮機(1)のドーム内圧が第2および第
3圧縮機(2),(3)よりも高くなるが、第1圧縮機
(1)側では油面が均油管(10)の高さ位置に達して
いないことから、潤滑油(A)の第1圧縮機(1)側か
ら第2圧縮機(2)側への移動が行われず、各圧縮機
(1),(2),(3)の油量は均油運転前の状態と変
わらない。
Therefore, in this first step S 1 , the dome internal pressure of the first compressor (1) whose operating capacity has decreased becomes higher than that of the second and third compressors (2), (3), but the first compression On the machine (1) side, since the oil level does not reach the height position of the oil equalizing pipe (10), the lubricating oil (A) from the first compressor (1) side to the second compressor (2) side Since the compressors (1), (2), and (3) are not moved, the amount of oil in each compressor (1), (2), and (3) does not change from the state before the oil equalizing operation.

次に、この第1のステップSから第2のステップS
に移行すると、上記第1圧縮機(1)の運転容量を第1
のステップSの50%に、第3圧縮機(3)を依然と
して100%にそれぞれ維持するが、第2圧縮機(2)
の運転容量は50%に低下させる。したがって、今度は
第2圧縮機(2)のドーム内圧が第1圧縮機(1)と同
等に高くなり、第2圧縮機(2)側の潤滑油(A)が第
3圧縮機(3)側に移動するが、潤滑油(A)の第1圧
縮機(1)側への移動は行われない。
Next, from the first step S 1 to the second step S 2
The operating capacity of the first compressor (1) is changed to the first
The third compressor (3) is still maintained at 100% respectively at 50% of step S 1 of step 2, but the second compressor (2)
Operating capacity is reduced to 50%. Therefore, this time, the dome internal pressure of the second compressor (2) becomes as high as that of the first compressor (1), and the lubricating oil (A) on the second compressor (2) side becomes the third compressor (3). However, the lubricating oil (A) is not moved to the first compressor (1) side.

さらに、第2のステップSから第3のステップS
移行すると、今度は第1および第2圧縮機(1),
(2)の運転容量を共に100%に復帰させるが、第3
圧縮機(3)の運転容量は50%に低下させる。したが
って、第1および第2圧縮機(1),(2)の夫々のド
ーム内圧が低くなる一方、第3圧縮機(3)のドーム内
圧が高くなり、第3圧縮機(3)側の潤滑油(A)が第
2圧縮機(2)側に移動する(この際、潤滑油(A)の
第2圧縮機(2)側から第1圧縮機(1)側への移動は
双方のドーム内圧が等しいことから行われない)。
Further, when the process proceeds from the second step S 2 to the third step S 3 , this time, the first and second compressors (1),
Both operating capacities of (2) are returned to 100%.
The operating capacity of the compressor (3) is reduced to 50%. Therefore, the dome internal pressure of each of the first and second compressors (1) and (2) decreases, while the dome internal pressure of the third compressor (3) increases, and the lubrication of the third compressor (3) side occurs. The oil (A) moves to the side of the second compressor (2) (At this time, the movement of the lubricating oil (A) from the side of the second compressor (2) to the side of the first compressor (1) is performed on both domes. Not done because the internal pressure is equal).

次いで、第3のステップSから第4のステップS
移行すると、第1圧縮機(1)の運転容量を第4のステ
ップSの100%に、また第3圧縮機(3)を第4の
ステップSの50%にそれぞれ維持するが、第2圧縮
機(2)の運転容量は再び50%に低下させる。したが
って、第2圧縮機(2)のドーム内圧が第3圧縮機
(3)と同等に高くなり、第2圧縮機(2)側の潤滑油
(A)が第1圧縮機(1)側に移動する(この際、潤滑
油(A)の第2圧縮機(2)側から第3圧縮機(3)側
への移動は双方のドーム内圧が等しいことから行われな
い。この段階では各圧縮機(1),(2),(3)の油
面がほぼ等しく均油管(10)の位置に達している。そ
して、以上をもって均油運転を終了し、この後は再び均
油運転前の各運転容量に復帰させる。
Then, when the transition from the third step S 3 to the fourth step S 4, the first compressor operating capacity of (1) to 100 percent of a fourth step S 4, and the third compressor (3) It is maintained at 50% of the fourth step S 4 , respectively, but the operating capacity of the second compressor (2) is again reduced to 50%. Therefore, the dome internal pressure of the second compressor (2) becomes as high as that of the third compressor (3), and the lubricating oil (A) on the second compressor (2) side moves to the first compressor (1) side. It moves (at this time, the movement of the lubricating oil (A) from the second compressor (2) side to the third compressor (3) side is not performed because both dome internal pressures are equal. The oil levels of the machines (1), (2), and (3) have almost reached the position of the oil equalizing pipe (10), and the oil equalizing operation is completed as described above, and thereafter the oil before the oil equalizing operation is performed again. Restore to each operating capacity.

したがって、上記実施例においては、冷凍装置の通常運
転時に、各圧縮機(1),(2),(3)に油戻し量と
油吐出量との不一致による油量のアンバランスが生じた
としても、均油運転時には、各圧縮機(1),(2),
(3)の運転容量がコントローラ(14)により第2図
に示す如く所定の運転モードに基づいて所定時間毎に少
なくとも1基の圧縮機(1),(2),(3)のドーム
(4)内の潤滑油(A)の均油に必要な差圧が確保され
る運転容量差に順次変化するように制御されていること
から、上記油量のアンバランスが上記所定の運転モード
に基づく潤滑油(A)の移動によって解消され、これに
より、均油運転時の運転容量変化が少なくなって均油運
転による能力変化が少なくなり、各圧縮機(1),
(2),(3)のドーム(4)内における油量の均一化
を確実に図ることができる。
Therefore, in the above embodiment, it is considered that an imbalance of the oil amount occurs in the compressors (1), (2), and (3) during the normal operation of the refrigeration system due to the discrepancy between the oil return amount and the oil discharge amount. Also, during oil-equalizing operation, each compressor (1), (2),
The operation capacity of (3) is controlled by the controller (14) based on a predetermined operation mode as shown in FIG. 2 and at least every one dome (4) of the compressors (1), (2), and (3) at every predetermined time. Since it is controlled so that the differential pressure necessary for equalizing the lubricating oil (A) in () is sequentially changed to an operating capacity difference that secures it, the imbalance of the oil amount is based on the predetermined operation mode. This is eliminated by the movement of the lubricating oil (A), which reduces the change in operating capacity during oil equalizing operation and reduces the change in capacity due to oil equalizing operation.
The amount of oil in the dome (4) of (2) and (3) can be surely made uniform.

また、油分離器(11)を各圧縮機(1),(2),
(3)毎にそれぞれ個別に設けたことから、各圧縮機
(1),(2),(3)から吐出された潤滑油(A)の
大部分は吐出元の各圧縮機(1),(2),(3)にそ
れぞれ個別に戻されることとなり、各圧縮機(1),
(2),(3)のドーム(4)における潤滑油(A)の
片寄り発生までの時間を長くすることができて各圧縮機
(1),(2),(3)の油面の均一状態を長時間に亘
って維持することができ、均油運転までの間隔を長く保
って実用性を大きくすることができる。さらに、各圧縮
機(1),(2),(3)毎に独立して油の吐出、返油
を繰り返し行うので、返油先を選択するための切換弁等
が不要となって実施例の如くキャピラリ(13)で代用
でき、装置の簡素化を図ることができる。
In addition, the oil separator (11) is connected to each compressor (1), (2),
Since each of the (3) is individually provided, most of the lubricating oil (A) discharged from each of the compressors (1), (2), (3) is discharged from each of the compressors (1), Each of the compressors (1), (3) will be returned to the compressor (1),
It is possible to lengthen the time until the deviation of the lubricating oil (A) occurs in the dome (4) of (2) and (3), and it is possible to increase the oil level of the compressors (1), (2) and (3). The uniform state can be maintained for a long time, and the interval until the oil-equalizing operation can be kept long to enhance the practicality. Furthermore, since the compressors (1), (2), and (3) independently discharge and return oil repeatedly, a switching valve or the like for selecting a return destination is not required As described above, the capillary (13) can be used as a substitute, and the device can be simplified.

尚、上記の各具体例に限らず、他のあらゆるケースにお
いても上記運転モードによって油面の均一化が可能とさ
れる。
In addition to the above specific examples, the oil level can be made uniform by the operation mode in all other cases.

(発明の効果) 以上説明したように、本発明によれば、複数基の可変容
量型圧縮機(1),(2),(3)を1系統の冷媒回路
に並列に接続してなる冷凍装置において、油分離器(1
1)を上記各圧縮機(1),(2),(3)毎にそれぞ
れ個別に設けるとともに、各圧縮機(1),(2),
(3)の運転容量を所定の運転モードに基づいて所定時
間毎に少なくとも1基の圧縮機(1),(2),(3)
のドーム(4)内の潤滑油(A)の均油に必要な差圧が
確保される運転容量差に順次変化させるようにしたの
で、各圧縮機(1),(2),(3)ではそれぞれ独立
して油の吐出、返油が行われて長時間に亘って油面の均
一状態を維持することができ、しかも、各圧縮機
(1),(2),(3)に油量のアンバランスが生じた
場合においても各圧縮機(1),(2),(3)内にお
ける油量を確実に均一にすることができるとともに、均
油運転による能力変化を少なくすることができる。
(Effects of the Invention) As described above, according to the present invention, a refrigeration system in which a plurality of variable displacement compressors (1), (2) and (3) are connected in parallel to a single refrigerant circuit. In the device, the oil separator (1
1) is separately provided for each of the compressors (1), (2), (3), and each compressor (1), (2),
The operation capacity of (3) is based on a predetermined operation mode, and at least one compressor (1), (2), (3) is set every predetermined time.
Since the differential pressure required for equalizing the lubricating oil (A) in the dome (4) of each of the compressors is sequentially changed to the operating capacity difference that is ensured, each compressor (1), (2), (3) The oil can be discharged and returned independently of each other to maintain a uniform oil level over a long period of time. In addition, the oil can be supplied to each compressor (1), (2), (3). Even if there is an imbalance in the amount of oil, the amount of oil in each compressor (1), (2), (3) can be surely made uniform, and the change in capacity due to oil leveling operation can be reduced. it can.

また、このように各圧縮機(1),(2),(3)間の
均油を確実に行い得ることから、小径の均油管(10)
を用いることが可能で、大径の均油管を用いることによ
る両圧縮機への振動増大や均油管の強度低下の防止を図
ることができる。さらに、フロート式レギュレータや油
面センサ等の制御部品を要することなく各圧縮機
(1),(2),(3)の均油を行い得ることから、コ
ストの低減化および制御面における信頼性の向上をも図
ることができる。
In addition, since oil equalization between the compressors (1), (2), and (3) can be reliably performed in this manner, the oil equalizing pipe (10) having a small diameter is provided.
Can be used, and it is possible to prevent an increase in vibration of both compressors and a reduction in strength of the oil equalizing pipe due to the use of a large diameter oil equalizing pipe. Furthermore, since the compressors (1), (2), and (3) can be oil-equalized without requiring control parts such as a float type regulator and an oil level sensor, cost reduction and control reliability can be achieved. Can also be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係る冷凍装置の概略構成図、
第2図はコントローラにより制御される圧縮機の運転モ
ードを示す図である。 (1)…第1圧縮機、(2)…第2圧縮機、(3)…第
3圧縮機、(4)…ドーム、(8)…吸入管、(9)…
吐出管、(10)…均油管、(11)…油分離器、(1
2)…油戻し管、(14)…コントローラ、(A)…潤
滑油。
FIG. 1 is a schematic configuration diagram of a refrigerating apparatus according to an embodiment of the present invention,
FIG. 2 is a diagram showing operation modes of the compressor controlled by the controller. (1) ... 1st compressor, (2) ... 2nd compressor, (3) ... 3rd compressor, (4) ... Dome, (8) ... Suction pipe, (9) ...
Discharge pipe, (10) ... Oil leveling pipe, (11) ... Oil separator, (1
2) ... Oil return pipe, (14) ... Controller, (A) ... Lubricating oil.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】吸入管(8)によりドーム(4)内に吸入
された冷媒ガスを圧縮して吐出管(9)により吐出させ
る複数基の可変容量型圧縮機(1),(2),(3)を
1系統の冷媒回路に並列に接続してなる冷凍装置におい
て、上記各圧縮機(1),(2),(3)のドーム
(4)内を潤滑油(A)の運転油面レベル位置にて連通
する均油管(10),(10)と、上記吐出管(9)に
各圧縮機(1),(2),(3)毎にそれぞれ個別に介
設され、吐出管(9)により各圧縮機(1),(2),
(3)のドーム(4)外に吐出された冷媒ガスから潤滑
油(A)を分離する複数の油分離器(11),(1
1),(11)と、この油分離器(11),(11),
(11)で分離された潤滑油(A)を上記対応する各圧
縮機(1),(2),(3)のドーム(4)内にそれぞ
れ戻す油戻し管(12),(12),(12)と、上記
各圧縮機(1),(2),(3)の運転容量を所定の運
転モードに基づいて所定時間毎に少なくとも1基の圧縮
機(1),(2),(3)のドーム(4)内の潤滑油
(A)の均油に必要な差圧が確保される運転容量差に順
次変化させるように制御するコントローラ(14)とを
備えたことを特徴とする冷凍装置。
1. A plurality of variable displacement compressors (1), (2), which compress a refrigerant gas sucked into a dome (4) by a suction pipe (8) and discharge it by a discharge pipe (9). In a refrigeration system in which (3) is connected in parallel to a single-system refrigerant circuit, the operating oil of lubricating oil (A) is placed inside the dome (4) of each of the compressors (1), (2), and (3). The oil equalizing pipes (10) and (10) communicating with each other at the surface level position and the discharge pipe (9) are individually provided for the compressors (1), (2) and (3) respectively, and the discharge pipes By (9), each compressor (1), (2),
A plurality of oil separators (11), (1) for separating the lubricating oil (A) from the refrigerant gas discharged outside the dome (4) of (3)
1), (11) and this oil separator (11), (11),
Oil return pipes (12), (12), which return the lubricating oil (A) separated in (11) into the dome (4) of the corresponding compressors (1), (2), (3), respectively. (12) and the operating capacity of each of the compressors (1), (2), (3) based on a predetermined operation mode and at least one compressor (1), (2), ( 3) A controller (14) for controlling to sequentially change a differential pressure required for equalizing the lubricating oil (A) in the dome (4) to an operating capacity difference that is secured. Refrigeration equipment.
JP60227519A 1985-10-11 1985-10-11 Refrigeration equipment Expired - Lifetime JPH065141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60227519A JPH065141B2 (en) 1985-10-11 1985-10-11 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60227519A JPH065141B2 (en) 1985-10-11 1985-10-11 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS6287770A JPS6287770A (en) 1987-04-22
JPH065141B2 true JPH065141B2 (en) 1994-01-19

Family

ID=16862173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60227519A Expired - Lifetime JPH065141B2 (en) 1985-10-11 1985-10-11 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH065141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215108U (en) * 1988-07-15 1990-01-30

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071126B2 (en) * 1986-07-28 1995-01-11 株式会社日立製作所 Multi refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154889U (en) * 1982-04-09 1983-10-17 株式会社日立製作所 Refrigeration equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215108U (en) * 1988-07-15 1990-01-30

Also Published As

Publication number Publication date
JPS6287770A (en) 1987-04-22

Similar Documents

Publication Publication Date Title
JP2865707B2 (en) Refrigeration equipment
CA1277501C (en) Suction line flow stream separator for parallel compressor arrangements
US4822259A (en) System of compressing miscible fluids
JP3937884B2 (en) Refrigeration air conditioner
JP3939318B2 (en) Air conditioner
JPH065141B2 (en) Refrigeration equipment
JPH065140B2 (en) Refrigeration equipment
JPH0557501B2 (en)
JPS6458970A (en) Heat pump type air conditioner
JP2001173564A (en) Oil equalizing system of plural compressors
JPH0583824B2 (en)
JPH063324B2 (en) Refrigeration equipment
JPH01219372A (en) Equalized oiling control method for refrigerator
JPH07101034B2 (en) Twin type compression device
JP2835044B2 (en) Air conditioner
JP2824289B2 (en) Oil recovery unit for oil-cooled compressor
JP2003240367A (en) Refrigerating air-conditioner
JP2000088370A (en) Oil equalizing system for plural compressor
JPS63302258A (en) Refrigerator
JPS6340760Y2 (en)
JPS6240134Y2 (en)
JPH04365990A (en) Freezing device
JP2760562B2 (en) Parallel compressor refrigeration system
JPH01219373A (en) Compressor controlling method for refrigerator
JPH094935A (en) Deep freezer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term