JPS63302258A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS63302258A
JPS63302258A JP13556287A JP13556287A JPS63302258A JP S63302258 A JPS63302258 A JP S63302258A JP 13556287 A JP13556287 A JP 13556287A JP 13556287 A JP13556287 A JP 13556287A JP S63302258 A JPS63302258 A JP S63302258A
Authority
JP
Japan
Prior art keywords
oil
compressor
compressors
amount
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13556287A
Other languages
Japanese (ja)
Inventor
隆 松崎
大西 晴夫
賢治 宮田
井上 憲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP13556287A priority Critical patent/JPS63302258A/en
Publication of JPS63302258A publication Critical patent/JPS63302258A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸入管によりドーム内に吸入された冷媒ガス
を圧縮して吐出管により吐出させる複数基の可変容量型
圧縮機を1系統の冷媒回路に並列に接続してなる冷凍装
置に関し、特に圧縮機間の均油を図る対策の改良に関す
る。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a single system of variable capacity compressors that compresses refrigerant gas sucked into a dome through a suction pipe and discharges the compressed gas through a discharge pipe. This invention relates to a refrigeration system connected in parallel to a refrigerant circuit, and particularly relates to improvements in measures for equalizing oil between compressors.

(従来の技術) 一般に、このような冷凍装置では、各圧縮機から吐出さ
れた冷媒ガスは互いに集合されて1個の油分離器に送出
され、ここで冷媒ガス中に分散している潤滑油が分離さ
れた後、凝縮器へ供給され、一方、上記油分離器で分離
された潤滑油は油戻し管を介して各圧縮機にほぼ均等に
返油されるようになされている。
(Prior Art) Generally, in such a refrigeration system, refrigerant gas discharged from each compressor is collected together and sent to one oil separator, where lubricating oil dispersed in the refrigerant gas is collected. After being separated, the lubricating oil is supplied to the condenser, while the lubricating oil separated by the oil separator is returned almost equally to each compressor via an oil return pipe.

ところで、各圧縮機の稼動時間が異なる場合には、稼動
時間の長い圧縮機側では、稼動中に冷媒ガス中に分散さ
れる潤滑油の量が稼動時間の短い圧縮機側よりも多くな
る。しかし、この冷媒ガス中に分散された潤滑油は上述
の如く各圧縮機にはぼ均等に分配して返油されることか
ら、稼動時間の長い圧縮機内の潤滑油の量が漸減する一
方、稼動時間の短い圧縮機内の潤滑油の量が漸増して、
各圧縮機内に油量のアンバランスが生ずることとなる。
By the way, when the operating times of the respective compressors are different, the amount of lubricating oil dispersed in the refrigerant gas during operation is larger on the compressor side with a longer operating time than on the compressor side with a shorter operating time. However, as mentioned above, the lubricating oil dispersed in the refrigerant gas is returned to each compressor almost equally, so while the amount of lubricating oil in the compressor that operates for a long time gradually decreases, The amount of lubricating oil in the compressor that operates for a short time gradually increases.
This results in an imbalance in the amount of oil in each compressor.

そして、圧縮機内の油量が漸減して油面が運転油面レベ
ル以下に下がると、潤滑油の潤滑部への供給が絶たれて
圧縮機が損傷するおそれがあった。
Then, when the amount of oil in the compressor gradually decreases and the oil level falls below the operating oil level, the supply of lubricating oil to the lubricating parts is cut off, and there is a risk that the compressor will be damaged.

そこで、従来、上記各圧縮機内における油量のアンバラ
ンスを解消するために、各圧縮機を均油管でもって連通
させ、油量の多い方から少ない方へと潤滑油を移動させ
ることにより、各圧縮機内の油量の均一化を図るように
したものが、例えば特公昭40−25038号公報や実
公昭53−36600号公報に開示されている。
Conventionally, in order to eliminate the imbalance in the amount of oil in each of the compressors, each compressor was communicated with an oil equalizing pipe, and the lubricating oil was moved from the side with more oil amount to the one with less oil amount. Compressors designed to equalize the amount of oil in the compressor are disclosed in, for example, Japanese Patent Publication No. 40-25038 and Japanese Utility Model Publication No. 53-36600.

(発明が解決しようとする問題点) しかしながら、上記従来のものでは、各圧縮機の運転容
量が異なる場合には、運転容量の大きい側の圧縮機に対
する吸入管の圧力損失が大きくなり、このため、圧縮機
のドーム内圧は逆に運転容量の小さい側の圧縮機の方が
高くなる。その結果、冷媒ガスは運転容量の小さい圧縮
機から大きい圧縮機へ均油管を通じて移動するとともに
、機内の潤滑油も同方向に移動する。そして、上記運転
容量の小さい圧縮機内における油の戻り量が吐出量より
も多いときには、均油管レベル以上の潤滑油は均油管を
介して運転容量の大きい圧縮機内に移動し、各圧縮機内
の油面レベルは均油管位置で等しくなるが、逆に、油の
戻り量が吐出量よりも少ないときには、運転容量の小さ
い圧縮機内の油面レベルが時間の経過と共に低下しくこ
のとき、運転容量の大きい圧縮機内の潤滑油は、各圧縮
機のドーム内圧の差により運転容量の小さい圧縮機への
移動が阻止されている)、遂には油面レベルの運転油面
レベル以下への低下により潤滑油の潤滑部への供給が絶
たれて圧縮機の損傷を招くことになる。
(Problem to be Solved by the Invention) However, in the above conventional system, when the operating capacities of the compressors are different, the pressure loss in the suction pipe for the compressor with the larger operating capacity becomes large. Conversely, the dome internal pressure of the compressor is higher in the compressor with the smaller operating capacity. As a result, the refrigerant gas moves from the compressor with a small operating capacity to the compressor with a large operating capacity through the oil equalizing pipe, and the lubricating oil inside the machine also moves in the same direction. When the return amount of oil in the compressor with a small operating capacity is greater than the discharge amount, the lubricating oil above the level of the oil equalizing pipe moves to the compressor with a larger operating capacity through the oil equalizing pipe, and the oil in each compressor is The surface level becomes equal at the oil equalizing pipe position, but conversely, when the return amount of oil is less than the discharge amount, the oil level in the compressor with a small operating capacity decreases over time. The lubricating oil in the compressor is prevented from moving to the compressor with a smaller operating capacity due to the difference in the dome internal pressure of each compressor), and eventually the lubricating oil level drops below the operating oil level. The supply to the lubricating parts will be cut off, resulting in damage to the compressor.

そこで、本出願人は、先に、特願昭60−227519
号明細書及び図面において、複数基の圧縮機を備えた場
合、該複数基の圧縮機相互間を均油管で連通ずると共に
、該6圧縮機の運転容量を所定の運転モードに基づいて
所定時間毎に順次増減変化させるように制御することに
より、圧縮機の運転続行でもって装置の冷凍能力を十分
に確保しつつ、各圧縮機の運転容量の増減変化に基づく
ドーム内圧の差の発生により、潤滑油を各圧縮機間で均
油管を介して移動させて、各圧縮機における油量の均一
化を確実に行うようにしたものを提案している。
Therefore, the applicant first filed the patent application No. 60-227519.
In the specification and drawings, when a plurality of compressors are provided, the plurality of compressors are communicated with each other by oil equalizing pipes, and the operating capacity of the six compressors is controlled for a predetermined period of time based on a predetermined operation mode. By controlling the pressure to increase or decrease sequentially at each compressor, while ensuring sufficient refrigerating capacity of the equipment by continuing to operate the compressor, the difference in dome internal pressure caused by the increase or decrease in the operating capacity of each compressor, We have proposed a system in which lubricating oil is moved between each compressor via oil equalizing pipes to ensure that the amount of oil in each compressor is equalized.

しかるに、上記の如く各圧縮機の容量の増減制御に基づ
く均油運転を行う場合、この均油運転時に冷凍装置が過
負荷状態になる状況では、通常、その過負荷状態を解消
すべく、圧縮機の容量を低減することが行われるが、こ
の制御では、上記均油運転での圧縮機容量の増大制御が
行い得ず、その結果、圧縮機間での均油が困難になる欠
点が生じる。
However, when performing oil equalization operation based on the capacity increase/decrease control of each compressor as described above, if the refrigeration equipment becomes overloaded during this oil equalization operation, the compression The capacity of the compressor is reduced, but with this control, the compressor capacity cannot be controlled to increase during the oil equalization operation, resulting in the drawback that it becomes difficult to equalize the oil between the compressors. .

本発明は斯かる点に鑑みてなされたものであり、特に全
圧縮機の停止時には各ドーム内相互間の圧力差が均油管
を通じて無くなることに着目し、その目的は、上記の如
く、圧縮機間の均油運転と装置の過負荷防止制御とが同
時に行われる場合には、圧縮機を積極的に停止制御する
ことにより、装置の過負荷を有効に防止すると同時に、
圧縮機の停止に伴うドーム間圧力差の無い状態で潤滑油
を自重で少ない方に移動させて圧縮機間の均油を行い、
よって過負荷防止機能と均油機能とを同時に発揮させる
ことにある。
The present invention has been made in view of the above, and focuses on the fact that when all the compressors are stopped, the pressure difference between the domes disappears through the oil equalizing pipe, and its purpose is to If the oil equalization operation and the equipment overload prevention control are performed at the same time, the compressor can be actively stopped and controlled to effectively prevent the equipment from overloading.
When the compressor is stopped and there is no pressure difference between the domes, the lubricating oil is moved by its own weight to the side with less oil to equalize the oil between the compressors.
Therefore, the objective is to simultaneously exhibit an overload prevention function and an oil equalization function.

(問題点を解決するための手段) 以上の目的を達成するため、本発明の解決手段は、第1
図に示す如く、複数基の可変容量型圧縮機(1)、(2
)を1系統の冷媒回路に並列に接続してなる冷凍装置を
前提とする。そして、上記各圧縮機(1)、  (2)
のドーム(4)内を、各々潤滑油(A)の運転油面レベ
ル位置にて連通ずる均油管(10)で連通ずると共に、
上記各圧縮機(1)、(2)の運転容量を所定の運転モ
ードに基づいて所定時間毎に順次変化させるよう制御す
る通常時制御手段(14)を設ける。さらに、上記各圧
縮機(1)、(2)の過負荷時を検出すろ過負荷時検出
手段(17)と、該過負荷時検出手段(17)により検
出した過負荷時に上記圧縮機(1)、(2)の運転を上
記通常時制御手段(14)に優先して停止するよう制御
する過負荷時制御手段(18)とを設ける構成としたも
のである。
(Means for solving the problem) In order to achieve the above object, the solving means of the present invention is as follows.
As shown in the figure, there are multiple variable capacity compressors (1), (2).
) are connected in parallel to one refrigerant circuit. And each of the above compressors (1), (2)
The insides of the domes (4) are communicated by oil equalizing pipes (10) that communicate with each other at the operating oil level of the lubricating oil (A), and
A normal time control means (14) is provided for controlling the operating capacity of each of the compressors (1) and (2) to be sequentially changed at predetermined time intervals based on a predetermined operation mode. Further, a filtration load detection means (17) detects when each of the compressors (1) and (2) is overloaded, and the compressor (1) ), and overload control means (18) which controls the operation of (2) to be stopped with priority over the normal control means (14).

(作用) 以上の構成により、本発明では、複数基の可変容量型圧
縮機(1)、  (2)の運転時には、各ドーム内の油
量バランスが崩れる場合があるが、この場合には、通常
時制御手段(14)により各圧縮機(1)、(2)が作
動制御されて、その各運転容量が所定の運転モードに基
いて所定時間毎に順次増減変化するので、各ドーム内圧
に順次に差が生じ、その結果、その差圧に基づき各ドー
ム内の潤滑油(A)が均油管(10)を通じて移動して
、各圧縮機(1)、(2)の油量が均一化される。
(Function) With the above configuration, in the present invention, when the plurality of variable displacement compressors (1) and (2) are operated, the oil amount balance in each dome may be disrupted, but in this case, The operation of each compressor (1), (2) is controlled by the normal control means (14), and the operating capacity of each compressor (1) and (2) is sequentially increased or decreased at predetermined time intervals based on a predetermined operation mode, so that the internal pressure of each dome is Differences occur sequentially, and as a result, the lubricating oil (A) in each dome moves through the oil equalizing pipe (10) based on the differential pressure, and the oil amount in each compressor (1), (2) becomes equal. be done.

そして、上記の如き均油運転時に、装置が過負荷状態に
なると、過負荷時制御手段(18)が上記通常時制御手
段(14)に優先して、全圧縮機(1)、  (2)の
運転が停止制御される。このことにより、装置の冷凍能
力は無くなるものの、圧縮機(1)、(2)の過負荷が
防止されると共に、その各ドーム(4)内相瓦間の圧力
差が無くなり、その結果、潤滑油が自重で少ない方に均
油管(10)を介して移動して、各圧縮機間での油量が
均一化されることになる。
When the device becomes overloaded during the oil equalization operation as described above, the overload control means (18) takes priority over the normal control means (14) and controls all the compressors (1), (2). operation is controlled to stop. Although this eliminates the refrigerating capacity of the device, it prevents the compressors (1) and (2) from being overloaded, and eliminates the pressure difference between the inner phase tiles of each dome (4), resulting in lubrication. The oil moves to the side with less oil due to its own weight via the oil equalizing pipe (10), and the amount of oil between the compressors is equalized.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係る冷凍装置の概略構成を示す。同図
において、(1)、(2)は1系統の冷媒回路に互いに
並列に接続された可変容量型の第1および第2圧縮機で
あって、該6圧縮機(1)。
FIG. 1 shows a schematic configuration of a refrigeration system according to the present invention. In the figure, (1) and (2) are variable capacity first and second compressors connected in parallel to one refrigerant circuit, and the six compressors (1).

(2)は、各々密閉ドーム(4)内に電動モータ(5)
および該電動モータ(5)の駆動軸(6)に連結され且
つ後述するインバータ(15)で容量可変に調整される
圧縮機本体(7)を備えてなり、各ドーム(4)内底部
には、圧縮機本体(7)の潤滑部に供給される潤滑油(
A)が貯留されている。
(2) each have an electric motor (5) inside a sealed dome (4).
and a compressor main body (7) connected to the drive shaft (6) of the electric motor (5) and whose capacity is variably adjusted by an inverter (15), which will be described later. , lubricating oil (
A) is stored.

また、上記第1.第2圧縮機(1)、(2)のドーム(
4)、  (4)間はその内部を潤滑油(A)の運転油
面レベル位置にて連通ずるよう均油管(10)で連結さ
れており、潤滑油(A)が均油管(10)を介して再圧
縮機(1)、  (2)間を移動可能になされている。
Also, the above 1. The domes of the second compressors (1) and (2) (
4) and (4) are connected by an oil equalizing pipe (10) so that the inside thereof is communicated at the operating oil level position of the lubricating oil (A), and the lubricating oil (A) is connected through the oil equalizing pipe (10). It is possible to move between the recompressors (1) and (2) via the compressor.

さらに、(8)は上記各圧縮機(1)、(2)のドーム
(4)内部に冷媒ガスを吸入するための吸入管であって
、該吸入管(8)は、メイン配管部(8a)と、該メイ
ン配管部(8a)に分岐接続された2本のサブ配管部(
8b)、(8b)とからなり、各サブ配管部(8b)の
下流端はそれぞれ圧縮機(1)、  (2)のドーム(
4)向上部に開口されている。また、(9)は上記各圧
縮機(1)、、(2)の圧縮機本体(7)で圧縮された
冷媒ガスを各ドーム(4)外に吐出するための吐出管で
あって、該吐出管(9)は、各圧縮機(1)、 (2)
の圧縮機本体(7)に接続されたサブ配管部(9b)、
  (9b)と、該サブ配管部(9b)、  (9b)
の下流端に接続されたメイン配管部(9a)とからなる
。よって、各圧縮機(1)。
Further, (8) is a suction pipe for sucking refrigerant gas into the dome (4) of each of the compressors (1) and (2), and the suction pipe (8) is connected to the main piping section (8a). ), and two sub-piping parts (
8b) and (8b), and the downstream end of each sub-piping section (8b) is connected to the dome (1) and (2) of the compressor (1) and (2), respectively.
4) It is opened in the improvement part. Further, (9) is a discharge pipe for discharging the refrigerant gas compressed by the compressor body (7) of each of the compressors (1), (2) to the outside of each dome (4). The discharge pipe (9) is connected to each compressor (1), (2)
a sub-piping section (9b) connected to the compressor main body (7);
(9b) and the sub-piping section (9b), (9b)
The main piping section (9a) is connected to the downstream end of the main piping section (9a). Thus, each compressor (1).

(2)では吸入管(8)によりドーム(4)内に吸入さ
れた冷媒ガスを圧縮機本体(7)で圧縮した後、吐出管
(9)を介してドーム(4)外に吐出するように構成さ
れている。
In (2), the refrigerant gas sucked into the dome (4) through the suction pipe (8) is compressed by the compressor body (7), and then discharged to the outside of the dome (4) through the discharge pipe (9). It is composed of

また、上記吐出管(9)の各サブ配管部(9b)には、
該サブ配管部(9b)によりドーム(4)外に吐出され
た冷媒ガスから潤滑油(A)を分離する油分離器(11
) 、  (11)が各圧縮機(1)、(2)毎に各々
個別に介設され、該6油分離器(11)はそれぞれ油戻
し管(12)を介して上記吸入管(8)の対応する各サ
ブ配管部(8b ) 。
In addition, each sub-piping section (9b) of the discharge pipe (9) includes:
An oil separator (11) that separates the lubricating oil (A) from the refrigerant gas discharged to the outside of the dome (4) by the sub-piping section (9b).
), (11) are individually installed for each compressor (1), (2), and the six oil separators (11) are connected to the suction pipe (8) through an oil return pipe (12), respectively. Each corresponding sub-piping section (8b).

(8b)に接続されており、各油分離器(11) 。(8b) and each oil separator (11).

(11)で分離された潤滑油(A)を各々油戻し管(1
2)および吸入管(8)を介して上記対応する各圧縮機
(1)、(2)へ各々戻すようになされている。また、
上記各油戻し管(12) 。
The lubricating oil (A) separated in (11) is transferred to each oil return pipe (1
2) and suction pipes (8) to the corresponding compressors (1) and (2). Also,
Each of the above oil return pipes (12).

(12)にはキャピラリ(13)が各々介設されており
、このキャピラリ (13)、  (13)でもって上
記各圧縮機(1)、(2)のドーム(4)内への返油量
がコントロールされる。
Capillaries (13) are interposed in each of (12), and the amount of oil returned into the dome (4) of each of the compressors (1) and (2) is returned by these capillaries (13) and (13). is controlled.

さらに、上記各圧縮機(1)、  (2)は、均油運転
時、通常時制御手段としてのコントローラ(14)によ
りその運転容量が予め設定され運転モードに基づいて所
定時間毎に順次増減変化するように制御される。その制
御の具体例を第2図により説明するに、均油運転前にお
いて、例えば第1圧縮機(1)の油量が多く、第2圧縮
機(2)の油量が少ない場合を想定すると、先ず、第1
ステツプS1で第1圧縮機(1)の運転容量を100%
に制御し、第2圧縮機(2)の運転容量は50%に制御
する。従って、運転容量の低い第2圧縮機(2)のドー
ム内圧は高く、運転容量の高い第1圧縮機(1)では低
くなるが、第2圧縮機(2)では油量が少なく均油管(
10)の高さ位置に達しないから、潤滑油(A)は第2
圧縮機(2)から第1圧縮機(1)へは移動せず、各圧
縮機(1)、(2)の油量は均油運転前の状態と変わら
ない。
Furthermore, during oil equalization operation, the operating capacity of each of the compressors (1) and (2) is set in advance by a controller (14) as a normal control means, and is sequentially increased or decreased at predetermined intervals based on the operating mode. controlled to do so. A specific example of this control will be explained with reference to FIG. 2. Let us assume that before the oil equalization operation, for example, the first compressor (1) has a large amount of oil and the second compressor (2) has a small amount of oil. , first, first
In step S1, the operating capacity of the first compressor (1) is set to 100%.
The operating capacity of the second compressor (2) is controlled to 50%. Therefore, the dome internal pressure of the second compressor (2) with a low operating capacity is high, and it is low in the first compressor (1) with a high operating capacity, but the second compressor (2) has a small amount of oil and the oil equalizing pipe (
Since it does not reach the height position of 10), the lubricating oil (A) is
The oil does not move from the compressor (2) to the first compressor (1), and the amount of oil in each compressor (1), (2) remains the same as before the oil equalization operation.

次に、この第1ステツプ$1から第2ステツプS2に移
行すると、上記第1圧縮機(1)の運転容量を50%に
、第2圧縮’ll& (2)を100%に各々制御する
。従って、今度は第1圧縮機(1)のドーム内圧が高く
、第2圧縮機(2)が低くなって、油量の多い第1圧縮
機(1)の潤滑油(A)が均油管(10)を介して第2
圧縮機(2)に移動して、両圧縮機(1)、  (2)
間の油量が均一化される。
Next, when moving from the first step $1 to the second step S2, the operating capacity of the first compressor (1) is controlled to 50%, and the second compression 'll& (2) is controlled to 100%. Therefore, this time, the dome internal pressure of the first compressor (1) is high and the pressure of the second compressor (2) is low, and the lubricating oil (A) of the first compressor (1), which has a large amount of oil, is transferred to the oil equalizing pipe ( 10) through the second
Move to compressor (2), then both compressors (1), (2)
The amount of oil in between is equalized.

更に、上記第1図において、コントローラ(14)には
、冷凍装置の過負荷保護用として、上記各圧縮機(1)
、  (2)の電動モータ(5)の駆動周波数を変更す
るインバータ(15)からの垂下信号(トリップ状態よ
りも若干低い電流値で出力される)が人力可能になって
いると共に、冷媒の高圧保護装置(図示せず)の作動圧
力値よりも若干小値の冷媒吐出圧力値で閉じる圧力開閉
器(16)からの閉信号(高圧信号)が入力可能になっ
ていて、該インバータ(15)及び圧力開閉器(16)
により、第1及び第2の圧縮機(1)。
Furthermore, in FIG. 1, the controller (14) is equipped with the compressors (1) for overload protection of the refrigeration system.
, (2) The drooping signal from the inverter (15) that changes the drive frequency of the electric motor (5) (outputted at a slightly lower current value than in the trip state) can be manually operated, and the high pressure of the refrigerant A close signal (high pressure signal) from a pressure switch (16) that closes at a refrigerant discharge pressure value slightly smaller than the operating pressure value of a protection device (not shown) can be input, and the inverter (15) and pressure switch (16)
The first and second compressors (1).

(2)の過負荷時を検出するようにした過負荷時検出手
段(17)を構成している。
(2) Overload detection means (17) configured to detect overload is configured.

而して、上記コントローラ(14)は、例えば第3図に
示す如く、インバータ(15)又は圧力開閉器(16)
からの垂下信号や高圧信号(つまり過負荷信号)の入力
時(図では垂下信号の人力時)には、その時点で均油運
転を停止し、両圧縮機(1)、  (2)の容量値を零
値に、つまり停止制御して、この停止状態を所定時間(
例えば4分間)維持するように機能を併をしている。
As shown in FIG.
When a drooping signal or a high pressure signal (that is, an overload signal) is input from the compressor (in the figure, when the drooping signal is input manually), oil equalization operation is stopped at that point, and the capacity of both compressors (1) and (2) is The value is set to zero, that is, it is controlled to stop, and this stopped state is maintained for a predetermined period of time (
For example, for 4 minutes), it functions to maintain

よって、上記コントローラ(14)により、」二足過負
荷時検出手段(17)で検出した過負荷時には、両圧縮
機(1)、(2)の運転を通常時制御手段(14)に優
先して停止制御するようにした過負荷時制御手段(18
)を構成している。
Therefore, the controller (14) prioritizes the operation of both compressors (1) and (2) over the normal control means (14) when an overload is detected by the two-legged overload detection means (17). Overload control means (18
).

したがって、上記実施例においては、冷凍装置の通常運
転時に、各圧縮機(1)、  (2)に油量のアンバラ
ンスが生じたとしても、均油運転時には、各圧縮機(1
)、  (2)の運転容Qが通常時制御手段(コントロ
ーラ14)により第2図に示す如く所定時間毎に順次増
減変化するように制御されるので、圧縮機(1)、  
(2)の運転続行により冷凍能力を良好に確保しながら
、各圧縮機(1)、(2)のドーム(4)間に圧力差が
順次生じて、潤滑油(A)が多い方から少ない方に移動
して、上記油量のアンバランスが解消され、各圧縮機(
1)、(2)のドーム(4)内における油量の均一化が
確実に図られる。
Therefore, in the above embodiment, even if an imbalance of oil amount occurs in each compressor (1), (2) during normal operation of the refrigeration system, during oil equalization operation, each compressor (1)
), (2) are controlled by the normal control means (controller 14) to increase or decrease sequentially at predetermined time intervals as shown in FIG.
By continuing the operation of (2), while ensuring a good refrigerating capacity, a pressure difference is created between the domes (4) of each compressor (1) and (2), and lubricating oil (A) is produced from more to less lubricating oil (A). The unbalance of the oil amount mentioned above is resolved, and each compressor (
The amount of oil in the dome (4) of 1) and (2) is reliably made uniform.

そして、上記均油運転時には、第2図に示す如く、第1
及び第2圧縮機(1)、(2)の交互の容量の増大運転
(100%運転)に起因して、冷媒の吐出圧力が上昇し
たり、各インバータ(15)の電流値が増大して、装置
の過負荷状態になる場合がある。しかし、この場合には
、例えば第3図に示す如く、均油運転モードの第2ステ
ツプS2でインバータ(15)の垂下信号が出力された
時点で、両圧縮機(1)、  (2)が過負荷時制御手
段(18)で制御されて、その運転が所定時間(4分間
)停止するので、各圧縮a (1)、  (2)の過負
荷が有効に防IFされるとともに、そのドーム(4)内
相瓦間の圧力差が無くなって、潤滑油(A)はこの所定
時間(4分間)の間に自重で多い方から少ない方に均油
管(10)を通じて移動して、再圧縮機(1)、(2)
間の油量が均一化されることになる。
During the oil equalization operation, as shown in Figure 2, the first
And due to the alternate capacity increasing operation (100% operation) of the second compressors (1) and (2), the refrigerant discharge pressure increases and the current value of each inverter (15) increases. , equipment may become overloaded. However, in this case, as shown in FIG. 3, for example, when the drooping signal of the inverter (15) is output in the second step S2 of the oil equalization operation mode, both compressors (1) and (2) Since the operation is stopped for a predetermined period of time (4 minutes) under the control of the overload control means (18), the overload of each compression a (1) and (2) is effectively prevented, and the dome (4) When the pressure difference between the inner tiles disappears, the lubricating oil (A) moves by its own weight from the larger side to the smaller side through the oil equalizing pipe (10) during this predetermined time (4 minutes) and is recompressed. Machine (1), (2)
This will equalize the amount of oil between them.

そして、上記所定時間の経過後は、通常運転に戻る。よ
って、潤滑油の均油運転時に過負荷保護制御を行う必要
が生じた場合には、圧縮機(1)。
After the predetermined time has elapsed, normal operation is resumed. Therefore, if it becomes necessary to perform overload protection control during lubricating oil equalization operation, the compressor (1).

(2)の過負荷を有効に防止しつつ、潤滑油の均一化を
も良好に行って、潤滑油の均油運転の信頼性の向上を図
ることができる。
While effectively preventing the overload (2), the lubricating oil can be uniformized well, and the reliability of the lubricating oil equalizing operation can be improved.

尚、上記実施例では、2台の圧縮機(1)。In the above embodiment, there are two compressors (1).

(2)を用いたが、圧縮機の台数は3台以上であっても
よいのは勿論のこと、均油運転の運転モードは、上記具
体例に限らず、他の運転モードであっても、油量の均一
化が可能である。
Although (2) was used, it goes without saying that the number of compressors may be three or more, and the operation mode of the oil equalization operation is not limited to the above specific example, but may be any other operation mode. , it is possible to equalize the amount of oil.

(発明の効果) 以上説明したように、本発明の冷凍装置によれば、各圧
縮機の運転容量の順次の増減制御により各ドーム内相互
間に順次に圧力差を発生させて油量を均一化する場合、
この均油運転時に、同時に装置の過負荷保護制御が要求
された場合には、各圧縮機の運転を強制的に停止制御し
て、各圧縮機の過負荷を有効に保護すると共に、各ドー
ム内相互間の圧力差を無くし、潤滑油を自重で少ない方
に移動させて、油量の均一化を行ったので、過負荷保護
の要求時にも、過負荷保護を有効に行いつつ、油量の均
一化を可能にでき、その信頼性の向上を図ることができ
る。
(Effects of the Invention) As explained above, according to the refrigeration system of the present invention, by controlling the operating capacity of each compressor to increase/decrease sequentially, a pressure difference is sequentially generated between each dome and the oil amount is made uniform. In case of
If equipment overload protection control is requested at the same time during this oil equalization operation, the operation of each compressor is forcibly stopped to effectively protect each compressor from overload, and each dome is The pressure difference between the inner and outer parts is eliminated, and the lubricating oil is moved by its own weight to the side with less oil to equalize the oil amount, so even when overload protection is required, the oil amount can be maintained while effectively providing overload protection. can be made uniform, and its reliability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は冷凍装置の概略
構成図、第2図はコントローラにより制御される通常時
の圧縮機の運転モードを示す図、第3図は過負荷保護の
要求時での圧縮機の運転モードを示す図である。 (1)・・・第1圧縮機、(2)・・・第2圧縮機、(
4)・・・ドーム、(8)・・・吸入管、(9)・・・
吐出管、(10)・・・均油管、(14)・・・コント
ローラ、(A)・・・潤滑油、(17)・・・通常時制
御手段、(18)・・・過負荷時制御手段。
The drawings show an embodiment of the present invention, and Fig. 1 is a schematic configuration diagram of a refrigeration system, Fig. 2 is a diagram showing a normal operating mode of the compressor controlled by a controller, and Fig. 3 is a diagram showing an overload protection mode. It is a figure which shows the operating mode of a compressor at the time of a request. (1)...First compressor, (2)...Second compressor, (
4)...Dome, (8)...Suction pipe, (9)...
Discharge pipe, (10) Oil equalizing pipe, (14) Controller, (A) Lubricating oil, (17) Normal control means, (18) Overload control means.

Claims (1)

【特許請求の範囲】[Claims] (1)複数基の可変容量型圧縮機(1),(2)を1系
統の冷媒回路に並列に接続してなる冷凍装置において、
上記各圧縮機(1),(2)のドーム(4)内は、各々
潤滑油(A)の運転油面レベル位置にて連通する均油管
(10)で連通されていると共に、上記各圧縮機(1)
,(2)の運転容量を所定の運転モードに基づいて所定
時間毎に順次変化させるよう制御する通常時制御手段(
14)を備え、また、上記各圧縮機(1),(2)の過
負荷時を検出する過負荷時検出手段(17)と、該過負
荷時検出手段(17)により検出した過負荷時に上記圧
縮機(1),(2)の運転を上記通常時制御手段(14
)に優先して停止するよう制御する過負荷時制御手段(
18)を備えたことを特徴とする冷凍装置。
(1) In a refrigeration system in which a plurality of variable capacity compressors (1) and (2) are connected in parallel to one refrigerant circuit,
The insides of the domes (4) of each of the compressors (1) and (2) are communicated with each other by oil equalizing pipes (10) that communicate with each other at the operating oil level of the lubricating oil (A), and Machine (1)
, (2) normal-time control means (
14), and overload detection means (17) for detecting overload of each of the compressors (1) and (2); The operation of the compressors (1) and (2) is controlled by the normal control means (14).
) Overload control means (
18) A refrigeration device comprising:
JP13556287A 1987-05-29 1987-05-29 Refrigerator Pending JPS63302258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13556287A JPS63302258A (en) 1987-05-29 1987-05-29 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13556287A JPS63302258A (en) 1987-05-29 1987-05-29 Refrigerator

Publications (1)

Publication Number Publication Date
JPS63302258A true JPS63302258A (en) 1988-12-09

Family

ID=15154713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13556287A Pending JPS63302258A (en) 1987-05-29 1987-05-29 Refrigerator

Country Status (1)

Country Link
JP (1) JPS63302258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139109A (en) * 2008-12-09 2010-06-24 Mitsubishi Heavy Ind Ltd Refrigeration cycle
JP2011226714A (en) * 2010-04-21 2011-11-10 Mitsubishi Heavy Ind Ltd Air conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139109A (en) * 2008-12-09 2010-06-24 Mitsubishi Heavy Ind Ltd Refrigeration cycle
JP2011226714A (en) * 2010-04-21 2011-11-10 Mitsubishi Heavy Ind Ltd Air conditioning device

Similar Documents

Publication Publication Date Title
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
EP1172563A2 (en) Screw compressor for refrigerating apparatus
JP3950304B2 (en) Screw compressor for refrigeration equipment
JPS63302258A (en) Refrigerator
JP3939318B2 (en) Air conditioner
JPS629153A (en) Refrigerator
JPH0571811A (en) Refrigerating plant
JPH0610562B2 (en) Heat pump type air conditioner
JPH0557501B2 (en)
JP3197768B2 (en) Refrigeration equipment
JPH0719624A (en) Air conditioning apparatus
JP2001173564A (en) Oil equalizing system of plural compressors
JPH0583824B2 (en)
JPS6287770A (en) Refrigerator
JPS6287771A (en) Refrigerator
JPS6287773A (en) Refrigerator
KR100444959B1 (en) Compressor of air conditioner and control method thereof
JPS6240134Y2 (en)
JPH0227176A (en) Parallel compression freezer
JP2000088370A (en) Oil equalizing system for plural compressor
JP2743711B2 (en) Compressor protector
JPH0490455A (en) Freezer
JPH068795U (en) Multi-stage compressor
JPH0216073Y2 (en)
JPS6336433B2 (en)