JP2011226714A - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
JP2011226714A
JP2011226714A JP2010097956A JP2010097956A JP2011226714A JP 2011226714 A JP2011226714 A JP 2011226714A JP 2010097956 A JP2010097956 A JP 2010097956A JP 2010097956 A JP2010097956 A JP 2010097956A JP 2011226714 A JP2011226714 A JP 2011226714A
Authority
JP
Japan
Prior art keywords
compressors
compressor
oil
refrigerant
control mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010097956A
Other languages
Japanese (ja)
Other versions
JP5645453B2 (en
Inventor
Atsushi Ishihara
淳 石原
Masashi Maeno
政司 前野
Satoshi Watanabe
聡 渡辺
Takashi Hamachiyo
崇 濱千代
Ichiro Matsui
一郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010097956A priority Critical patent/JP5645453B2/en
Publication of JP2011226714A publication Critical patent/JP2011226714A/en
Application granted granted Critical
Publication of JP5645453B2 publication Critical patent/JP5645453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning device suppressing situations that comfort is significantly degraded and protective control is executed, by adjusting a refrigerant supply amount in an oil equalizing operation.SOLUTION: This air conditioning device 1 includes: compressors 11A, 11B connected by an oil equalizing pipe 46; accumulators 27A, 27B, recirculation piping 47 for gradually supplying liquid refrigerant stored in the accumulators 27A, 27B to the compressors 11A, 11B; and a control part 53 having an oil equalization control mode 55 for keeping amounts of lubricants to a specific level or more. In the oil equalization control mode 55, motion for rotating a part of the compressors 11A, 11B with a prescribed rotational frequency Nac to sufficiently suck the liquid refrigerant, and reducing the rotational frequency of the remaining compressor so that the refrigerant supply amount by all of the compressors keeps the refrigerant supply amount before starting the oil equalizing operation, is repeated while changing the part of the compressors so that all of the compressors are operated with the prescribed rotational frequency Nac at least once.

Description

本発明は、空気調和装置に関するものである。   The present invention relates to an air conditioner.

従来、複数の圧縮機を冷凍サイクルに並列に接続して、多数の室内機に冷媒を供給する空気調和装置が広く使用されている。
この空気調和装置の場合、圧縮機の運転台数によって、空調能力、すなわち冷媒流量の変動が大きくなる。圧縮機の潤滑油は冷媒に溶け込んで冷凍サイクル内を流動するため、冷媒流量の変動に伴って潤滑油分布が大きく変動する。また、冷凍サイクル内を循環した潤滑油が、どの圧縮機に戻るかは確定できないので、複数の圧縮機が接続される場合には油の分布に偏りが生じ、潤滑油不足となる恐れがあった。
Conventionally, an air conditioner that connects a plurality of compressors in parallel to a refrigeration cycle and supplies refrigerant to a large number of indoor units has been widely used.
In the case of this air conditioner, the air conditioning capacity, that is, the fluctuation of the refrigerant flow rate increases depending on the number of operating compressors. Since the lubricating oil of the compressor is dissolved in the refrigerant and flows in the refrigeration cycle, the distribution of the lubricating oil greatly varies with the fluctuation of the refrigerant flow rate. In addition, since it is not possible to determine to which compressor the lubricating oil circulated in the refrigeration cycle will return, there is a risk that the oil distribution will be biased when there are multiple compressors connected, leading to a lack of lubricating oil. It was.

これを解消するために、複数の圧縮機に貯留される潤滑油量を略均等にする均油運転が所定のインターバルで繰り返し行われる(特許文献1参照)。
均油運転は、基本的には、複数の圧縮機を相互に所定の回転数だけ差を付けて回転させる。これにより、各圧縮機へ吸入されるガス冷媒に圧力損失量に差がつくので、各圧縮機の内部(潤滑油貯留部)の圧力に差が出る。各圧縮機の内部圧力に差がつくと、圧力差のある圧縮機間を連通している均油管を通って潤滑油が移動するので、圧力差をつけた運転を交互に繰り返し行うことによって各圧縮機の潤滑油量を略均等にすることができる。
In order to solve this problem, an oil equalizing operation that makes the amount of lubricating oil stored in a plurality of compressors substantially equal is repeatedly performed at predetermined intervals (see Patent Document 1).
In the oil leveling operation, basically, a plurality of compressors are rotated with a predetermined rotational speed difference. As a result, there is a difference in the amount of pressure loss between the gas refrigerants sucked into the compressors, resulting in a difference in the pressure inside each compressor (lubricating oil reservoir). When there is a difference in the internal pressure of each compressor, the lubricating oil moves through the oil equalizing pipe that communicates between the compressors with a pressure difference. The amount of lubricating oil in the compressor can be made substantially uniform.

また、複数の圧縮機に貯留される潤滑油の量をそれぞれ一定レベル以上に保持する、すなわち、全体の潤滑油量を確保するために、均油運転は、上述の圧力差をつけた運転に先立って各圧縮機の回転数を所定の回転数、一般に増加した回転数にしてアキュムレータ(気液分離器)に貯留された液冷媒に混入した潤滑油を圧縮機内に還流させる還流運転を行っている。   Further, in order to keep the amount of lubricating oil stored in a plurality of compressors at a certain level or more, that is, to ensure the total amount of lubricating oil, the oil leveling operation is performed with the above pressure difference. Prior to performing a recirculation operation for recirculating the lubricating oil mixed in the liquid refrigerant stored in the accumulator (gas-liquid separator) into the compressor by setting the rotational speed of each compressor to a predetermined rotational speed, generally increased. Yes.

特開平1−203855号公報JP-A-1-203855

ところで、従来の均油運転では、還流運転における増加した回転数である所定回転数とし、それに引き続く圧力差をつけた運転は、この所定回転数を基準にして増減させている。このため、圧縮機の回転数は冷暖房運転時に比べて大きくなるので、全ての圧縮機が供給する冷媒量が冷暖房運転時に比べて大きくなる。これにより、均油運転中に室内機で過暖房あるいは過冷却という事態が発生し、快適性(空調フィーリング)を損なう恐れがあるし、保護制御が作動したりする恐れがある。   By the way, in the conventional oil leveling operation, the predetermined rotational speed which is the increased rotational speed in the reflux operation is set, and the operation with the subsequent pressure difference is increased or decreased based on the predetermined rotational speed. For this reason, since the rotation speed of a compressor becomes large compared with the time of air conditioning operation, the refrigerant | coolant amount which all the compressors supply becomes large compared with the time of air conditioning operation. As a result, a situation of overheating or overcooling occurs in the indoor unit during the oil leveling operation, which may impair comfort (air conditioning feeling) and may activate protection control.

本発明は、このような事情に鑑み、均油運転時における冷媒供給量を調整し、快適性の著しい低下および保護制御に入る事態を抑制できる空気調和装置を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide an air conditioner that can adjust a refrigerant supply amount during an oil leveling operation to suppress a significant decrease in comfort and a situation in which protection control is entered.

上記課題を解決するために、本発明は以下の手段を採用する。
すなわち、本発明の一態様は、回転数が可変とされ、相互に均油管で接続された複数の圧縮機と、該圧縮機の吸入側に吸入される冷媒ガス中から液分を分離し、潤滑油を含む液冷媒を貯留する気液分離器と、前記圧縮機の運転に伴い前記気液分離器に貯留された前記液冷媒を徐徐に前記圧縮機の吸入側に供給する供給管と、前記複数の圧縮機に貯留される潤滑油の量をそれぞれ一定レベル以上に保持する均油制御モードを有する運転を制御する制御部と、が備えられている空気調和装置であって、前記均油制御モードは、前記複数の圧縮機の内、一部の圧縮機を前記液冷媒が十分に吸入できる所定回転数で回転させ、全ての圧縮機による冷媒供給量が均油運転開始前の冷媒供給量を維持するように残りの圧縮機の回転数を低減させる動作を、全ての圧縮機が少なくとも一度は前記所定回転数で運転されるように前記一部の圧縮機を切り替えて繰り返し行う空気調和装置である。
In order to solve the above problems, the present invention employs the following means.
That is, according to one aspect of the present invention, a liquid component is separated from a plurality of compressors whose rotation speed is variable and mutually connected by oil equalizing pipes, and refrigerant gas sucked into the suction side of the compressor, A gas-liquid separator that stores liquid refrigerant containing lubricating oil, and a supply pipe that gradually supplies the liquid refrigerant stored in the gas-liquid separator with the operation of the compressor to the suction side of the compressor; A control unit that controls an operation having an oil equalization control mode in which the amount of lubricating oil stored in each of the plurality of compressors is maintained at a certain level or more, the air conditioner comprising: In the control mode, a part of the plurality of compressors is rotated at a predetermined rotation speed at which the liquid refrigerant can be sufficiently sucked, and the refrigerant supply amount by all the compressors is the refrigerant supply before the oil equalizing operation is started. The operation of reducing the remaining compressor speed to maintain the quantity, Compressor Te is the air conditioning apparatus repeatedly perform the switch the part of the compressor as at least once is operated at the predetermined speed.

本態様にかかる空気調和装置では、制御部の均油制御モードが、たとえば、所定のインターバルで機能する。均油制御モードは、複数の圧縮機の内、一部の圧縮機を気液分離器に貯留された液冷媒を十分に吸入できる所定回転数で増速して回転させ、一方で、残りの圧縮機の回転数を全ての圧縮機による冷媒供給量が均油運転開始前の冷媒供給量を維持するように低減させる。
これにより、一部の圧縮機は増加された回転数で運転され、残りの圧縮機は低減された回転数で運転されるので、各圧縮機へ吸入されるガス冷媒に圧力損失量の差が発生し、各圧縮機の内部の圧力に差が出る。各圧縮機の内部圧力に差がつくと、圧力差のある圧縮機間を連通している均油管を通って潤滑油が移動する。また、一部の圧縮機は、所定回転数で運転されているので、気液分離器に貯留された液冷媒に混入した潤滑油を十分に圧縮機内に還流させることができる。
この動作は、全ての圧縮機が少なくとも一度は所定回転数で運転されるように一部の圧縮機を切り替えて繰り返し行われるので、各圧縮機には、気液分離器からの潤滑油の還流量を十分確保できるとともに各圧縮機の潤滑油量を略均等にすることができる。
In the air conditioner according to this aspect, the oil equalization control mode of the control unit functions at a predetermined interval, for example. In the oil equalization control mode, some compressors among a plurality of compressors are rotated at a predetermined rotational speed capable of sufficiently sucking the liquid refrigerant stored in the gas-liquid separator, while the remaining ones are rotated. The rotation speed of the compressor is reduced so that the refrigerant supply amount by all the compressors maintains the refrigerant supply amount before the start of the oil equalizing operation.
As a result, some of the compressors are operated at an increased number of revolutions, and the remaining compressors are operated at a reduced number of revolutions, so that there is a difference in the amount of pressure loss between the gas refrigerant sucked into each compressor. Occurs and there is a difference in the pressure inside each compressor. When there is a difference in the internal pressure of each compressor, the lubricating oil moves through an oil equalizing pipe communicating between the compressors having a pressure difference. In addition, since some of the compressors are operated at a predetermined number of revolutions, the lubricating oil mixed in the liquid refrigerant stored in the gas-liquid separator can be sufficiently recirculated into the compressor.
This operation is repeated by switching some of the compressors so that all the compressors are operated at a predetermined rotational speed at least once. Therefore, each compressor returns the lubricating oil from the gas-liquid separator. A sufficient flow rate can be secured and the amount of lubricating oil in each compressor can be made substantially uniform.

このとき、残りの圧縮機は、全ての圧縮機による冷媒供給量が均油運転開始前の冷媒供給量を維持するように回転数が低減されるので、全ての圧縮機が供給する冷媒供給量は、均油運転の開始時、言い換えると、冷暖房運転の冷媒供給量と略同じである。したがって、室内機に供給される冷媒量は変化しないので、均油運転中に室内機で過暖房あるいは過冷却という事態が発生し、快適性(空調フィーリング)を損なうことおよび保護制御が作動したりすることを抑制できる。
なお、均油制御モードの実施に先立ち油戻し制御を行い気液分離器に潤滑油を多く貯留させておくことが好ましい。
At this time, the remaining compressors have their rotational speeds reduced so that the refrigerant supply amounts by all the compressors maintain the refrigerant supply amount before the start of the oil equalizing operation, so the refrigerant supply amounts supplied by all the compressors Is substantially the same as the refrigerant supply amount at the start of the oil leveling operation, in other words, the air conditioning operation. Therefore, since the amount of refrigerant supplied to the indoor unit does not change, overheating or overcooling occurs in the indoor unit during the oil leveling operation, and the comfort control (air conditioning feeling) is impaired and the protection control is activated. Can be suppressed.
Note that it is preferable to store a large amount of lubricating oil in the gas-liquid separator by performing oil return control prior to the execution of the oil equalization control mode.

前記態様では、前記均油制御モードは、前記残りの圧縮機の回転数を低減して停止させる場合、停止タイミングを前記一部の圧縮機の所定回転数への増加開始タイミングよりも所定時間遅らせることが好適である。   In the above aspect, in the oil equalization control mode, when the rotation speed of the remaining compressors is reduced and stopped, the stop timing is delayed by a predetermined time from the increase start timing of the partial compressors to the predetermined rotation speed. Is preferred.

冷暖房運転の冷媒供給量の状況に応じて、残りの圧縮機が停止されることがある。また、残りの圧縮機が非常に低速で回転させる場合には、圧縮機の耐久性等を勘案して一部の圧縮機の回転数を残りの圧縮機の回転数分増加(所定回転数よりも回転数を増加)させ、残りの圧縮機を停止させることがある。
残りの圧縮機を停止すると、その時点で残りの圧縮機における冷媒供給量が無くなる。一方、残りの圧縮機が一部の圧縮機に切り替えられ、一部の圧縮機に切り替えられた圧縮機が停止状態から所定回転数に達するまでには時間がかかるので、冷媒供給量は徐徐に増加することになる。言い換えると、一部の圧縮機による冷媒供給量が所定の量(冷暖房時の冷媒供給量)になるには若干のタイムラグがある。
本態様では、均油制御モードは、残りの圧縮機の停止タイミングを一部の圧縮機の所定回転数への増加開始タイミングよりも所定時間遅らせるので、このタイムラグによる一時的な冷媒供給量が低下するのを抑制することができる。
The remaining compressors may be stopped depending on the state of the refrigerant supply amount in the air conditioning operation. In addition, when the remaining compressors are rotated at a very low speed, the rotational speed of some compressors is increased by the rotational speed of the remaining compressors in consideration of the durability of the compressor (from the predetermined rotational speed). May increase the number of revolutions) and stop the remaining compressors.
When the remaining compressors are stopped, the refrigerant supply amount in the remaining compressors disappears at that time. On the other hand, since the remaining compressors are switched to some compressors, and it takes time for the compressors switched to some compressors to reach the predetermined number of rotations from the stopped state, the refrigerant supply amount is gradually increased. Will increase. In other words, there is a slight time lag when the refrigerant supply amount by some compressors reaches a predetermined amount (refrigerant supply amount at the time of cooling and heating).
In this aspect, the oil equalization control mode delays the stop timing of the remaining compressors by a predetermined time from the start timing of the increase of some compressors to the predetermined rotation speed, so that the temporary refrigerant supply amount due to this time lag decreases. Can be suppressed.

本発明によると、複数の圧縮機の内、一部の圧縮機を気液分離器に貯留された液冷媒が十分に吸入できる所定回転数で回転させ、全ての圧縮機による冷媒供給量が均油運転開始前の冷媒供給量を維持するように残りの圧縮機の回転数を低減させる動作を、全ての圧縮機が少なくとも一度は所定回転数で運転されるように一部の圧縮機を切り替えて繰り返し行うので、各圧縮機には、気液分離器からの潤滑油の還流量を十分確保できるとともに各圧縮機の潤滑油量を略均等にすることができ、かち、均油運転中に室内機で過暖房あるいは過冷却という事態が発生し、快適性(空調フィーリング)を損なうことおよび保護制御が作動したりすることを抑制できる。   According to the present invention, some of the plurality of compressors are rotated at a predetermined rotation speed at which the liquid refrigerant stored in the gas-liquid separator can be sufficiently sucked, and the refrigerant supply amount by all the compressors is equalized. Operation to reduce the rotation speed of the remaining compressors so as to maintain the refrigerant supply amount before the start of oil operation, switching some compressors so that all the compressors are operated at a predetermined rotation speed at least once In each compressor, the amount of lubricating oil recirculated from the gas-liquid separator can be sufficiently secured and the amount of lubricating oil in each compressor can be made substantially equal. It is possible to suppress the occurrence of overheating or overcooling in the indoor unit, impairing comfort (air conditioning feeling), and activation of protection control.

本発明の一実施形態にかかる空気調和装置の冷凍サイクルを示すブロック図である。It is a block diagram which shows the refrigerating cycle of the air conditioning apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかる空気調和装置で均油運転される際の各圧縮機の回転数の時間変化を示すタイムチャートである。It is a time chart which shows the time change of the rotation speed of each compressor at the time of oil-equalizing operation with the air conditioning apparatus concerning one Embodiment of this invention. 本発明の一実施形態の別の実施態様にかかる空気調和装置で均油運転される際の各圧縮機の回転数の時間変化を示すタイムチャートである。It is a time chart which shows the time change of the rotation speed of each compressor at the time of oil-equalizing operation by the air conditioning apparatus concerning another embodiment of one embodiment of this invention. 本発明の一実施形態のさらに別の実施態様にかかる空気調和装置で均油運転される際の各圧縮機の回転数の時間変化を示すタイムチャートである。It is a time chart which shows the time change of the rotation speed of each compressor at the time of oil-equalizing operation with the air conditioning apparatus concerning another embodiment of one Embodiment of this invention.

以下、本発明の一実施形態にかかるマルチ型の空気調和装置1について図1および図2を用いて詳細に説明する。
図1は、本実施形態にかかる空気調和装置1の冷凍サイクルを示すブロック図である。
空気調和装置1には、2台の室外機3(3A,3B)と、複数の室内機5と、これらを接続するガス側配管7および液側配管9とが備えられている。
Hereinafter, a multi-type air conditioner 1 according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.
FIG. 1 is a block diagram showing a refrigeration cycle of an air conditioner 1 according to the present embodiment.
The air conditioner 1 includes two outdoor units 3 (3A, 3B), a plurality of indoor units 5, and a gas side pipe 7 and a liquid side pipe 9 that connect them.

室外機3A,3Bは、略同構成であるので、両者を区別する必要がある部材については、符号の後にサフィックス“A”あるいは“B”を付して区別し、その必要が少ない部材については符号のみを付して説明する。
室外機3A,3Bには、冷媒を圧縮するインバータ駆動の圧縮機11A,11Bと、冷媒ガス中から潤滑油を分離する油分離器13と、冷媒の循環方向を切り換える四方切換弁15と、冷媒と外気とを熱交換させる2台の室外熱交換器17と、暖房用の室外電動膨張弁(EEVH)19と、液冷媒を貯留するレシーバ21と、液冷媒に過冷却を与える過冷却熱交換器23と、過冷却熱交換器23に分流される冷媒量を制御する過冷却電動膨張弁(EEVSC)25と、圧縮機11A,11Bに吸入される冷媒ガス中から液分を分離し、液冷媒を貯留するアキュムレータ(気液分離器)27A,27Bと、ガス側操作弁29と、液側操作弁31と、が備えられている。
Since the outdoor units 3A and 3B have substantially the same configuration, members that need to be distinguished from each other are distinguished by adding a suffix “A” or “B” after the reference numeral, and members that are less necessary. Only the reference numerals are given for explanation.
The outdoor units 3A and 3B include inverter-driven compressors 11A and 11B that compress refrigerant, an oil separator 13 that separates lubricating oil from refrigerant gas, a four-way switching valve 15 that switches a refrigerant circulation direction, and refrigerant Two outdoor heat exchangers 17 that exchange heat with the outside air, an outdoor electric expansion valve (EEVH) 19 for heating, a receiver 21 that stores liquid refrigerant, and supercooling heat exchange that provides supercooling to the liquid refrigerant The liquid component is separated from the refrigerant gas sucked into the compressor 23, the supercooled electric expansion valve (EEVSC) 25 that controls the refrigerant amount diverted to the supercooling heat exchanger 23, and the compressors 11A and 11B. Accumulators (gas-liquid separators) 27 </ b> A and 27 </ b> B for storing refrigerant, a gas side operation valve 29, and a liquid side operation valve 31 are provided.

室外機3側の上記各機器は、吐出配管33、ガス配管35、液配管37、ガス配管39、吸入配管41、および過冷却用の分岐配管43等の冷媒配管を介して公知の如く接続されている。また、油分離器13と圧縮機11A,11Bの吸入配管41との間には、油分離器13内で吐出冷媒ガスから分離された冷凍機油を所定量ずつ圧縮機11A,11B側に戻すための油戻し回路45が設けられている。
圧縮機11A,11Bは、図示しないインバータによって回転数が調節されるように構成されている。
Each of the above devices on the outdoor unit 3 side is connected in a known manner via a refrigerant pipe such as a discharge pipe 33, a gas pipe 35, a liquid pipe 37, a gas pipe 39, a suction pipe 41, and a subcooling branch pipe 43. ing. Further, between the oil separator 13 and the suction pipes 41 of the compressors 11A and 11B, the refrigerating machine oil separated from the discharged refrigerant gas in the oil separator 13 is returned to the compressors 11A and 11B by a predetermined amount. An oil return circuit 45 is provided.
Compressor 11A, 11B is comprised so that rotation speed may be adjusted with the inverter which is not shown in figure.

ガス側配管7および液側配管9は、室外機3A,3Bのガス側操作弁29および液側操作弁31に接続される冷媒配管であり、現場での据え付け施工時に、室外機3A,3Bとそれに接続される複数の室内機5との間の距離に応じてその長さが設定されるようになっている。
ガス側配管7および液側配管9の途中には、それぞれ適宜台数の室内機5が接続されるように適宜分岐されている。
The gas side pipe 7 and the liquid side pipe 9 are refrigerant pipes connected to the gas side operation valve 29 and the liquid side operation valve 31 of the outdoor units 3A and 3B, and are connected to the outdoor units 3A and 3B when installed on site. The length is set according to the distance between the plurality of indoor units 5 connected thereto.
In the middle of the gas side pipe 7 and the liquid side pipe 9, it is branched appropriately so that an appropriate number of indoor units 5 are connected respectively.

アキュムレータ27A,27Bで気液分離された低圧ガスは、冷媒配管を構成する吸入配管41を通って、圧縮機11A,11Bの吸入側に供給されるようにされている。
過冷却電動膨張弁25を通る冷媒は、分岐配管43および吸入配管41を介してアキュムレータ27A,27Bに供給される。
アキュムレータ27A,27Bで気液分離された液冷媒は、キャピラリチューブを有する還流配管(供給管)47を通って、吸入配管41に供給されるようにされている。
The low-pressure gas that has been gas-liquid separated by the accumulators 27A and 27B is supplied to the suction side of the compressors 11A and 11B through the suction pipe 41 constituting the refrigerant pipe.
The refrigerant passing through the supercooled electric expansion valve 25 is supplied to the accumulators 27A and 27B via the branch pipe 43 and the suction pipe 41.
The liquid refrigerant separated into gas and liquid by the accumulators 27A and 27B is supplied to the suction pipe 41 through a reflux pipe (supply pipe) 47 having a capillary tube.

圧縮機11Aの内部(潤滑油貯留部)と圧縮機11Bの内部(潤滑油貯留部)とを連通させる均油管46が設けられている。均油管46には、圧縮機11A,11B側に開閉弁48が備えられている。   An oil equalizing pipe 46 is provided for communicating the inside of the compressor 11A (lubricating oil reservoir) and the inside of the compressor 11B (lubricating oil reservoir). The oil equalizing pipe 46 is provided with an opening / closing valve 48 on the compressor 11A, 11B side.

室内機5は、複数設けられており、各室内機5の構成は同等とされる。
室内機5には、冷媒と室内空気とを熱交換させて室内の空調に供する室内熱交換器49と、冷房用の室内膨張弁(EEVC)51と、が備えられている。
A plurality of indoor units 5 are provided, and the configuration of each indoor unit 5 is the same.
The indoor unit 5 is provided with an indoor heat exchanger 49 for exchanging heat between the refrigerant and room air for indoor air conditioning, and an indoor expansion valve (EEVC) 51 for cooling.

空気調和装置1には、その運転を制御する制御部53が備えられている。制御部53には、空気調和装置1の圧縮機11A,11Bに貯留される潤滑油の量をそれぞれ一定レベル以上に保持する均油動作を制御する均油制御モード55が備えられている。   The air conditioner 1 is provided with a control unit 53 that controls its operation. The control unit 53 is provided with an oil leveling control mode 55 for controlling an oil leveling operation in which the amount of lubricating oil stored in the compressors 11A and 11B of the air conditioner 1 is maintained at a certain level or more.

以上のように構成された本実施形態にかかる空気調和装置1の冷暖房運転動作について説明する。
冷房運転は、以下のように行われる。
圧縮機11A,11Bで圧縮された高温高圧の冷媒ガスは、圧縮機11A,11Bから吐出され、油分離器13で冷媒中に含まれている冷凍機油が分離される。
その後、冷媒ガスは、四方切換弁15を経て室外熱交換器17で外気と熱交換されて凝縮液化される。この液冷媒は、室外膨張弁19を通過し、レシーバ21にいったん貯留される。
The air conditioning operation operation of the air-conditioning apparatus 1 according to the present embodiment configured as described above will be described.
The cooling operation is performed as follows.
The high-temperature and high-pressure refrigerant gas compressed by the compressors 11A and 11B is discharged from the compressors 11A and 11B, and the oil separator 13 separates the refrigerating machine oil contained in the refrigerant.
Thereafter, the refrigerant gas is condensed and liquefied through the four-way switching valve 15 and heat exchange with the outside air in the outdoor heat exchanger 17. This liquid refrigerant passes through the outdoor expansion valve 19 and is temporarily stored in the receiver 21.

レシーバ21で循環量が調整された液冷媒は、過冷却熱交換器23を流通される過程で、分岐配管43に一部が分流され、過冷却用膨張弁(EEVSC)25で断熱膨張された冷媒と熱交換されて過冷却度が付与される。
この液冷媒は、液側操作弁31を経て室外機3A,3Bから液側配管9へと導出される。液側配管9に導出された液冷媒は、各室内機5へと分流される。
The liquid refrigerant whose circulation amount is adjusted by the receiver 21 is partly divided into the branch pipe 43 in the process of flowing through the supercooling heat exchanger 23 and is adiabatically expanded by the supercooling expansion valve (EEVSC) 25. Heat exchange with the refrigerant provides a degree of supercooling.
The liquid refrigerant is led out from the outdoor units 3A and 3B to the liquid side pipe 9 through the liquid side operation valve 31. The liquid refrigerant led out to the liquid side pipe 9 is diverted to each indoor unit 5.

各室内機5に流入した液冷媒は、室内膨張弁(EEVC)51で断熱膨張され、気液二相流となって室内熱交換器49へと流入される。
室内熱交換器49では、循環される室内空気と冷媒とが熱交換され、室内空気は冷却されて室内の冷房に供される。
一方、冷媒はガス化され、ガス側配管7を通って再び室外機3A,3Bに戻る。
The liquid refrigerant flowing into each indoor unit 5 is adiabatically expanded by the indoor expansion valve (EEVC) 51 and flows into the indoor heat exchanger 49 as a gas-liquid two-phase flow.
In the indoor heat exchanger 49, heat is exchanged between the circulated indoor air and the refrigerant, and the indoor air is cooled and provided for indoor cooling.
On the other hand, the refrigerant is gasified and returns to the outdoor units 3A and 3B through the gas side pipe 7 again.

室外機3A,3Bに戻ったガス配管39を通る冷媒ガスは、四方切換弁15を経て吸入配管41を通ってアキュムレータ27A,27Bに導入される。
アキュムレータ27A,27Bでは、冷媒ガス中に含まれている液分が分離され、ガス分のみが吸入配管41を通って圧縮機11A,11Bへと吸入される。この冷媒は、圧縮機11A,11Bにおいて再び圧縮され、以上のサイクルを繰り返すことによって冷房運転が行われる。
The refrigerant gas passing through the gas pipe 39 returned to the outdoor units 3A and 3B is introduced into the accumulators 27A and 27B through the four-way switching valve 15 and the suction pipe 41.
In the accumulators 27A and 27B, the liquid component contained in the refrigerant gas is separated, and only the gas component is sucked into the compressors 11A and 11B through the suction pipe 41. This refrigerant is compressed again in the compressors 11A and 11B, and the cooling operation is performed by repeating the above cycle.

一方、暖房運転は、以下のように行われる。
圧縮機11A,11Bにより圧縮された高温高圧の冷媒ガスは、圧縮機11A,11Bから吐出され、油分離器13で冷媒中に含まれている冷凍機油が分離された後、四方切換弁15によりガス側配管7側に供給される。
この冷媒は、ガス側操作弁29、ガス側配管7を経て室外機3A,3Bから導出され、更に分岐されて各室内機5へと導入される。
On the other hand, the heating operation is performed as follows.
The high-temperature and high-pressure refrigerant gas compressed by the compressors 11A and 11B is discharged from the compressors 11A and 11B, and after the refrigerating machine oil contained in the refrigerant is separated by the oil separator 13, the four-way switching valve 15 It is supplied to the gas side pipe 7 side.
This refrigerant is led out from the outdoor units 3A and 3B via the gas side operation valve 29 and the gas side pipe 7, and further branched and introduced into each indoor unit 5.

室内機5に導入された高温高圧の冷媒ガスは、室内熱交換器49で循環される室内空気と熱交換され、室内空気は加熱されて室内の暖房に供される。
一方、冷媒は凝縮され、室内膨張弁(EEVC)51および液側配管9を経て室外機3A,3Bに戻される。
The high-temperature and high-pressure refrigerant gas introduced into the indoor unit 5 is heat-exchanged with the indoor air circulated in the indoor heat exchanger 49, and the indoor air is heated and used for indoor heating.
On the other hand, the refrigerant is condensed and returned to the outdoor units 3A and 3B through the indoor expansion valve (EEVC) 51 and the liquid side pipe 9.

室外機3に戻った液配管9を通る冷媒は、液側操作弁31を経て過冷却熱交換器23に至り、冷房時の場合と異なり過冷却用膨張弁25は常に作動させるわけではなく、過冷却も付与しない場合がある。そして、レシーバ21に流入され、いったん貯留されることにより循環量が調整される。
この液冷媒は、室外膨張弁(EEVH)19で断熱膨張された後、室外熱交換器17へと流入される。
The refrigerant passing through the liquid pipe 9 returned to the outdoor unit 3 reaches the supercooling heat exchanger 23 via the liquid side operation valve 31, and unlike the case of cooling, the supercooling expansion valve 25 is not always operated. In some cases, supercooling may not be applied. Then, the amount of circulation is adjusted by flowing into the receiver 21 and once stored.
The liquid refrigerant is adiabatically expanded by the outdoor expansion valve (EEVH) 19 and then flows into the outdoor heat exchanger 17.

室外熱交換器17では、送風される外気と冷媒とが熱交換され、冷媒は外気から吸熱して蒸発ガス化される。
この冷媒は、室外熱交換器17から四方切換弁15を経て吸入配管41を通ってアキュムレータ27A,27Bに導入される。
アキュムレータ27A,27Bでは、冷媒ガス中に含まれている液分が分離され、ガス分のみが吸入配管41を通って圧縮機11A,11Bへと吸入される。この冷媒は、圧縮機11A,11Bにおいて再び圧縮される。以上のサイクルを繰り返すことによって暖房運転が行われる。
In the outdoor heat exchanger 17, heat is exchanged between the blown outside air and the refrigerant, and the refrigerant absorbs heat from the outside air and is evaporated and gasified.
This refrigerant is introduced from the outdoor heat exchanger 17 through the four-way switching valve 15 and through the suction pipe 41 to the accumulators 27A and 27B.
In the accumulators 27A and 27B, the liquid component contained in the refrigerant gas is separated, and only the gas component is sucked into the compressors 11A and 11B through the suction pipe 41. This refrigerant is compressed again in the compressors 11A and 11B. The heating operation is performed by repeating the above cycle.

次に、均油制御モード55による均油運転について図2を用いて説明する。圧縮機11Aは、運転回転数Naで、圧縮機11Bは運転回転数Nbで運転されている。
均油制御モード55では、アキュムレータ27A,27Bに貯留された液冷媒が十分に吸入できる所定回転数Nacが設定されている。
Next, the oil leveling operation in the oil leveling control mode 55 will be described with reference to FIG. The compressor 11A is operated at the operating speed Na, and the compressor 11B is operated at the operating speed Nb.
In the oil equalization control mode 55, a predetermined rotational speed Nac at which the liquid refrigerant stored in the accumulators 27A and 27B can be sufficiently sucked is set.

均油制御モード55は、一台(一部)の圧縮機、たとえば、圧縮機11Aが所定回転数Nacで運転された場合、他(残り)の圧縮機11Bをどの程度の回転数で運転すれば、運転中の圧縮機11A,11Bが供給している冷媒量を確保できるか算出する。必要な圧縮機11Bの回転数が非常に小さかった場合、その回転数で圧縮機11Bを運転すると、圧縮機Bに不具合と判断した場合、圧縮機Bを停止させることにする。この場合、圧縮機11Aは、圧縮機11Bが供給すべき冷媒供給量を上乗せするために、所定回転数Nacよりも若干大きな回転数Nで運転することとする。   In the oil equalization control mode 55, when one (partial) compressor, for example, the compressor 11A is operated at a predetermined rotational speed Nac, the other (remaining) compressor 11B is operated at what rotational speed. For example, it is calculated whether the refrigerant amount supplied by the operating compressors 11A and 11B can be secured. When the required number of rotations of the compressor 11B is very small, when the compressor 11B is operated at that number of rotations, if it is determined that the compressor B is defective, the compressor B is stopped. In this case, the compressor 11A is operated at a rotational speed N slightly larger than the predetermined rotational speed Nac in order to add the refrigerant supply amount to be supplied by the compressor 11B.

なお、必要な圧縮機11Bの回転数がある程度の大きさであれば、圧縮機11Aの回転数Nは所定回転数Nacとし、圧縮機11Bも運転することとする。
また、必要な圧縮機11Bの回転数が0の場合、圧縮機11Aの回転数Nは所定回転数Nacとし、圧縮機11Bは運転を停止することとする。
If the required number of rotations of the compressor 11B is a certain level, the number of rotations N of the compressor 11A is set to a predetermined number of rotations Nac, and the compressor 11B is also operated.
Further, when the necessary rotation speed of the compressor 11B is 0, the rotation speed N of the compressor 11A is set to a predetermined rotation speed Nac, and the compressor 11B stops operation.

均油制御モード55は、時点Xで均油運転を開始する。均油制御モード55は圧縮機11Aの回転数を運転時の回転数Naから回転数Nへ向けて増加させる。均油制御モード55は、時点Xから時間(所定時間)T0後に、圧縮機11Bを停止する。これは、圧縮機11Aの能力増加にタイムラグがあるので、このタイムラグによる一時的な冷媒供給量が低下するのを抑制するためである。   The oil leveling control mode 55 starts the oil leveling operation at time point X. The oil leveling control mode 55 increases the rotational speed of the compressor 11A from the rotational speed Na during operation toward the rotational speed N. The oil leveling control mode 55 stops the compressor 11B after a time (predetermined time) T0 from the time point X. This is because there is a time lag in the capacity increase of the compressor 11A, and thus the temporary refrigerant supply amount due to the time lag is suppressed from decreasing.

圧縮機11Aは増加された回転数Nで運転され、圧縮機11Bは停止されるので、圧縮機11A,11Bへ吸入されるガス冷媒に圧力損失量の差が発生し、圧縮機11A,11Bの内部の圧力に差が出る。圧縮機11A,11Bの内部圧力に差がつくと、圧力差のある圧縮機11A,11B間を連通している均油管46を通って潤滑油が移動する。
また、圧縮機11Aは、所定回転数Nacよりも大きな回転数Nで運転されているので、アキュムレータ27Aに貯留された液冷媒に混入した潤滑油を十分に圧縮機11A内に還流させることができる。
Since the compressor 11A is operated at the increased rotation speed N and the compressor 11B is stopped, a difference in pressure loss occurs between the gas refrigerant sucked into the compressors 11A and 11B, and the compressors 11A and 11B There is a difference in internal pressure. When there is a difference between the internal pressures of the compressors 11A and 11B, the lubricating oil moves through the oil equalizing pipe 46 communicating between the compressors 11A and 11B having a pressure difference.
Further, since the compressor 11A is operated at a rotational speed N greater than the predetermined rotational speed Nac, the lubricating oil mixed in the liquid refrigerant stored in the accumulator 27A can be sufficiently recirculated into the compressor 11A. .

均油制御モード55は、圧縮機11Aの回転数Nでの運転および圧縮機11Bの停止の状態が予め設定した時間経過すると、圧縮機11Aと圧縮機11Bとの役割を逆転させる。すなわち、均油制御モード55は圧縮機11Aを停止し、圧縮機11Bを回転数Nで運転するようにする。
このようにすると、圧縮機11A,11B間で均油管46を通って潤滑油が移動する。圧縮機11Bは、所定回転数Nacよりも大きな回転数Nで運転されているので、アキュムレータ27Bに貯留された液冷媒に混入した潤滑油を十分に圧縮機11B内に還流させることができる。
The oil equalization control mode 55 reverses the roles of the compressor 11A and the compressor 11B when a preset time elapses between the operation at the rotational speed N of the compressor 11A and the stop state of the compressor 11B. That is, the oil equalization control mode 55 stops the compressor 11A and operates the compressor 11B at the rotation speed N.
If it does in this way, lubricating oil will move through the oil equalization pipe | tube 46 between compressor 11A, 11B. Since the compressor 11B is operated at a rotational speed N greater than the predetermined rotational speed Nac, the lubricating oil mixed in the liquid refrigerant stored in the accumulator 27B can be sufficiently recirculated into the compressor 11B.

このように、全ての圧縮機11A,11Bが少なくとも一度は所定回転数Nacよりも大きな回転数Nで運転されるので、圧縮機11A,11Bには、アキュムレータ27A,27Bからの潤滑油の還流量を十分確保できるとともに圧縮機11A,11Bの潤滑油量を略均等にすることができる。   As described above, since all the compressors 11A and 11B are operated at least once at the rotational speed N higher than the predetermined rotational speed Nac, the compressors 11A and 11B are supplied with the recirculation amount of the lubricating oil from the accumulators 27A and 27B. Can be secured sufficiently, and the amount of lubricating oil in the compressors 11A and 11B can be made substantially equal.

停止する圧縮機を圧縮機11Bから圧縮機11Aへ切り替える場合、圧縮機11Bを停止状態から起動するタイミングと、圧縮機11Aを停止するタイミングとは、後者が前者よりも時間(所定時間)T1だけ遅らせている。
圧縮機11Bが停止状態から回転数Nに達するまでには時間がかかるので、冷媒供給量は徐徐に増加することになる。言い換えると、圧縮機11Bによる冷媒供給量が所定の量(冷暖房時の冷媒供給量)になるには若干のタイムラグがある。
均油制御モード55は、圧縮機11Aの停止タイミングを圧縮機11Bの回転数Nへの増加開始タイミングよりも時間T1だけ遅らせているので、このタイムラグによる一時的な冷媒供給量が低下するのを抑制することができる。
When the compressor to be stopped is switched from the compressor 11B to the compressor 11A, the timing for starting the compressor 11B from the stopped state and the timing for stopping the compressor 11A are the time (predetermined time) T1 than the former. Delayed.
Since it takes time for the compressor 11B to reach the rotational speed N from the stopped state, the refrigerant supply amount gradually increases. In other words, there is a slight time lag before the refrigerant supply amount by the compressor 11B reaches a predetermined amount (refrigerant supply amount at the time of cooling and heating).
In the oil equalization control mode 55, the stop timing of the compressor 11A is delayed by the time T1 from the increase start timing to the rotation speed N of the compressor 11B, so that the temporary refrigerant supply amount due to this time lag is reduced. Can be suppressed.

時間T1は、回転数差が大きくタイムラグ時間が大きいので、時間T0よりも大きく設定されている。
時間T0および時間T1は、必要に応じて設定されるが、たとえば、回転数の増加に要する時間の半分位の時間とされる。
なお、停止される圧縮機11が、低い回転数で運転される場合、該圧縮機11の冷媒供給は徐徐に低下するので、その低下させるタイミングは他方の回転数を増加させるタイミングと一致させてもよいし、時間T1よりも小さい時間遅延させてもよい。
The time T1 is set to be larger than the time T0 because the rotation speed difference is large and the time lag time is large.
The time T0 and the time T1 are set as necessary. For example, the time T0 and the time T1 are about half of the time required to increase the rotational speed.
In addition, when the compressor 11 to be stopped is operated at a low rotational speed, the refrigerant supply of the compressor 11 gradually decreases, so that the timing of the decrease coincides with the timing of increasing the other rotational speed. Alternatively, it may be delayed by a time smaller than the time T1.

本実施形態では、室外機3A,3Bが2台の場合であるが、3台の室外機3にも同様に適用することができる。3台目の室外機3は、図1に一点鎖線で示されるように、ガス側配管7および液側配管9によって並列に接続される。3台目の圧縮機11Cは均油管46で圧縮機11A,11Bと並列に接続されている。
ここでは、圧縮機11A,11Bが運転され、圧縮機11Cが停止されている状態で均油運転を行う場合を説明する。
均油制御モード55は、この場合も、上述の2台圧縮機11A,11Bと同様に一部の圧縮機、たとえば、圧縮機11Aが所定回転数Nacで運転された場合、残りの圧縮機11B,11Cをどの程度の回転数で運転すれば、運転中の圧縮機11A,11Bが供給している冷媒量を確保できるか算出する。そして、上述と同様に所定回転数Nacで運転する圧縮機11の回転数Nを決定する。
In the present embodiment, there are two outdoor units 3A and 3B, but the present invention can be similarly applied to three outdoor units 3. The third outdoor unit 3 is connected in parallel by a gas side pipe 7 and a liquid side pipe 9 as shown by a one-dot chain line in FIG. The third compressor 11C is connected in parallel with the compressors 11A and 11B by an oil equalizing pipe 46.
Here, a case where the oil leveling operation is performed in a state where the compressors 11A and 11B are operated and the compressor 11C is stopped will be described.
Even in this case, the oil equalization control mode 55 is similar to the above-described two compressors 11A and 11B, and when the compressor 11A, for example, the compressor 11A is operated at the predetermined rotation speed Nac, the remaining compressor 11B. , 11C is calculated at what rotational speed to ensure the amount of refrigerant supplied by the compressors 11A, 11B during operation. Then, the rotational speed N of the compressor 11 operating at the predetermined rotational speed Nac is determined in the same manner as described above.

ここでは、1台の圧縮機11を回転数Nで運転し、他の2台の圧縮機11は停止させることで説明する。
均油制御モード55は、時点Xで均油運転を開始する。均油制御モード55は圧縮機11Aの回転数を運転時の回転数Naから回転数Nへ向けて増加させる。均油制御モード55は、時点Xから時間(所定時間)T0後に、圧縮機11Bを停止する。すなわち、圧縮機11B,11Cは停止する。これは、圧縮機11Aの能力増加にタイムラグがあるので、このタイムラグによる一時的な冷媒供給量が低下するのを抑制するためである。
Here, a description will be given by operating one compressor 11 at the rotation speed N and stopping the other two compressors 11.
The oil leveling control mode 55 starts the oil leveling operation at time point X. The oil leveling control mode 55 increases the rotational speed of the compressor 11A from the rotational speed Na during operation toward the rotational speed N. The oil leveling control mode 55 stops the compressor 11B after a time (predetermined time) T0 from the time point X. That is, the compressors 11B and 11C are stopped. This is because there is a time lag in the capacity increase of the compressor 11A, and thus the temporary refrigerant supply amount due to the time lag is suppressed from decreasing.

圧縮機11Aは増加された回転数Nで運転され、圧縮機11B,11Cは停止されているので、圧縮機11A,11B,11Cへ吸入されるガス冷媒に圧力損失量の差が発生し、圧縮機11A,11B,11Cの内部の圧力に差が出る。圧縮機11A,11B,11Cの内部圧力に差がつくと、圧力差のある圧縮機11A,11B,11C間を連通している均油管46を通って潤滑油が移動する。
また、圧縮機11Aは、所定回転数Nacよりも大きな回転数Nで運転されているので、アキュムレータ27Aに貯留された液冷媒に混入した潤滑油を十分に圧縮機11A内に還流させることができる。
Since the compressor 11A is operated at the increased rotation speed N and the compressors 11B and 11C are stopped, a difference in pressure loss occurs in the gas refrigerant sucked into the compressors 11A, 11B, and 11C, and the compression is performed. There is a difference in the pressure inside the machines 11A, 11B, 11C. When there is a difference in the internal pressure of the compressors 11A, 11B, and 11C, the lubricating oil moves through the oil equalizing pipe 46 that communicates between the compressors 11A, 11B, and 11C having a pressure difference.
Further, since the compressor 11A is operated at a rotational speed N greater than the predetermined rotational speed Nac, the lubricating oil mixed in the liquid refrigerant stored in the accumulator 27A can be sufficiently recirculated into the compressor 11A. .

均油制御モード55は、圧縮機11Aの回転数Nでの運転および圧縮機11B,11Cの停止の状態が予め設定した時間経過すると、圧縮機11Aと圧縮機11Bとの役割を逆転させる。すなわち、均油制御モード55は圧縮機11Aを停止し、圧縮機11Bを回転数Nで運転するようにする。
このようにすると、圧縮機11A,11B,11C間で均油管46を通って潤滑油が移動する。圧縮機11Bは、所定回転数Nacよりも大きな回転数Nで運転されているので、アキュムレータ27Bに貯留された液冷媒に混入した潤滑油を十分に圧縮機11B内に還流させることができる。
The oil leveling control mode 55 reverses the roles of the compressor 11A and the compressor 11B when a preset time elapses when the compressor 11A is operated at the rotational speed N and the compressors 11B and 11C are stopped. That is, the oil equalization control mode 55 stops the compressor 11A and operates the compressor 11B at the rotation speed N.
If it does in this way, lubricating oil will move through the oil equalization pipe | tube 46 between compressor 11A, 11B, 11C. Since the compressor 11B is operated at a rotational speed N greater than the predetermined rotational speed Nac, the lubricating oil mixed in the liquid refrigerant stored in the accumulator 27B can be sufficiently recirculated into the compressor 11B.

均油制御モード55は、圧縮機11Bの回転数Nでの運転および圧縮機11A,11Cの停止の状態が予め設定した時間経過すると、圧縮機11Bと圧縮機11Cとの役割を逆転させる。すなわち、均油制御モード55は圧縮機11Bを停止し、圧縮機11Cを回転数Nで運転するようにする。これにより、圧縮機11A,11B,11Cの潤滑油の移動が行われ、かつ、圧縮機11Cにもアキュムレータ29から潤滑油を十分に還流させることができる。   The oil equalization control mode 55 reverses the roles of the compressor 11B and the compressor 11C when a preset time elapses when the compressor 11B is operated at the rotational speed N and the compressors 11A and 11C are stopped. That is, the oil equalization control mode 55 stops the compressor 11B and operates the compressor 11C at the rotation speed N. Thereby, the lubricant oil of the compressors 11A, 11B, and 11C is moved, and the lubricant oil can be sufficiently recirculated from the accumulator 29 to the compressor 11C.

このように、全ての圧縮機11A,11B,11Cが少なくとも一度は所定回転数Nacよりも大きな回転数Nで運転されるので、圧縮機11A,11B,11Cには、アキュムレータ27A,27B,27Cからの潤滑油の還流量を十分確保できるとともに圧縮機11A,11B,11Cの潤滑油量を略均等にすることができる。   Thus, since all the compressors 11A, 11B, and 11C are operated at least once at the rotational speed N greater than the predetermined rotational speed Nac, the compressors 11A, 11B, and 11C are connected to the accumulators 27A, 27B, and 27C. In addition, a sufficient amount of lubricating oil can be secured and the amount of lubricating oil in the compressors 11A, 11B, and 11C can be made substantially equal.

停止させるタイミングは、それぞれ停止状態から起動するタイミングよりも時間T1だけ遅らせ、一時的な冷媒供給量が低下するのを抑制している。   The timing of stopping is delayed by time T1 from the timing of starting from the stopped state, respectively, and the temporary refrigerant supply amount is suppressed from decreasing.

また、並列に接続された4台の室外機3にも同様に適用することができる。
ここでは、図4に示されるように全ての圧縮機11A,11B,11C,11Dが運転されている状態で均油運転を行う場合を説明する。
均油制御モード55は、この場合も、上述の2台圧縮機11A,11Bと同様に一部の圧縮機、たとえば、圧縮機11A,11Cが所定回転数Nacで運転された場合、残りの圧縮機11B,11Dをどの程度の回転数で運転すれば、運転中の圧縮機11A,11B,11C,11Dが供給している冷媒量を確保できるか算出する。そして、上述と同様に所定回転数Nacで運転する圧縮機11の回転数Nを決定する。
Further, the present invention can be similarly applied to four outdoor units 3 connected in parallel.
Here, the case where the oil leveling operation is performed in a state where all the compressors 11A, 11B, 11C, and 11D are operating as illustrated in FIG. 4 will be described.
Even in this case, the oil leveling control mode 55 is similar to the above-described two compressors 11A and 11B. When some compressors, for example, the compressors 11A and 11C are operated at the predetermined rotation speed Nac, the remaining compression is performed. It is calculated at what rotational speed the machines 11B and 11D are operated to ensure the amount of refrigerant supplied by the operating compressors 11A, 11B, 11C, and 11D. Then, the rotational speed N of the compressor 11 operating at the predetermined rotational speed Nac is determined in the same manner as described above.

ここでは、2台の圧縮機11を回転数Nで運転し、他の2台の圧縮機11は停止させることで説明する。
均油制御モード55は、時点Xで均油運転を開始する。均油制御モード55は圧縮機11A,11Cの回転数を運転時の回転数Na,Ncから回転数Nへ向けて増加させる。均油制御モード55は、時点Xから時間(所定時間)T0後に、圧縮機11B,11Dを停止する。これは、圧縮機11A,11Cの能力増加にタイムラグがあるので、このタイムラグによる一時的な冷媒供給量が低下するのを抑制するためである。
Here, the description will be made by operating the two compressors 11 at the rotation speed N and stopping the other two compressors 11.
The oil leveling control mode 55 starts the oil leveling operation at time point X. The oil equalization control mode 55 increases the rotational speeds of the compressors 11A and 11C from the rotational speeds Na and Nc during operation toward the rotational speed N. The oil leveling control mode 55 stops the compressors 11B and 11D after a time (predetermined time) T0 from the time point X. This is because there is a time lag in increasing the capacities of the compressors 11A and 11C, so that the temporary refrigerant supply amount due to the time lag is prevented from being lowered.

圧縮機11A,11Cは増加された回転数Nで運転され、圧縮機11B,11Dは停止されているので、圧縮機11A,11B,11Cへ吸入されるガス冷媒に圧力損失量の差が発生し、圧縮機11A,11B,11C,11Dの内部の圧力に差が出る。圧縮機11A,11B,11C,11Dの内部圧力に差がつくと、圧力差のある圧縮機11A,11B,11C,11D間を連通している均油管46を通って潤滑油が移動する。
また、圧縮機11A,11Cは、所定回転数Nacよりも大きな回転数Nで運転されているので、アキュムレータ27A,27Cに貯留された液冷媒に混入した潤滑油を十分に圧縮機11A,11C内に還流させることができる。
Since the compressors 11A and 11C are operated at the increased rotation speed N and the compressors 11B and 11D are stopped, a difference in the amount of pressure loss occurs in the gas refrigerant sucked into the compressors 11A, 11B, and 11C. The pressures in the compressors 11A, 11B, 11C, and 11D are different. When there is a difference in the internal pressures of the compressors 11A, 11B, 11C, and 11D, the lubricating oil moves through the oil equalizing pipe 46 that communicates between the compressors 11A, 11B, 11C, and 11D having a pressure difference.
Further, since the compressors 11A and 11C are operated at a rotational speed N greater than the predetermined rotational speed Nac, the lubricating oil mixed in the liquid refrigerant stored in the accumulators 27A and 27C is sufficiently contained in the compressors 11A and 11C. Can be refluxed.

均油制御モード55は、圧縮機11A,11Cの回転数Nでの運転および圧縮機11B,11Dの停止の状態が予め設定した時間経過すると、圧縮機11A,11Cを停止し、圧縮機11B,11Dを回転数Nで運転するようにする。
次いで、均油制御モード55は、圧縮機11B,11Dの回転数Nでの運転および圧縮機11A,11Cの停止の状態が予め設定した時間経過すると、圧縮機11C,11Dを停止し、圧縮機11A,11Bを回転数Nで運転するようにする。
次いで、均油制御モード55は、圧縮機11A,11Bの回転数Nでの運転および圧縮機11C,11Dの停止の状態が予め設定した時間経過すると、圧縮機11A,11Bを停止し、圧縮機11C,11Dを回転数Nで運転するようにする。
これらの状態における動作は上述と同様であるので、ここでは重複した説明を省略する。
The oil equalization control mode 55 stops the compressors 11A and 11C when the operation at the rotational speed N of the compressors 11A and 11C and the stop state of the compressors 11B and 11D have elapsed in advance. 11D is operated at the rotation speed N.
Subsequently, the oil leveling control mode 55 stops the compressors 11C and 11D when the preset time has elapsed after the operation of the compressors 11B and 11D at the rotational speed N and the stop state of the compressors 11A and 11C have elapsed. 11A and 11B are operated at a rotational speed N.
Next, the oil leveling control mode 55 stops the compressors 11A and 11B when the operation at the rotational speed N of the compressors 11A and 11B and the stop state of the compressors 11C and 11D have elapsed in advance. 11C and 11D are operated at the rotation speed N.
Since the operation in these states is the same as described above, a duplicate description is omitted here.

このようにすると、4台の圧縮機11A,11B,11C,11Dは、2台ずつ組み合わせを変えて所定回転数Nacよりも大きな回転数Nでそれぞれ2期間に亘り運転されるので、アキュムレータ27に貯留された液冷媒に混入した潤滑油を十分に還流させることができるし、均油管46を通した潤滑油量における相互間の均一化を図ることができる。   In this way, the four compressors 11A, 11B, 11C, and 11D are operated for two periods each at a rotational speed N greater than the predetermined rotational speed Nac by changing the combination of the two compressors. The lubricating oil mixed in the stored liquid refrigerant can be sufficiently recirculated, and the amount of lubricating oil through the oil equalizing pipe 46 can be made uniform.

この場合も、圧縮機11を停止させるタイミングは、それぞれ停止状態から起動するタイミングよりも時間T1だけ遅らせ、一時的な冷媒供給量が低下するのを抑制している。   Also in this case, the timing at which the compressor 11 is stopped is delayed by the time T1 from the timing at which the compressor 11 is started from the stopped state, thereby suppressing the temporary refrigerant supply amount from decreasing.

なお、本発明は以上説明した各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形を行ってもよい。
たとえば、本実施形態では、1台の圧縮機11を有する室外機3が複数台備えられているものであるが、複数の圧縮機11を有する室外機3を1台あるいは複数台備えられているものに対しても同様に適用できる。
The present invention is not limited to the embodiments described above, and various modifications may be made without departing from the spirit of the present invention.
For example, in the present embodiment, a plurality of outdoor units 3 having one compressor 11 are provided, but one or a plurality of outdoor units 3 having a plurality of compressors 11 are provided. The same can be applied to things.

1 空気調和装置
11,11A,11B,11C,11D 圧縮機
27A,27B アキュムレータ
46 均油管
47 還流配管
53 制御部
55 均油制御モード
T0,T1 時間
1 Air Conditioner 11, 11A, 11B, 11C, 11D Compressor 27A, 27B Accumulator 46 Oil Leveling Pipe 47 Recirculation Pipe 53 Control Unit 55 Oil Leveling Control Mode T0, T1 Time

Claims (2)

回転数が可変とされ、相互に均油管で接続された複数の圧縮機と、
該圧縮機の吸入側に吸入される冷媒ガス中から液分を分離し、潤滑油を含む液冷媒を貯留する気液分離器と、
前記圧縮機の運転に伴い前記気液分離器に貯留された前記液冷媒を徐徐に前記圧縮機の吸入側に供給する供給管と、
前記複数の圧縮機に貯留される潤滑油の量をそれぞれ一定レベル以上に保持する均油制御モードを有する運転を制御する制御部と、が備えられている空気調和装置であって、
前記均油制御モードは、前記複数の圧縮機の内、一部の圧縮機を前記液冷媒が十分に吸入できる所定回転数で回転させ、全ての圧縮機による冷媒供給量が均油運転開始前の冷媒供給量を維持するように残りの圧縮機の回転数を低減させる動作を、全ての圧縮機が少なくとも一度は前記所定回転数で運転されるように前記一部の圧縮機を切り替えて繰り返し行うことを特徴とする空気調和装置。
A plurality of compressors whose rotation speed is variable and connected to each other by oil equalizing pipes;
A gas-liquid separator that separates a liquid component from refrigerant gas sucked into the suction side of the compressor and stores liquid refrigerant containing lubricating oil;
A supply pipe for gradually supplying the liquid refrigerant stored in the gas-liquid separator with the operation of the compressor to the suction side of the compressor;
A control unit that controls an operation having an oil equalization control mode in which the amount of lubricating oil stored in the plurality of compressors is held at a certain level or more, respectively,
In the oil equalization control mode, a part of the plurality of compressors is rotated at a predetermined rotation speed at which the liquid refrigerant can be sufficiently sucked, and the refrigerant supply amount by all the compressors is before the oil equalization operation is started. The operation of reducing the rotation speed of the remaining compressors so as to maintain the refrigerant supply amount is repeated by switching the some compressors so that all the compressors are operated at the predetermined rotation speed at least once. An air conditioner characterized by performing.
前記均油制御モードは、前記残りの圧縮機の回転数を低減して停止させる場合、停止タイミングを前記一部の圧縮機の所定回転数への増加開始タイミングよりも所定時間遅らせることを特徴とする請求項1に記載の空気調和装置。

In the oil equalization control mode, when the remaining compressors are stopped by reducing the number of rotations, the stop timing is delayed by a predetermined time from the increase start timing of the partial compressors to the predetermined number of rotations. The air conditioning apparatus according to claim 1.

JP2010097956A 2010-04-21 2010-04-21 Air conditioner Expired - Fee Related JP5645453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097956A JP5645453B2 (en) 2010-04-21 2010-04-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097956A JP5645453B2 (en) 2010-04-21 2010-04-21 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011226714A true JP2011226714A (en) 2011-11-10
JP5645453B2 JP5645453B2 (en) 2014-12-24

Family

ID=45042261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097956A Expired - Fee Related JP5645453B2 (en) 2010-04-21 2010-04-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP5645453B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3067644A1 (en) 2015-03-10 2016-09-14 Fujitsu General Limited Air conditioning apparatus
WO2018079226A1 (en) * 2016-10-31 2018-05-03 三菱重工サーマルシステムズ株式会社 Refrigeration device and refrigeration system
WO2018123927A1 (en) * 2016-12-28 2018-07-05 三菱重工サーマルシステムズ株式会社 Refrigerant circuit system and oil equalization control method
WO2019159335A1 (en) * 2018-02-16 2019-08-22 東芝キヤリア株式会社 Refrigeration cycle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302258A (en) * 1987-05-29 1988-12-09 ダイキン工業株式会社 Refrigerator
JPH01127864A (en) * 1987-11-13 1989-05-19 Toshiba Corp Air conditioner
JPH01193088A (en) * 1988-01-29 1989-08-03 Toshiba Corp Air conditioner
JPH01203677A (en) * 1988-02-09 1989-08-16 Toshiba Corp Air conditioner
JPH0519866U (en) * 1991-08-28 1993-03-12 三菱重工業株式会社 Refrigerant circuit of air conditioner
JP2010071627A (en) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd Refrigerating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302258A (en) * 1987-05-29 1988-12-09 ダイキン工業株式会社 Refrigerator
JPH01127864A (en) * 1987-11-13 1989-05-19 Toshiba Corp Air conditioner
JPH01193088A (en) * 1988-01-29 1989-08-03 Toshiba Corp Air conditioner
JPH01203677A (en) * 1988-02-09 1989-08-16 Toshiba Corp Air conditioner
JPH0519866U (en) * 1991-08-28 1993-03-12 三菱重工業株式会社 Refrigerant circuit of air conditioner
JP2010071627A (en) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd Refrigerating device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3067644A1 (en) 2015-03-10 2016-09-14 Fujitsu General Limited Air conditioning apparatus
US10443910B2 (en) 2015-03-10 2019-10-15 Fujitsu General Limited Air conditioning apparatus
WO2018079226A1 (en) * 2016-10-31 2018-05-03 三菱重工サーマルシステムズ株式会社 Refrigeration device and refrigeration system
EP3492836A4 (en) * 2016-10-31 2019-08-28 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigeration device and refrigeration system
WO2018123927A1 (en) * 2016-12-28 2018-07-05 三菱重工サーマルシステムズ株式会社 Refrigerant circuit system and oil equalization control method
WO2019159335A1 (en) * 2018-02-16 2019-08-22 東芝キヤリア株式会社 Refrigeration cycle device
JPWO2019159335A1 (en) * 2018-02-16 2020-10-22 東芝キヤリア株式会社 Refrigeration cycle equipment
GB2583666A (en) * 2018-02-16 2020-11-04 Toshiba Carrier Corp Refrigeration cycle device
GB2583666B (en) * 2018-02-16 2022-05-04 Toshiba Carrier Corp Refrigeration cycle device designed to mitigate lubricant shortages

Also Published As

Publication number Publication date
JP5645453B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP4120682B2 (en) Air conditioner and heat source unit
JP5229476B2 (en) Refrigeration apparatus and control method thereof
JP6610274B2 (en) Refrigeration equipment and management system
WO2017122685A1 (en) Refrigeration device
JP6283815B2 (en) Air conditioner
CN110023692B (en) Refrigerating device
US10168069B2 (en) Air-conditioning apparatus
JP2010139155A (en) Refrigeration apparatus
JP2011174687A (en) Air conditioner
JP5645453B2 (en) Air conditioner
JP2011196630A (en) Multi-room type air conditioning device
JP5916489B2 (en) Control apparatus and method, program, and multi-type air conditioning system including the same
US20210207834A1 (en) Air-conditioning system
AU2014338081A1 (en) Refrigeration apparatus
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
JP5517891B2 (en) Air conditioner
US11448433B2 (en) Refrigeration apparatus
JP6662753B2 (en) Refrigeration equipment
JP2016142453A (en) Air conditioner
WO2014091612A1 (en) Air-conditioning device
WO2011151985A1 (en) Freezing device
JP2021162252A (en) Air conditioner
JPWO2015177852A1 (en) Refrigeration cycle equipment
KR20140018536A (en) An air conditioner
JP5858858B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R151 Written notification of patent or utility model registration

Ref document number: 5645453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees