JPH01219372A - Equalized oiling control method for refrigerator - Google Patents

Equalized oiling control method for refrigerator

Info

Publication number
JPH01219372A
JPH01219372A JP4346388A JP4346388A JPH01219372A JP H01219372 A JPH01219372 A JP H01219372A JP 4346388 A JP4346388 A JP 4346388A JP 4346388 A JP4346388 A JP 4346388A JP H01219372 A JPH01219372 A JP H01219372A
Authority
JP
Japan
Prior art keywords
compressor
oil level
oil
compressors
operating frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4346388A
Other languages
Japanese (ja)
Inventor
Hiroshi Okamoto
宏 岡本
Susumu Suzuki
進 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4346388A priority Critical patent/JPH01219372A/en
Publication of JPH01219372A publication Critical patent/JPH01219372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To secure lubricating reliability in each compressor by making the operating frequency of a compressor being low in oil level height higher after operating each compressor with the same capacity just before stopping refrigerating cycle operation. CONSTITUTION:Before fully stopping refrigerating cycle operation, a command is issued to both first and second inverter units 3, 4 so as to make them operate each of compressors 1, 2 with the same operating frequency. During this interval, oil level height is detected by oil level sensors 13a, 13b, and after the elapse of the specified time, each operating frequency of these compressors 1, 2 according to a ratio of the oil level height. With this constitution, since each oil level height of these compressors 1, 2 is surely equalized, an amount of lubricating oil in these compressors 1, 2 is secured so that lubricating reliability is thus improvable.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、互いに並列に接続する複数台の圧縮機を備え
、かつ互いの圧縮機はインバータ装置によって運転周波
数制御がなされる冷凍機に係り、特に冷凍サイクル運転
終了時において各圧縮機に均等に潤滑油を戻すための均
油制御方法の改良に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention comprises a plurality of compressors connected in parallel to each other, and each compressor has an operating frequency controlled by an inverter device. The present invention relates to a refrigerating machine, and particularly relates to an improvement in an oil equalization control method for returning lubricating oil evenly to each compressor at the end of refrigeration cycle operation.

(従来の技術) たとえばショーケースのように、複数台の蒸発器を制御
する冷凍サイクルを構成する、いわゆるマルチタイプの
冷凍機が多用される。この種の冷凍機においては、各蒸
発器に対する冷凍能力の幅が大きく、1台の大型圧縮機
を備えただけでは、その要求を満足することができない
。すなわち、冷凍されるべき被冷凍物の収容量が各蒸発
器で異なる場合が多く、また1台のみ冷凍作用させて他
の蒸発器は停止する場合もある。このような要求に対処
するため、1台の大型圧縮機を備えるより、複数台の圧
縮機を互いに並列に接続して、個々の蒸発器の要求に応
じた能力幅の広い冷凍サイクル運転をなす手段が採用さ
れるようになった。しかも、各圧縮機にはそれぞれイン
バータ装置を接続して、その運転周波数を別個に制御す
ることにより冷凍能力を可変化し、より精度の高い冷凍
作用が可能になった。
(Prior Art) For example, in showcases, so-called multi-type refrigerators that constitute a refrigeration cycle that controls a plurality of evaporators are often used. In this type of refrigerator, the range of refrigerating capacity for each evaporator is wide, and the requirements cannot be met with just one large compressor. That is, the capacity of the object to be frozen is often different for each evaporator, and there are also cases where only one evaporator is activated while the other evaporators are stopped. To meet these demands, rather than having one large compressor, multiple compressors are connected in parallel to operate a refrigeration cycle with a wide range of capacity according to the demands of each individual evaporator. methods have been adopted. Moreover, by connecting an inverter to each compressor and controlling its operating frequency separately, the refrigeration capacity can be varied, making it possible to achieve more precise refrigeration.

ところで、このような圧縮機においては、常に円滑で確
実な圧縮作用をなすために、潤滑油が必要不可欠である
。上記圧縮機に集溜する潤滑油の一部は、冷媒ガスに混
合した状態で圧縮機から吐出されて冷凍サイクル回路を
循環し、再び圧縮機に吸込まれる。したがって運転周波
数が制御される複数台の圧縮機を備えたものでは、特定
の圧縮機に潤滑油が集中し、残りの圧縮機において潤滑
油不足の傾向で冷凍サイクル運転が終了することが多い
。そのままの状態で再び冷凍サイクル運転をなすと、さ
らに潤滑油不足が大となり、潤滑性低下による圧縮効率
の低下や機械的損傷事故の発生が考慮される。
Incidentally, in such a compressor, lubricating oil is indispensable in order to always perform a smooth and reliable compression action. A portion of the lubricating oil collected in the compressor is discharged from the compressor in a state mixed with refrigerant gas, circulates through the refrigeration cycle circuit, and is sucked into the compressor again. Therefore, in a compressor equipped with a plurality of compressors whose operating frequency is controlled, lubricating oil is concentrated in a specific compressor, and the remaining compressors tend to run out of lubricating oil, and the refrigeration cycle operation often ends. If the refrigeration cycle is operated again in this state, the shortage of lubricating oil will become even greater, and it is considered that the compression efficiency will decrease due to the decrease in lubricity and the occurrence of mechanical damage accidents.

このことから、各圧縮機における潤滑油の油量を均等に
すべき対策が必要となる。従来においては、たとえば互
いの圧縮機のクランクケース部をパイプで連通し、冷凍
サイクル運転停止中に油量レベルを均一にしようとする
のものがある。しかしながら、個々の圧縮機に集溜する
潤滑油の油量は運転作用によって常に変動するところか
ら、上記パイプの管径の設定が難しい。また、上記パイ
プには冷凍サイクル運転中でも潤滑油が導通し、よりア
ンバランス傾向が大となる。
For this reason, it is necessary to take measures to equalize the amount of lubricating oil in each compressor. Conventionally, for example, there is a method in which the crankcase portions of each compressor are connected through a pipe to make the oil level uniform while the refrigeration cycle is stopped. However, since the amount of lubricating oil collected in each compressor constantly fluctuates depending on operating effects, it is difficult to set the diameter of the pipe. Furthermore, lubricating oil is conducted through the pipe even during operation of the refrigeration cycle, which increases the tendency for imbalance.

あるいは、定期的に全ての圧縮機を全負荷運転して滞留
した潤滑油を所定の容器に回収する手段もとられている
。しかるにこの場合には、それまで運転していた互いの
圧縮機の運転周波数の大小によりさらに油量の変動が大
きくなり、油量の差がなくならないという不具合がある
Alternatively, there is also a method of periodically operating all the compressors at full load to collect the accumulated lubricating oil in a predetermined container. However, in this case, there is a problem in that the oil amount fluctuates even more depending on the operating frequencies of the compressors that have been operating up to that point, and the difference in oil amount does not disappear.

(発明が解決しようとする課題) 本発明は、上述したような複数台の圧縮機を互いに並列
に連通し、かつそれぞれインバータ装置に電気的に接続
した冷凍機において、各圧縮機に集溜する潤滑油の油量
が不均一となる不具合を除去し、冷凍サイクル運転の停
止時には各圧縮機の油面高さを確実に均一化して、各圧
縮機の潤滑信頼性を確保する冷凍機の均油制御方法を提
供することを目的とする。
(Problems to be Solved by the Invention) The present invention provides a refrigerator in which a plurality of compressors as described above are connected to each other in parallel and each is electrically connected to an inverter device. Refrigerator equalization eliminates the problem of uneven lubricating oil levels and ensures uniform oil level in each compressor when refrigeration cycle operation is stopped, ensuring lubrication reliability for each compressor. The purpose is to provide an oil control method.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) すなわち本発明は、複数台の圧縮機を互いに並列に連通
し、かつそれぞれの圧縮機にインバータ装置を電気的に
接続した冷凍機において、冷凍サイクル運転を停止する
直前に上記インバータ装置は各圧縮機を同一運転周波数
となし、油面検知機構は各圧縮機に集溜する潤滑油の油
面高さを感知し、しかる後、油面低の圧縮機の運転周波
数を油面高の圧縮機の運転周波数よりも高くして、各圧
縮機の油面高さを均一にすることを特徴とする冷凍機の
均油制御方法である。
(Means for Solving the Problem) That is, the present invention provides a method for stopping refrigeration cycle operation in a refrigerator in which a plurality of compressors are connected in parallel to each other and an inverter device is electrically connected to each compressor. Immediately beforehand, the inverter device sets each compressor to the same operating frequency, and the oil level detection mechanism senses the level of lubricating oil collected in each compressor, and then operates the compressor with a low oil level. This oil level control method for a refrigerating machine is characterized in that the frequency is set higher than the operating frequency of a compressor with a high oil level to make the oil level level of each compressor uniform.

(作用) 潤滑油の集溜油量の少ない、すなわち油面の低い圧縮機
の運転周波数を高くして油面の高い圧縮機から潤滑油を
取込み、常に油面検知機構が互いの圧縮機の油面高さを
検知して、互いに均一になったところで各圧縮機の運転
を停止する。
(Function) The operating frequency of the compressor with a small amount of collected lubricating oil, that is, the oil level is raised, and lubricating oil is taken in from the compressor with a high oil level, so that the oil level detection mechanism always detects the difference between each compressor. The system detects the oil level and stops operation of each compressor when the oil level becomes equal.

(実施例) 以下、本発明の一実施例を第1図にもとづいて説明する
。図中、1は第1の圧縮機、2は第2の圧縮機であって
、これらは互いの吐出側および吸込側ともに冷媒管Pを
介して並列に接続される。
(Example) Hereinafter, an example of the present invention will be described based on FIG. In the figure, 1 is a first compressor, 2 is a second compressor, and these are connected in parallel via a refrigerant pipe P on both the discharge side and the suction side.

また、第1.第2の圧縮機1.2は、それぞれ第1のイ
ンバータ装置3と第2のインバータ装置4とに電気的に
接続され、互いに運転周波数が制御されるようになって
いる。第1.第2の圧縮機1゜2の吐出側冷媒管Pおよ
び吸込側冷媒管Pともに油戻し管5が連通するとともに
、この油戻し管5には電磁開閉弁6と油分離器7とが設
けられる。
Also, 1st. The second compressor 1.2 is electrically connected to the first inverter device 3 and the second inverter device 4, respectively, so that the operating frequencies thereof are mutually controlled. 1st. An oil return pipe 5 communicates with both the discharge side refrigerant pipe P and the suction side refrigerant pipe P of the second compressor 1゜2, and this oil return pipe 5 is provided with an electromagnetic on-off valve 6 and an oil separator 7. .

一方、第1.第2の圧縮機1,2の吐出側冷媒管Pと吸
込側冷媒管Pがともに合流し、1本の冷媒管Pで連通す
る。この冷媒管Pの中途部には、凝縮器8.受液器9.
膨張弁10.蒸発器11および気液分離器12が順次連
通し、このようにして冷凍サイクルが構成される。なお
、上記第1.第2のの圧縮機1,2にはそれぞれ油面検
知機構である油面センサ13a、13bが設けられ、互
いに制御回路Sに電気的に接続される。上記第1゜第2
のインバータ装置3.4も上記制御回路Sに電気的に接
続されること勿論である。また上記蒸発器11に、同一
容量の複数の蒸発器を並列に接続してもよい。
On the other hand, the first. The discharge-side refrigerant pipes P and the suction-side refrigerant pipes P of the second compressors 1 and 2 join together and communicate through one refrigerant pipe P. In the middle of this refrigerant pipe P, there is a condenser 8. Receiver 9.
Expansion valve 10. The evaporator 11 and the gas-liquid separator 12 communicate with each other in sequence, thus forming a refrigeration cycle. In addition, the above 1. The second compressors 1 and 2 are respectively provided with oil level sensors 13a and 13b, which are oil level detection mechanisms, and are electrically connected to a control circuit S. Above 1st and 2nd
Of course, the inverter device 3.4 is also electrically connected to the control circuit S. Further, a plurality of evaporators having the same capacity may be connected in parallel to the evaporator 11.

しかして、蒸発器11が要求する冷凍能力に応じて第1
.第2のインバータ装置3,4は第1゜第2の圧縮機1
.2の運転周波数を制御する冷凍サイクル運転をなす。
Therefore, depending on the refrigerating capacity required by the evaporator 11,
.. The second inverter devices 3 and 4 are connected to the first and second compressor 1.
.. The refrigeration cycle operation is performed by controlling the operating frequency of 2.

冷媒は第1.第2の圧縮機1.2で圧縮され、吐出側冷
媒管Pに導かれる。
Refrigerant is the first. It is compressed by the second compressor 1.2 and guided to the discharge side refrigerant pipe P.

油分離器7はこの冷媒に含まれる潤滑油を分離し、電磁
開閉弁6は閉成して油分離器7内に潤滑油を集溜する。
The oil separator 7 separates lubricating oil contained in this refrigerant, and the electromagnetic on-off valve 6 closes to collect the lubricating oil in the oil separator 7.

一方、冷媒は実線矢印に示す方向に順次導通して、各構
成部品は必要な冷凍サイクル作用をなす。
On the other hand, the refrigerant is sequentially conducted in the direction shown by the solid arrow, and each component performs the necessary refrigeration cycle action.

このような通常的な冷凍サイクル運転が継続すると、蒸
発器11は冷凍作用不要の状態になる。
If such normal refrigeration cycle operation continues, the evaporator 11 will be in a state where refrigeration is not required.

このとき各インバータ装置3.4は運転周波数を下げ、
あるいは一方の圧縮機1もしくは2を完全に停止する。
At this time, each inverter device 3.4 lowers the operating frequency,
Alternatively, one compressor 1 or 2 is completely stopped.

あるいは、内蔵するタイマもしくは外部タイマのタイマ
機能により、一定の時間は完全な冷凍サイクル運転を必
ず行う。いずれにしろ、ついには第1.第2の圧縮機1
,2ともに停止状態に至る。
Alternatively, by using the built-in timer or the timer function of an external timer, complete refrigeration cycle operation is always performed for a certain period of time. In any case, finally the first one. Second compressor 1
, 2 both reach a stopped state.

そしてまた冷凍サイクル運転を全停止する以前に、制御
回路Sは第1.第2のインバータ装置3゜4に対して所
定時間だけ予め定められた同一の運転周波数で各圧縮機
1,2を運転する指令信号を出す。この運転により、各
圧縮機1.2に集溜する潤滑油の油量に差がでていた場
合に、その差を特定できる。各圧縮機1,2にそれぞれ
備えられる油面センサ13a、13bは油面高さを検知
し、その検知信号を制御回路Sに送る。この制御回路S
は互いの油面高さの差を演算し、再び各インバータ装置
3.4に指令信号を発する。すなわち、第1.第2の圧
縮機1.2の油面高さの比率に応じて、油面低の圧縮機
たとえば1の運転周波数を油面高の圧縮機たとえば2の
運転周波数よりも高くする制御をなす。潤滑油の集溜油
量の少ない。
Then, before completely stopping the refrigeration cycle operation again, the control circuit S is activated by the first refrigeration cycle. A command signal is issued to the second inverter device 3-4 to operate each compressor 1, 2 at the same predetermined operating frequency for a predetermined period of time. Through this operation, if there is a difference in the amount of lubricating oil collected in each compressor 1.2, the difference can be identified. Oil level sensors 13a and 13b provided in each compressor 1 and 2 detect the oil level height, and send the detection signal to the control circuit S. This control circuit S
calculates the difference in oil level height and issues a command signal to each inverter device 3.4 again. That is, 1st. Depending on the ratio of the oil level height of the second compressor 1.2, the operating frequency of the compressor with a low oil level, for example 1, is controlled to be higher than the operating frequency of a compressor with a high oil level, such as 2. The amount of lubricating oil collected is small.

油面の低い圧縮機1は、運転周波数が高くなることによ
り油面の高い圧縮機2から潤滑油を取込める。同時に電
磁開閉弁6を開放し、油分離器7に集溜する潤滑油を第
1の圧縮機1に積極的に回収する。上記各油面センサ1
3a、13bが互いに同一油面高さになったことを検知
したところで、制御回路Sは第1.第2の圧縮機1.2
の運転を全停止する。すなわち、冷凍サイクル運転が停
止する状態では第1.第2の圧縮機1.2の集溜油量が
均一となる。
The compressor 1 with a low oil level can take in lubricating oil from the compressor 2 with a high oil level by increasing the operating frequency. At the same time, the electromagnetic on-off valve 6 is opened, and the lubricating oil collected in the oil separator 7 is actively collected into the first compressor 1. Each of the above oil level sensors 1
3a and 13b have reached the same oil level, the control circuit S switches the control circuit S to the first oil level. Second compressor 1.2
All operations will be stopped. That is, in a state where the refrigeration cycle operation is stopped, the first. The amount of oil collected in the second compressor 1.2 becomes uniform.

上述した第1.第2の圧縮機1,2に対する運転制御状
態は、第2図によっても説明できる。すなわち、第1.
第2の圧縮機1.2の通常運転から停止信号が出される
と油面判定のための同能力運転がなされ、ついで油面の
チエツクを行う。そして油面高さに応じて所定の運転周
波数で運転し、油面均一化をなす。
First mentioned above. The operation control state for the second compressors 1 and 2 can also be explained with reference to FIG. That is, 1st.
When a stop signal is issued from the normal operation of the second compressor 1.2, the same capacity operation is performed to determine the oil level, and then the oil level is checked. Then, it is operated at a predetermined operating frequency depending on the oil level height to equalize the oil level.

なお、このような複数の圧縮機1,2を並列に接続し、
それぞれインバータ装置3.4によって制御する冷凍機
においては、能力可変幅が広がって有利である。しかし
ながら、特にインバータによる起動は、起動トルクが小
さいためにアンバランス起動が生じ易かった。このため
に、同時に起動し、かつ停止を個々に行う等の制御がな
されている。しかしながらこのような制御では、運転開
始直後に低い冷凍能力を得ることは困難であり、一方の
圧縮機の運転中に負荷変動により他の圧縮機も運転しな
ければならない場合には不可能である。
In addition, such a plurality of compressors 1 and 2 are connected in parallel,
Refrigerators each controlled by an inverter device 3.4 are advantageous in that the capacity can be varied over a wider range. However, especially when starting with an inverter, unbalanced starting tends to occur because the starting torque is small. For this purpose, control is performed such as starting them simultaneously and stopping them individually. However, with this kind of control, it is difficult to obtain a low refrigerating capacity immediately after the start of operation, and it is impossible if one compressor is operating while another compressor has to be operated due to load fluctuations. .

そこで、第3図に示すような冷凍サイクルを構成する。Therefore, a refrigeration cycle as shown in FIG. 3 is constructed.

すなわち、第1の圧縮機1と第2の圧縮機2とを四方弁
15を介して接続する。あとの構成部品は全て上記実施
例と同様であり、同番号を付して説明を省略する。
That is, the first compressor 1 and the second compressor 2 are connected via the four-way valve 15. All remaining components are the same as those in the above embodiment, are given the same numbers, and description thereof will be omitted.

通常運転状態で、上記四方弁15は各圧縮機1゜2の吐
出側相互、吸込側相互を連通する方向に切換っている。
Under normal operating conditions, the four-way valve 15 is switched to communicate the discharge sides and suction sides of each compressor 1.2.

したがって、各圧縮機1.2は上記実施例と同様の並列
接続運転を構成し、冷媒は図中実線矢印に示す方向に導
かれる。
Therefore, each compressor 1.2 constitutes a parallel connection operation similar to the above embodiment, and the refrigerant is guided in the direction shown by the solid arrow in the figure.

一方、冷凍サイクル運転の起動時、あるいは1台の圧縮
機のみ運転し停止中の他の圧縮機を起動するにあたって
は、以下に述べるように制御する。
On the other hand, at the time of starting the refrigeration cycle operation, or when only one compressor is in operation and other stopped compressors are started, control is performed as described below.

すなわち、たとえば第1の圧縮機1を先に起動し、ある
いは運転中である場合は、四方弁15を図中破線矢印に
示す方向に切換える。上記第1の圧縮機1から吐出され
る冷媒は四方弁15を介して第2の圧縮機2の低圧側で
ある、通常運転状態では吸込側に導かれる。そして第2
の圧縮機2の高圧側である、通常運転状態では吐出側か
ら吐出される冷媒は四方弁15を介して第1の圧縮機1
の吸込側に導かれる。このような状態にしてから、これ
迄停止中の第2の圧縮機2を駆動すれば、この圧縮機2
の起動トルクがほとんど不要の状態で起動することがで
きる。そして各圧縮機1,2が所定の圧力に上昇したと
き、あるいは所定の回転数に上昇したとき、あるいは所
定時間経過後に、上記四方弁15を切換えて再び冷媒を
図中実線矢印に示す方向に導くことになる。
That is, for example, if the first compressor 1 is started first or is in operation, the four-way valve 15 is switched in the direction shown by the broken line arrow in the figure. The refrigerant discharged from the first compressor 1 is guided through the four-way valve 15 to the low pressure side of the second compressor 2, which is the suction side in normal operating conditions. and the second
In normal operating conditions, the refrigerant discharged from the discharge side, which is the high pressure side of the first compressor 2, passes through the four-way valve 15 to the first compressor 1.
is guided to the suction side of the In this state, if the second compressor 2, which has been stopped until now, is driven, this compressor 2
It can be started with almost no starting torque required. Then, when each compressor 1, 2 reaches a predetermined pressure, or a predetermined rotational speed, or after a predetermined period of time has elapsed, the four-way valve 15 is switched to supply the refrigerant again in the direction shown by the solid line arrow in the figure. It will guide you.

このような起動時の制御が可能な冷凍機に対し、従来の
ごとき複数(たとえば2台)の圧縮機を並列接続し、か
つ同時運転をなすものにおいては、第4図(A)に示す
ように2台分の冷凍能力が必要であった。これに対して
今回の制御方式の冷凍機によれば、同図(B)に示すよ
うに起動トルクMINの状態が従来の1台分と同様です
み、いわゆる省エネルギ化を得るとともに能力可変幅を
きめ細かくすることができる。
For refrigerators that can be controlled during startup, conventional refrigerators in which multiple (for example, two) compressors are connected in parallel and operated simultaneously are as shown in Figure 4 (A). This required the refrigeration capacity of two machines. On the other hand, according to the refrigerator using the new control method, the starting torque MIN is the same as that for one conventional refrigerator, as shown in Figure (B), which results in so-called energy saving and a variable range of capacity. can be fine-grained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、冷凍サイクル運転
の停止直前に各圧縮機を同一能力で運転した後、油面高
さの低い圧縮機の運転周波数を高くすることにより、各
圧縮機の油面高さを確実に均等化でき、各圧縮機におけ
る潤滑油量を確保して圧縮効率の保持を図り信頼性の向
上化を得るなどの効果を奏する。
As explained above, according to the present invention, each compressor is operated at the same capacity immediately before stopping the refrigeration cycle operation, and then the operating frequency of the compressor with a low oil level is increased. It is possible to reliably equalize the oil level height, ensure the amount of lubricating oil in each compressor, maintain compression efficiency, and improve reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷凍機の冷凍サイクル
構成図、第2図はその制御方法を具体的に説明する図、
第3図は本発明の他の実施例を示す冷凍機の冷凍サイク
ル構成図、第4図(A)は従来の制御方法による特性図
、同図(B)は第3図で説明した制御方法による特性図
である。 3.4・・・(第1.第2の)インバータ装置、1゜2
−(第1.第2の)圧縮機、13a、13b−・油面検
知機構(油面センサ)。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a configuration diagram of a refrigeration cycle of a refrigerator showing an embodiment of the present invention, and FIG. 2 is a diagram specifically explaining its control method.
Fig. 3 is a refrigeration cycle configuration diagram of a refrigerator showing another embodiment of the present invention, Fig. 4 (A) is a characteristic diagram according to a conventional control method, and Fig. 4 (B) is a control method explained in Fig. 3. FIG. 3.4... (first and second) inverter device, 1°2
- (1st, 2nd) compressor, 13a, 13b--Oil level detection mechanism (oil level sensor). Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] それぞれインバータ装置に電気的に接続され、かつ互い
に並列に連通する複数台の圧縮機を備えた冷凍機におい
て、冷凍サイクル運転を停止する直前に、上記各インバ
ータ装置は各圧縮機を所定の同一運転周波数に揃えて駆
動するとともに油面検知機構が各圧縮機に集溜する潤滑
油の油面高さを感知し、しかる後、油面低の圧縮機の運
転周波数を油面高の圧縮機の運転周波数よりも高くして
各圧縮機の油面高さを均一にしてから運転を停止するこ
とを特徴とする冷凍機の均油制御方法。
In a refrigerator equipped with a plurality of compressors that are each electrically connected to an inverter device and communicated in parallel with each other, immediately before stopping the refrigeration cycle operation, each of the inverter devices causes each compressor to operate in the same predetermined manner. The oil level detection mechanism senses the level of lubricating oil collected in each compressor, and then adjusts the operating frequency of the compressor with low oil level to that of the compressor with high oil level. A refrigerating machine oil equalization control method characterized in that the oil level level of each compressor is made uniform at a higher frequency than the operating frequency and then the operation is stopped.
JP4346388A 1988-02-26 1988-02-26 Equalized oiling control method for refrigerator Pending JPH01219372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346388A JPH01219372A (en) 1988-02-26 1988-02-26 Equalized oiling control method for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346388A JPH01219372A (en) 1988-02-26 1988-02-26 Equalized oiling control method for refrigerator

Publications (1)

Publication Number Publication Date
JPH01219372A true JPH01219372A (en) 1989-09-01

Family

ID=12664407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346388A Pending JPH01219372A (en) 1988-02-26 1988-02-26 Equalized oiling control method for refrigerator

Country Status (1)

Country Link
JP (1) JPH01219372A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150368A (en) * 2007-12-22 2009-07-09 Samsung Electronics Co Ltd Oil equalizing mechanism
US20110211973A1 (en) * 2010-02-26 2011-09-01 Lee Yunhi Compressor with oil level controller
WO2018016028A1 (en) * 2016-07-20 2018-01-25 三菱電機株式会社 Refrigeration cycle device
CN110114622A (en) * 2016-12-28 2019-08-09 三菱重工制冷空调系统株式会社 Oil control device, refrigerant circuit systems and oily control method
EP3492836A4 (en) * 2016-10-31 2019-08-28 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigeration device and refrigeration system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150368A (en) * 2007-12-22 2009-07-09 Samsung Electronics Co Ltd Oil equalizing mechanism
US20110211973A1 (en) * 2010-02-26 2011-09-01 Lee Yunhi Compressor with oil level controller
US8708661B2 (en) * 2010-02-26 2014-04-29 Lg Electronics Inc. Compressor with oil level controller
WO2018016028A1 (en) * 2016-07-20 2018-01-25 三菱電機株式会社 Refrigeration cycle device
EP3492836A4 (en) * 2016-10-31 2019-08-28 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigeration device and refrigeration system
CN110114622A (en) * 2016-12-28 2019-08-09 三菱重工制冷空调系统株式会社 Oil control device, refrigerant circuit systems and oily control method
EP3537061A4 (en) * 2016-12-28 2019-10-16 Mitsubishi Heavy Industries Thermal Systems, Ltd. Oil equalization control device, refrigerant circuit system, and oil equalization control method

Similar Documents

Publication Publication Date Title
JPH01219372A (en) Equalized oiling control method for refrigerator
US6474085B2 (en) Refrigerating apparatus
JP2006010287A (en) Air conditioner
JP3197768B2 (en) Refrigeration equipment
JP2001349644A (en) Air conditioner
JPH01196462A (en) Heat pump device
JP3718870B2 (en) Operation control device for refrigeration equipment
KR101599537B1 (en) Refrigerating system
JPH01203855A (en) Air conditioner
JP4773681B2 (en) Compressor and lubrication method
JPH04320763A (en) Freezer
JPH10246521A (en) Freezer, air conditioner and method for assembling refrigerant circuit
JPH0654186B2 (en) Refrigeration equipment
JPH01219373A (en) Compressor controlling method for refrigerator
JPH09303893A (en) Freezing apparatus
JPH01193088A (en) Air conditioner
JP2000088370A (en) Oil equalizing system for plural compressor
JPS63302258A (en) Refrigerator
JP3360311B2 (en) Air conditioner
JPH063324B2 (en) Refrigeration equipment
JPH065141B2 (en) Refrigeration equipment
JP2518430B2 (en) Air conditioner
JPH01262386A (en) Parallel compression type refrigerator
JPH02230985A (en) Parallel compression type refrigerator
JPH01312345A (en) Air conditioner