JPH01219373A - Compressor controlling method for refrigerator - Google Patents

Compressor controlling method for refrigerator

Info

Publication number
JPH01219373A
JPH01219373A JP63043471A JP4347188A JPH01219373A JP H01219373 A JPH01219373 A JP H01219373A JP 63043471 A JP63043471 A JP 63043471A JP 4347188 A JP4347188 A JP 4347188A JP H01219373 A JPH01219373 A JP H01219373A
Authority
JP
Japan
Prior art keywords
compressor
suction pressure
output
operating frequency
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63043471A
Other languages
Japanese (ja)
Inventor
Yoshio Otsuka
大塚 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63043471A priority Critical patent/JPH01219373A/en
Publication of JPH01219373A publication Critical patent/JPH01219373A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To improve the extent of temperature control accuracy by performing operating frequency control only over a compressor being small in output when suction pressure of the compressor is lower than the setting one, and only over a compressor being large in the output when the suction pressure is larger than the setting one, respectively. CONSTITUTION:A suction pressure sensor 9 is installed in a refrigerant pipe P at the suction side of compressors 1, 2, and when suction pressure is lower than the setting one, operating frequency control only over a compressor 2 small in output is performed, and when the suction pressure is larger than the setting one, the operating frequency control only over a compressor 1 large in the output is performed. With this constitution, a capacity adjusting range is sundividable, so that temperature control accuracy becomes heightened and, what is more, operating efficiency is improvable.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、互いに並列に接続するとともに出力の異なる
複数台の圧縮機を備え、かつインバータ装置によって各
圧縮機の運転周波数制御をなすようにした冷凍機に係り
、特に各圧縮機に対する運転制御方法の改良に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention has a plurality of compressors connected in parallel with each other and having different outputs, and an inverter device is used to control the operating frequency of each compressor. The present invention relates to a refrigerating machine that is controlled, and particularly to an improvement in a method of controlling the operation of each compressor.

(従来の技術) たとえば大型ショーケースのように、複数台の蒸発器を
制御する冷凍サイクルを構成する、いわゆるマルチタイ
プの冷凍機が多用される。この種の冷凍機においては、
各蒸発器が要求する冷凍能力の幅が大きく、1台の大型
圧縮機を備えただけでは、その要求を満足することがで
きない。すなわち、冷凍されるべき被冷凍物の収容量が
各蒸発器で異なる場合が多く、また1台のみ冷凍作用さ
せて他の全ての蒸発器は停止する場合もある。
(Prior Art) For example, in large showcases, so-called multi-type refrigerators, which constitute a refrigeration cycle that controls a plurality of evaporators, are often used. In this type of refrigerator,
The range of refrigerating capacity required by each evaporator is wide, and it is not possible to satisfy this requirement with just one large compressor. That is, the capacity of the material to be frozen is often different for each evaporator, and there are also cases where only one evaporator is activated while all other evaporators are stopped.

このような要求に対処するため、1台の大型圧縮機を備
えるより、出力の異なる複数台の圧縮機を互いに並列に
接続して、個々の蒸発器の要求に応じた能力幅の広い冷
凍サイクル運転をなす手段が採用されるようになった。
In order to meet these demands, rather than having one large compressor, multiple compressors with different outputs are connected in parallel to create a refrigeration cycle with a wide range of capacity according to the demands of each individual evaporator. A method of driving began to be adopted.

しかも、各圧縮機にはそれぞれインバータ装置を接続し
て、その運転周波数を別個に制御することにより冷凍能
力を可変化し、より精度の高い冷凍作用が可能になった
Moreover, by connecting an inverter to each compressor and controlling its operating frequency separately, the refrigeration capacity can be varied, making it possible to achieve more precise refrigeration.

ところでこのような冷凍機においては、従来たとえば第
4図(A)に示すように、出力の大きい圧縮機(コンブ
大)と出力の小さい圧縮機(コンブ小)を同時に運転し
、かつ同一比率に応じたインバータ制御をなすものであ
った。普通、冷凍サイクル回路の圧縮機吸込側の圧力で
ある吸込圧力を検知し、最適な運転条件を経験則等から
設定した設定圧力と比較して、上記圧縮機の制御に役立
ている。図においてPsSが設定圧力を示し、PsLは
設定圧力P5Sよりも低い吸込圧力。
By the way, conventionally, in such a refrigerator, as shown in Fig. 4 (A), a compressor with a large output (large kelp) and a compressor with a small output (small kelp) are operated simultaneously and at the same ratio. Inverter control was performed accordingly. Normally, the suction pressure, which is the pressure on the compressor suction side of the refrigeration cycle circuit, is detected and compared with a set pressure determined from empirical rules to determine the optimum operating conditions, which is useful for controlling the compressor. In the figure, PsS indicates the set pressure, and PsL is the suction pressure lower than the set pressure P5S.

PsHは設定圧力P8Sよりも高い圧力を示す。PsH indicates a pressure higher than the set pressure P8S.

全ての運転範囲に亘って、出力の大きい圧縮機(コンブ
大)と出力の小さい圧縮機(コンブ小)との出力の合計
が、そのまま冷凍能力となって現われる。
Over the entire operating range, the sum of the outputs of the compressor with a large output (large kelp) and the compressor with a small output (small kelp) directly appears as the refrigerating capacity.

しかしながらこのような制御では、常に2台の圧縮機が
同時に駆動するので温度管理幅が非常に広くなり、運転
効率が悪く、いわゆる省エネルギ的な運転制御とならな
い不具合がある。
However, in this type of control, two compressors are always driven at the same time, so the temperature control range becomes very wide, resulting in poor operational efficiency and a problem in that the so-called energy-saving operational control is not achieved.

また同図(B)に示すように、温度管理をきめ細かくす
るために、設定圧力PsSを中心とじてその上下圧力に
おける冷凍能力の傾斜度を意識的に変えることが考えら
れる。しかしながら、出力の異なる圧縮機相互を同時に
運転することには変りなく、かえって運転制御が複雑に
なる。
Further, as shown in FIG. 2B, in order to finely control the temperature, it is conceivable to intentionally change the slope of the refrigerating capacity at the upper and lower pressures around the set pressure PsS. However, compressors with different outputs are operated simultaneously, which makes operation control more complicated.

(発明が解決しようとする課題) 本発明は、上述したような出力が互いに異なる複数台の
圧縮機を互いに並列に連通し、かつそれぞれインバータ
装置に電気的に接続した冷凍機において、各圧縮機が同
時運転することにより冷凍能力の調整幅が極めて大とな
り、温度管理精度が粗い冷凍作用となる不具合を除去し
、設定圧力を境に各圧縮機に対応する制御をなすことに
より、各圧縮機の運転効率の向上をなすとともに温度管
理精度の向上を図り、省エネルギ化に役立つ冷凍機の圧
縮機制御方法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention provides a refrigerator in which a plurality of compressors having different outputs as described above are connected in parallel to each other and each is electrically connected to an inverter device. By operating simultaneously, the adjustment range of refrigeration capacity becomes extremely large, eliminating the problem of refrigeration with rough temperature control accuracy, and by performing control corresponding to each compressor based on the set pressure, each compressor The purpose of the present invention is to provide a method for controlling a compressor of a refrigerator, which improves operating efficiency, improves temperature control accuracy, and helps save energy.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) すなわち本発明は、出力の異なる複数台の圧縮機を互い
に並列に連通し、それぞれの圧縮機をインバータ装置に
電気的に接続した冷凍機において、上記各インバータ装
置は、圧縮機の吸込圧力が設定圧力よりも低い場合は出
力の小さい圧縮機のみの運転周波数制御をなし、吸込圧
力が設定圧力よりも高い場合は出力の大きい圧縮機のみ
の運転周波数制御をなすことを特徴とする冷凍機の圧縮
機制御方法である。
(Means for Solving the Problem) That is, the present invention provides a refrigerator in which a plurality of compressors with different outputs are connected in parallel to each other, and each compressor is electrically connected to an inverter device. When the suction pressure of the compressor is lower than the set pressure, the operating frequency is controlled only for the compressor with a small output, and when the suction pressure is higher than the set pressure, the operating frequency is controlled only for the compressor with a large output. This is a compressor control method for a refrigerator, which is characterized by the following.

(作用) 通常の安定運転状態において、吸込圧力が設定圧力以下
である場合は出力の大なる圧縮機は一定の運転周波数に
保持し、かつ出力の小さな圧縮機のみ制御することによ
り、極めてシビアな温度管理をなす。また吸込圧力が設
定圧力以上ある場合は、出力の小さな圧縮機は一定の運
転周波数に保持し、かつ出力の大きな圧縮機のみ制御し
て、ある程度細かい温度管理をなす。
(Function) In normal stable operating conditions, if the suction pressure is below the set pressure, the compressor with high output is held at a constant operating frequency, and only the compressor with low output is controlled. Manage temperature. Furthermore, when the suction pressure is higher than the set pressure, the compressors with low output are held at a constant operating frequency, and only the compressors with high output are controlled to achieve a certain level of fine temperature control.

(実施例) 以下、本発明の一実施例を第1図にもとづいて説明する
。図中、1は出力が大であるる第1の圧縮機(コンブ大
、とも言う)、2は出力が小である第2の圧縮機(コン
ブ小、とも言う)であって、これらは互いの吐出側およ
び吸込側ともに冷媒管Pを介して並列に接続される。ま
た、上記第1、第2の圧縮機1.2は、それぞれ第1の
インバータ装置3と第2のインバータ装置4とに電気的
に接続され、互いに運転周波数が制御されるようになっ
ている。第1.第2の圧縮機1.2の吐出側冷媒管Pと
吸込側冷媒管Pはともに合流し、1本の冷媒管Pで連通
ずる。この冷媒管Pの中途部には、凝縮器5.膨張弁6
.蒸発器7および気液分離器8が順次連通し、このよう
にして冷凍サイクルが構成される。なお、上記第1.第
2の圧縮機1,2吸込側の冷媒管Pには吸込圧力センサ
9が設けられる。この吸込圧力センサ9および上記第1
.第2のインバータ装置3,4はともに制御回路Cに電
気的に接続される。また上記蒸発器7に、図示しない同
一容量の複数の蒸発器を並列に接続してもよい。
(Example) Hereinafter, an example of the present invention will be described based on FIG. In the figure, 1 is a first compressor with a large output (also called a kelp large), and 2 is a second compressor with a small output (also called a kelp small). Both the discharge side and the suction side are connected in parallel via a refrigerant pipe P. Further, the first and second compressors 1.2 are electrically connected to a first inverter device 3 and a second inverter device 4, respectively, so that their operating frequencies are controlled by each other. . 1st. The discharge side refrigerant pipe P and the suction side refrigerant pipe P of the second compressor 1.2 both merge and communicate through one refrigerant pipe P. In the middle of this refrigerant pipe P, there is a condenser 5. expansion valve 6
.. The evaporator 7 and the gas-liquid separator 8 communicate with each other in sequence, thus forming a refrigeration cycle. In addition, the above 1. A suction pressure sensor 9 is provided in the refrigerant pipe P on the suction side of the second compressors 1 and 2. This suction pressure sensor 9 and the first
.. Both second inverter devices 3 and 4 are electrically connected to control circuit C. Further, a plurality of evaporators (not shown) having the same capacity may be connected in parallel to the evaporator 7.

しかして、冷媒は第1.第2の圧縮機1.2で圧縮され
、実線矢印に示す方向に順次導通して各構成部品は必要
な冷凍サイクル作用をなす。吸込圧力センサ9は各圧縮
機1,2に吸込まれる冷媒の吸込圧力を検知し、常時そ
の検知信号を制御回路Cに送る。制御回路Cはこれを受
けて設定圧力PsSとの比較を演算し、必要な運転指令
信号を各インバータ装置3,4に送る。したがって、各
圧縮機1,2は第1.第2のインバータ装置3゜4によ
って常に最適な運転周波数に制御される。
However, the refrigerant is the first. It is compressed by the second compressor 1.2, and conducts sequentially in the direction shown by the solid arrow, so that each component performs the necessary refrigeration cycle action. The suction pressure sensor 9 detects the suction pressure of the refrigerant sucked into each compressor 1, 2, and constantly sends a detection signal to the control circuit C. The control circuit C receives this, calculates a comparison with the set pressure PsS, and sends a necessary operation command signal to each inverter device 3, 4. Therefore, each compressor 1, 2 has a first . The operating frequency is always controlled to the optimum operating frequency by the second inverter device 3.4.

なお冷凍機の起動時においては、第3図(A)に示すよ
うに、早急に所定の温度に到達すべく第1、第2の圧縮
機1.2の運転周波数を高くして保持する冷凍能力を最
大限出すよう制御する。この状態を継続すれば、早急に
所定の冷凍温度になり、今度は冷凍作用が不要となる。
When starting the refrigerator, as shown in FIG. 3(A), the operating frequency of the first and second compressors 1 and 2 is increased and maintained in order to quickly reach a predetermined temperature. Control to maximize ability. If this state continues, the predetermined freezing temperature will be reached quickly, and the freezing action will no longer be necessary.

そこで各圧縮機1,2の冷凍能力を一旦低下させ、いわ
ゆる省エネ運転をなす。そしである程度時間が経過して
冷凍効果が弱くなってきたら、再度運転周波数を高くし
て冷凍能力を高くする作用を繰返す、いわゆる安定運転
をなす。
Therefore, the refrigerating capacity of each compressor 1, 2 is temporarily lowered to perform a so-called energy-saving operation. Then, after a certain amount of time has passed and the refrigeration effect becomes weaker, the operation frequency is raised again to increase the refrigeration capacity and the operation is repeated to achieve so-called stable operation.

このような安定運転時期における第1.第2の圧縮機1
,2に対する運転制御は、同図(B)に示すようにして
行う。吸込圧力センサ9が検知する吸込圧力PsがPs
Lと設定圧力P、Sとの間にある場合には、制御回路C
は第1.第2のインバータ装置3.4に対してつぎのよ
うな運転指令をだす。すなわち、出力の大きい第1の圧
縮機1(コンブ大)は一定の運転周波数に保持し、かつ
出力の小さな第2の圧縮機2(コンブ小)のみ制御する
。したがって、冷凍能力の増減は出力の小さな第2の圧
縮機2だけが対象となり、非常に微細な冷凍能力の幅調
整ができ、温度管理が極くきめ細かくなる。
The first condition during such a period of stable operation. Second compressor 1
, 2 is performed as shown in FIG. 2(B). The suction pressure Ps detected by the suction pressure sensor 9 is Ps
If the pressure is between L and the set pressures P and S, the control circuit C
is the first. The following operation command is issued to the second inverter device 3.4. That is, the first compressor 1 (large kelp) with a large output is maintained at a constant operating frequency, and only the second compressor 2 (small kelp) with a small output is controlled. Therefore, the refrigerating capacity can be increased or decreased only in the second compressor 2, which has a small output, and the range of the refrigerating capacity can be adjusted very finely, resulting in extremely fine temperature control.

また吸込圧力Psが設定圧力PsSを越えてPsHの間
にあるときは、出力の小さな第2の圧縮機2(コンブ小
)は一定の運転周波数に保持し、かつ出力の大きい第1
の圧縮機1(コンブ大)のみ制御する。このことから、
先に説明した状態よりも冷凍能力調整幅がわずかに大き
くなるが、従来のように2台の圧縮機を同時に制御する
ものと比較すればある程度細かい温度管理が可能である
Furthermore, when the suction pressure Ps exceeds the set pressure PsS and is between PsH, the second compressor 2 (small comb) with a small output is maintained at a constant operating frequency, and the first compressor with a large output is maintained at a constant operating frequency.
Only compressor 1 (large kelp) is controlled. From this,
Although the refrigerating capacity adjustment range is slightly larger than in the state described above, a certain degree of finer temperature control is possible compared to the conventional method in which two compressors are controlled at the same time.

すなわち、設定圧力258以上に上昇した吸込圧力Ps
の場合には、たとえば複数の蒸発器7を一斉に稼働する
ようなときであり、したがってさほどシビアな温度管理
は必要としない。
In other words, the suction pressure Ps has increased to the set pressure 258 or higher.
In this case, for example, a plurality of evaporators 7 are operated at the same time, and therefore, very strict temperature control is not required.

このような各圧縮機1,2に対する制御方法は、第2図
からも説明できる。本発明のごとき、設定圧力PsSを
境にして第1.第2の圧縮機1,2に対する運転周波数
の制御をなせば、能力調整幅が細くなり、温度管理精度
が高くなって被冷凍物によっては最適な冷凍作用をなす
The control method for each of the compressors 1 and 2 can be explained from FIG. 2 as well. As in the present invention, the first . If the operating frequencies of the second compressors 1 and 2 are controlled, the range of capacity adjustment becomes narrower, the temperature control accuracy becomes higher, and an optimal refrigerating effect can be achieved depending on the object to be frozen.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、圧縮機の吸込側の
圧力を検知して、各インバータ装置が各圧縮機に対し、
設定圧力を境にして変化する運転周波数制御をなすよう
にしたから、能力調整幅を細くすることができて、温度
管理精度が高くなり、被冷凍物に対する最適な冷凍作用
をなすという効果を奏する。
As explained above, according to the present invention, each inverter device detects the pressure on the suction side of the compressor, and
Since the operating frequency is controlled to change based on the set pressure, the capacity adjustment range can be narrowed, temperature control accuracy is increased, and the optimal freezing effect on the frozen object is achieved. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷凍機の冷凍サイクル
構成図、第2図はその制御方法を具体的に説明する図、
第3図(A)は特に起動時における冷凍能力と吸込圧力
との関係を示す特性図、同図(B)は安定運転時におけ
る冷凍能力と吸込圧力との関係を示す特性図、第4図(
A)および(B)は本発明の互いに異なる従来例を示す
冷凍能力と吸込圧力との関係を示す特性図である。 1・・・第1の圧縮機(コンブ大)、2・・・第2の圧
縮機(コンブ小)、3・・・第1のインバータ装置、4
・・・第2のインバータ装置、C・・・制御回路。 出願人代理人  弁理士 鈴江武彦 第2図 (A)                (B)s4図
FIG. 1 is a configuration diagram of a refrigeration cycle of a refrigerator showing an embodiment of the present invention, and FIG. 2 is a diagram specifically explaining its control method.
Figure 3 (A) is a characteristic diagram showing the relationship between refrigerating capacity and suction pressure especially at startup, Figure 3 (B) is a characteristic diagram showing the relationship between refrigerating capacity and suction pressure during stable operation, and Figure 4. (
A) and (B) are characteristic diagrams showing the relationship between refrigerating capacity and suction pressure, showing mutually different conventional examples of the present invention. 1... First compressor (large kelp), 2... Second compressor (small kelp), 3... First inverter device, 4
...Second inverter device, C...Control circuit. Applicant's agent Patent attorney Takehiko Suzue Figure 2 (A) (B) Figure s4

Claims (1)

【特許請求の範囲】[Claims] 出力の異なる複数台の圧縮機を互いに並列に連通すると
ともにそれぞれの圧縮機をインバータ装置に電気的に接
続した冷凍機において、上記各インバータ装置は、圧縮
機の吸込圧力が設定圧力よりも低い場合は出力の小さい
圧縮機のみの運転周波数制御をなし、吸込圧力が設定圧
力よりも高い場合は出力の大きい圧縮機のみの運転周波
数制御をなすことを特徴とする冷凍機の圧縮機制御方法
In a refrigerator in which multiple compressors with different outputs are communicated in parallel with each other and each compressor is electrically connected to an inverter device, each of the inverter devices is A compressor control method for a refrigerating machine, characterized in that the operating frequency of only a compressor with a small output is controlled, and when the suction pressure is higher than a set pressure, the operating frequency of only a compressor with a large output is controlled.
JP63043471A 1988-02-26 1988-02-26 Compressor controlling method for refrigerator Pending JPH01219373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043471A JPH01219373A (en) 1988-02-26 1988-02-26 Compressor controlling method for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043471A JPH01219373A (en) 1988-02-26 1988-02-26 Compressor controlling method for refrigerator

Publications (1)

Publication Number Publication Date
JPH01219373A true JPH01219373A (en) 1989-09-01

Family

ID=12664636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043471A Pending JPH01219373A (en) 1988-02-26 1988-02-26 Compressor controlling method for refrigerator

Country Status (1)

Country Link
JP (1) JPH01219373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463254B1 (en) * 2001-02-27 2004-12-23 가부시키가이샤 히다치구죠시스템 Refrigerating apparatus
EP2045548A1 (en) * 2007-10-05 2009-04-08 Frigo System S.p.A. Refrigerating unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463254B1 (en) * 2001-02-27 2004-12-23 가부시키가이샤 히다치구죠시스템 Refrigerating apparatus
EP2045548A1 (en) * 2007-10-05 2009-04-08 Frigo System S.p.A. Refrigerating unit

Similar Documents

Publication Publication Date Title
US6568197B2 (en) Refrigerating unit
US5182920A (en) Refrigeration cycle system
EP2592372A2 (en) Refrigerator using non-azeotropic refrigerant mixture and control method thereof
EP1095804A3 (en) Air conditioner
US5768903A (en) Refrigerating apparatus, air conditioner using the same and method for driving the air conditioner
US6474085B2 (en) Refrigerating apparatus
CN111981719B (en) Refrigerating unit compression refrigeration cycle control method and device and refrigerating unit
JPH01219373A (en) Compressor controlling method for refrigerator
JPH02192546A (en) High pressure control device of two way freezer
JP2574864B2 (en) Refrigeration equipment
JPH01219372A (en) Equalized oiling control method for refrigerator
JPH09229498A (en) Refrigeration apparatus and operation and control system of same
JPH04369354A (en) Refrigerator
JP2001174080A (en) Operation controlling device of refrigerating device
JPH0620051Y2 (en) Capacity controlled refrigeration system
JPH01262390A (en) Controller for refrigerating circuit
JPH06272942A (en) Airconditioning apparatus
JPH0534026A (en) Freezing cycle device
JPH01167557A (en) Refrigerator
JPH04369350A (en) Operation control device for freezing device
JPH01302071A (en) Refrigerator
JPH025337Y2 (en)
JPH0639980B2 (en) Parallel refrigerator
JPH07305906A (en) Scroll freezer
JPH0490455A (en) Freezer