JPH04369354A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH04369354A
JPH04369354A JP14471091A JP14471091A JPH04369354A JP H04369354 A JPH04369354 A JP H04369354A JP 14471091 A JP14471091 A JP 14471091A JP 14471091 A JP14471091 A JP 14471091A JP H04369354 A JPH04369354 A JP H04369354A
Authority
JP
Japan
Prior art keywords
capacity
pressure
compression device
defrosting
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14471091A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ueda
和弘 上田
Toshiaki Yamaguchi
敏明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14471091A priority Critical patent/JPH04369354A/en
Publication of JPH04369354A publication Critical patent/JPH04369354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To reduce a demand power and to reduce temperature unevenness in a chamber by providing a capacity control part to control the capacity of a capacity variable compression device based on a capacity control signal from a control part and controlling the capacity to a given capacity lower than a total capacity by means of a defrosting signal during defrosting. CONSTITUTION:The refrigerant pressure on the low pressure side of a refrigerating detected by a pressure detecting part 3 is compared with a reference value set by a pressure setting part 4. During usual operation, the capacity of a capacity variable compression device 1-1 is controlled based on a capacity control signal from a control part 5 to generate a capacity control signal for a capacity variable compression device 1-1 based on the comparing result. During defrosting operation, capacity is controlled to a given capacity lower than the total capacity of the capacity variable compression device 1-1. Thus, since the capacity of the capacity variable compression device 1-1 is controlled to capacity lower than a total capacity, a so formed freezing device reduces a consumption power compared with a conventional type and reduces production of a fluctuation in temperature in a chamber.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は除霜ヒータにより除霜
する冷凍装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a refrigeration system that defrosts using a defrosting heater.

【0002】0002

【従来の技術】従来、この種の冷凍装置として特開昭6
2−771 に示される図2のようなものがあった。図
において、1は並列圧縮式冷凍装置、2は複数台のショ
ーケース2−1、2−2に収容された冷却器2a、2b
の組合せで構成された冷却装置であり、上記冷却器2a
、2bにはそれぞれ電磁弁2c、2d、絞り装置2e、
2fが順次接続されている。2gは冷却器2aに配設さ
れた除霜ヒータ、2hは冷却器2bに配設された除霜ヒ
ータである。上記並列圧縮式冷凍装置1は水冷式の凝縮
器1aあるいは空冷式凝縮器(図示せず)の下流側に接
続される受液器の上に圧縮機の定格容量比がほぼ2対1
に選定されている大容量の圧縮機1bと小容量の圧縮機
1cの2台が並列に搭載されており、かつ各圧縮機1b
と1cの冷媒吐出管1dおよび吸入管1eが互いに並列
接続されている。なお、1fは各圧縮機1bと1cのク
ランク室を相互に連通させる均圧均油管である。また、
5は低圧側の冷媒圧力を検出する圧力検出部3の検出圧
力と収束させようとする低圧側の冷媒圧力の基準値を設
定する圧力設定部4で設定された冷媒圧力の基準値との
圧力差に応じて圧縮機1bと1cを個別に運転、停止の
制御を行う制御部である。6は除霜時に冷却器2a、2
bに接続されている電磁弁2c、2dを交互に閉にする
と共に、その冷却器2a、2bに配設されている除霜ヒ
ータ2g、2hに通電する除霜制御部である。なお、通
常圧力領域は図3に示されるように、上記圧力設定部4
によって設定される基準値の容量アップ圧力値、容量ダ
ウン圧力値、低圧カット値の三つによって、並列圧縮式
冷凍装置1に容量アップ信号を出す容量アップ圧力値以
上の領域ニと、並列圧縮式冷凍装置1に容量ダウン信号
も容量アップ信号も出さない容量ダウン圧力値以上で、
かつ容量アップ圧力値未満の領域ハと、並列圧縮式冷凍
装置1に容量ダウン信号を出す容量ダウン圧力値未満の
領域ロと、並列圧縮式冷凍装置1に停止信号を出す低圧
カット値以下の領域イの四つに分けられる。
[Prior Art] Conventionally, this type of refrigeration equipment was
2-771, as shown in Figure 2. In the figure, 1 is a parallel compression type refrigeration system, and 2 is a cooler 2a, 2b housed in a plurality of showcases 2-1, 2-2.
This is a cooling device configured by a combination of the above cooler 2a and
, 2b have electromagnetic valves 2c, 2d, throttle device 2e,
2f are connected sequentially. 2g is a defrosting heater disposed in the cooler 2a, and 2h is a defrosting heater disposed in the cooler 2b. The above-mentioned parallel compression type refrigeration system 1 has a compressor with a rated capacity ratio of approximately 2:1 on a liquid receiver connected to the downstream side of a water-cooled condenser 1a or an air-cooled condenser (not shown).
Two compressors, a large capacity compressor 1b and a small capacity compressor 1c selected for
The refrigerant discharge pipe 1d and suction pipe 1e of 1c and 1c are connected in parallel to each other. Note that 1f is a pressure-equalizing oil pipe that connects the crank chambers of the compressors 1b and 1c with each other. Also,
5 is the pressure between the detected pressure of the pressure detection unit 3 that detects the refrigerant pressure on the low pressure side and the reference value of the refrigerant pressure set in the pressure setting unit 4 that sets the reference value of the refrigerant pressure on the low pressure side to be converged. This is a control unit that controls the operation and stop of the compressors 1b and 1c individually according to the difference. 6 is the cooler 2a, 2 during defrosting.
This is a defrosting control unit that alternately closes the electromagnetic valves 2c and 2d connected to the coolers 2a and 2b, and energizes the defrosting heaters 2g and 2h disposed in the coolers 2a and 2b. In addition, as shown in FIG. 3, the normal pressure region is the pressure setting section 4.
A capacity up pressure value, a capacity down pressure value, and a low pressure cut value are set as standard values, and a capacity up signal is sent to the parallel compression refrigeration system 1. Above the capacity down pressure value, neither a capacity down signal nor a capacity up signal is sent to the refrigeration equipment 1.
and a region c below the capacity up pressure value, a region b below the capacity down pressure value that sends a capacity down signal to the parallel compression refrigeration device 1, and a region below the low pressure cut value that sends a stop signal to the parallel compression refrigeration device 1. It is divided into four parts.

【0003】次に、動作について説明する。たとえば、
冷却装置2の冷凍負荷に対する所要の冷凍能力を得るた
めの所要動力が15HPである場合に、一方の圧縮機1
bの定格容量は10HPに他方の圧縮機1cは5HPに
選定されている。一方、複数台のショーケース2−1、
2−2に収容された冷却器2a、2bからなる冷却装置
2では、各ショーケース2−1、2−2の使用状況によ
って冷却負荷は0から100%まで大幅に変動する。こ
こで、冷凍負荷が少なくなると、冷凍サイクルの低圧側
の冷媒圧力が下がり、これにともなって圧力検出部3か
ら制御部5に出力される検出圧力のレベルも低下する。 制御部5では、上記検出圧力を基準値(容量アップ圧力
値あるいは容量ダウン圧力値)と比較する比較回路を有
しているため、検出圧力が容量ダウン圧力値よりも低い
場合、すなわち、領域ロの場合には、制御部5は並列圧
縮式冷凍装置1の容量が低下するように制御し、冷却能
力を下げる。このようにして、冷却能力が下げられると
、冷凍サイクルの低圧側の冷媒圧力が上昇し、領域ハに
収束し、運転は安定する。また、冷却負荷が高い場合に
は、冷凍サイクルの低圧側の冷媒圧力が上昇し、これに
ともなって、圧力検出部3から制御部5に出力される検
出圧力のレベルが上昇する。この結果、検出圧力が容量
アップ圧力値よりも高い場合、すなわち、領域ニの場合
には、制御部5は並列圧縮式冷凍装置1の容量がアップ
するように制御し、冷却能力を増加させる。このように
して、冷却能力が増加すると、冷凍サイクルの低圧側の
冷媒圧力は低下し、領域ハに収束し、運転は安定する。 なお、圧力検出部3が領域ニあるいは領域ロの圧力を検
出した後、制御部5より出力される容量アップ信号、あ
るいは容量ダウン信号が発生するまでの時間は同じであ
る。なお、冷凍サイクルの低圧側の冷媒圧力が低圧カッ
ト値以下、すなわち、領域イになった場合、圧縮機1b
、1cは直ちに停止するようになっている。したがって
、上記の冷凍負荷変動に対し、冷凍負荷が33%以下の
部分負荷時には、定格容量5HPの圧縮機1cのみが単
独運転される。また、冷凍負荷が33〜66%の範囲で
は、定格容量10HPの圧縮機1bのみが単独運転され
る。さらに、冷凍負荷が66〜100%になれば、圧縮
機1bと1cが同時に並列運転される。この容量制御運
転の推移を示せば図4のようになる。すなわち、図4に
示されているように、圧縮機の定格容量比がほぼ2対1
に選定されている大小の圧縮機を選択的に運転、停止制
御することによって、0、33、66%の4段階の容量
制御運転を行うことができる。このように構成された冷
却装置2を含む冷凍装置の運転を続行すると、冷却器2
a、2bに着霜が生じる。着霜が生じると除霜制御装置
6により先ず冷却器2aの電磁弁2cが閉じられると共
に除霜ヒータ2gに通電され、冷却器2aが加熱され除
霜が行なわれる。 冷却器2aの除霜が完了すると、もう1台の冷却器2b
の除霜が開始されて冷却器2bの電磁弁2dが閉じられ
、除霜ヒータ2bに通電され冷却器2bの除霜が行なわ
れる。
Next, the operation will be explained. for example,
When the required power to obtain the required refrigerating capacity for the refrigerating load of the cooling device 2 is 15 HP, one compressor 1
The rated capacity of compressor b is selected to be 10 HP, and the rated capacity of the other compressor 1c is selected to be 5 HP. On the other hand, multiple showcases 2-1,
In the cooling device 2 consisting of the coolers 2a and 2b housed in the showcases 2-2, the cooling load varies significantly from 0 to 100% depending on the usage status of each of the showcases 2-1 and 2-2. Here, when the refrigeration load decreases, the refrigerant pressure on the low pressure side of the refrigeration cycle decreases, and the level of the detected pressure output from the pressure detection section 3 to the control section 5 also decreases accordingly. The control unit 5 has a comparison circuit that compares the detected pressure with a reference value (capacity up pressure value or capacity down pressure value), so if the detected pressure is lower than the capacity down pressure value, In this case, the control unit 5 controls the capacity of the parallel compression type refrigeration system 1 to decrease, thereby lowering the cooling capacity. When the cooling capacity is lowered in this way, the refrigerant pressure on the low pressure side of the refrigeration cycle increases and converges to region C, and the operation becomes stable. Further, when the cooling load is high, the refrigerant pressure on the low pressure side of the refrigeration cycle increases, and the level of the detected pressure output from the pressure detection section 3 to the control section 5 increases accordingly. As a result, when the detected pressure is higher than the capacity increase pressure value, that is, in the case of region 2, the control unit 5 controls the capacity of the parallel compression type refrigeration apparatus 1 to increase, thereby increasing the cooling capacity. In this way, when the cooling capacity increases, the refrigerant pressure on the low pressure side of the refrigeration cycle decreases and converges to region C, and the operation becomes stable. It should be noted that the time from when the pressure detection section 3 detects the pressure in area 2 or area 2 until the capacity up signal or capacity down signal outputted from the control section 5 is generated is the same. Note that if the refrigerant pressure on the low pressure side of the refrigeration cycle is below the low pressure cut value, that is, in region A, compressor 1b
, 1c are arranged to stop immediately. Therefore, with respect to the above-mentioned refrigeration load fluctuation, only the compressor 1c with a rated capacity of 5 HP is operated independently when the refrigeration load is at partial load of 33% or less. Further, in a range where the refrigeration load is 33% to 66%, only the compressor 1b with a rated capacity of 10 HP is operated independently. Furthermore, when the refrigeration load becomes 66 to 100%, the compressors 1b and 1c are simultaneously operated in parallel. The transition of this capacity control operation is shown in FIG. 4. In other words, as shown in Figure 4, the rated capacity ratio of the compressor is approximately 2:1.
By selectively operating and stopping the large and small compressors selected as follows, it is possible to perform capacity control operation in four stages of 0, 33, and 66%. When the operation of the refrigeration system including the cooling device 2 configured in this way is continued, the cooling device 2
Frost forms on a and 2b. When frost occurs, the defrost control device 6 first closes the electromagnetic valve 2c of the cooler 2a and energizes the defrost heater 2g to heat the cooler 2a and perform defrosting. When the defrosting of the cooler 2a is completed, the other cooler 2b
Defrosting is started, the solenoid valve 2d of the cooler 2b is closed, and the defrosting heater 2b is energized to defrost the cooler 2b.

【0004】0004

【発明が解決しようとする課題】従来の冷凍装置は以上
のように構成されているので、除霜時に1台の冷却器の
除霜ヒータに通電されると共に複数台の圧縮機が同時に
運転される可能性があり、大きな電力を必要とし、契約
電力が多くなり、かつ庫内温度が変動する等の問題点が
あった。
[Problem to be Solved by the Invention] Since the conventional refrigeration system is constructed as described above, during defrosting, the defrosting heater of one cooler is energized and multiple compressors are operated simultaneously. There were problems such as a large amount of electricity was required, the contracted electricity amount increased, and the temperature inside the refrigerator fluctuated.

【0005】この発明は上記のような問題点を解消する
ためなされたもので、庫内温度変動が小さく、かつ契約
電力を少なくできる冷凍装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a refrigeration system in which internal temperature fluctuations are small and contract power consumption can be reduced.

【0006】[0006]

【課題を解決するための手段】この発明に係る冷凍装置
は圧力検出部で検出された冷凍回路の低圧側冷媒圧力と
圧力設定部で設定された基準値とを比較し、この比較結
果に基づき容量可変圧縮装置の容量制御信号を発生する
制御部の上記容量制御信号に基づき通常時は上記容量可
変圧縮装置の容量制御を行ない、除霜時は容量可変圧縮
装置の全容量よりも小さい所定の容量に容量制御するよ
うにしたものである。
[Means for Solving the Problems] A refrigeration system according to the present invention compares the low-pressure side refrigerant pressure of the refrigeration circuit detected by the pressure detection section with a reference value set by the pressure setting section, and based on the comparison result. Under normal conditions, the capacity of the variable capacity compression device is controlled based on the capacity control signal of the control unit that generates the capacity control signal of the variable capacity compression device, and during defrosting, the capacity of the variable capacity compression device is controlled at a predetermined capacity smaller than the total capacity of the variable capacity compression device. The capacity is controlled according to the capacity.

【0007】[0007]

【作用】この発明における冷凍装置は除霜時に容量可変
圧縮装置の容量が、その全容量よりも小さい容量に容量
制御されるので、従来のものに比し消費電力が少なくな
り、かつ庫内温度変動が小さくなる。
[Function] In the refrigeration system of the present invention, the capacity of the variable capacity compression device is controlled to a capacity smaller than its total capacity during defrosting, so power consumption is lower than that of conventional systems, and the temperature inside the refrigerator is reduced. Fluctuations become smaller.

【0008】[0008]

【実施例】以下、図1に示されるこの発明の一実施例に
よる冷凍装置の構成図について説明する。図1において
、図2と異なるところは、制御部5の出力信号に基づき
圧縮機1b、1cからなる容量可変圧縮装置1−1の容
量を制御し、除霜時には除霜制御部6から出力される除
霜信号により圧縮機1b、1cのうちの1台を強制的に
停止させる容量制御部7を設けた点である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A configuration diagram of a refrigeration system according to an embodiment of the present invention shown in FIG. 1 will be explained below. 1, the difference from FIG. 2 is that the capacity of the variable capacity compression device 1-1 consisting of compressors 1b and 1c is controlled based on the output signal of the control unit 5, and during defrosting, the output signal from the defrosting control unit 6 is controlled. The point is that a capacity control section 7 is provided which forcibly stops one of the compressors 1b and 1c in response to a defrosting signal.

【0009】次に動作について説明する。圧力検出部3
で検出された冷凍回路1の低圧側冷媒圧力が圧力設定部
4で設定された図3に示される基準値(容量アップ圧力
値、容量ダウン圧力値等)と制御部5において比較され
、容量ダウン圧力値よりも低い場合、すなわち領域ロの
場合には制御部5から容量ダウン信号が出力され容量制
御部7はこの容量ダウン信号に基づき容量可変圧縮機1
−1の容量が低下するよう制御する。例えば10HPの
圧縮機1bが単独運転されている場合は圧縮機1bを停
止し5HPの圧縮機1cを運転するよう制御され、冷凍
能力が下げられる。冷凍能力の低下により冷凍回路1の
低圧側冷媒圧力が上昇し、領域ハに収束し運転は安定す
る。また、冷媒負荷が大きくなると、冷凍回路1の低圧
側冷媒圧力が上昇し、これにともなって圧力検出部3の
検出圧力が上昇する。この検出圧力は制御部5において
図3に示される基準値と比較され、容量アップ圧力値よ
りも高い場合、すなわち冷域ニの場合には制御部5から
容量アップ信号が出力され、容量制御部7はこの容量ア
ップ信号に基づき容量可変圧縮装置1−1の容量が増加
するよう制御する。例えば圧縮機1bが単独運転されて
いる場合は圧縮機1cの運転が追加され、圧縮機1b、
1cが同時に並列運転され、冷凍能力が増加される。冷
凍能力の増加により冷凍回路1の低圧側冷媒圧力が下降
し、冷域ハに収束し運転は安定する。以上のように構成
された冷凍装置の運転を続行すると冷却器2a、2bに
着霜が生じ、除霜制御部6から除霜信号が出力されると
共に除霜制御部6によって、先ず冷却器2aに接続され
た電磁弁2cが閉じられ除霜ヒータ2gに通電される。 この通電により冷却器2aが加熱され除霜が行なわれる
。冷却器2aの除霜が完了すると続いてもう1台の冷却
器2bの除霜が同様に行なわれる。一方除霜制御部6か
ら出力された除霜信号により容量制御部7によって除霜
終了時まで圧縮機1b、1cのうち1台が強制的に停止
され容量可変圧縮装置1−1の容量がその全容量よりも
小さい容量に容量制御される。
Next, the operation will be explained. Pressure detection part 3
The low-pressure side refrigerant pressure of the refrigeration circuit 1 detected in the controller 5 is compared with the reference value (capacity increase pressure value, capacity decrease pressure value, etc.) shown in FIG. When the pressure is lower than the pressure value, that is, in the case of region B, a capacity down signal is output from the control unit 5, and the capacity control unit 7 controls the variable capacity compressor 1 based on this capacity down signal.
-1 capacity is controlled to decrease. For example, when the 10 HP compressor 1b is being operated independently, the compressor 1b is stopped and the 5 HP compressor 1c is operated, thereby lowering the refrigerating capacity. As the refrigerating capacity decreases, the refrigerant pressure on the low-pressure side of the refrigerating circuit 1 increases, converges to region C, and the operation becomes stable. Furthermore, when the refrigerant load increases, the low-pressure side refrigerant pressure of the refrigeration circuit 1 increases, and the detected pressure of the pressure detector 3 increases accordingly. This detected pressure is compared with the reference value shown in FIG. 3 in the control unit 5, and if it is higher than the capacity up pressure value, that is, in the cold region 2, the control unit 5 outputs a capacity up signal, and the capacity control unit 7 controls the capacity of the variable capacity compression device 1-1 to increase based on this capacity up signal. For example, when the compressor 1b is operated independently, the operation of the compressor 1c is added, and the compressor 1b,
1c are operated in parallel at the same time, increasing the refrigerating capacity. As the refrigerating capacity increases, the refrigerant pressure on the low-pressure side of the refrigerating circuit 1 decreases, converging to the cold region C, and the operation becomes stable. If the operation of the refrigeration system configured as described above is continued, frost will form on the coolers 2a and 2b, and the defrost signal will be output from the defrost control unit 6. The solenoid valve 2c connected to is closed and the defrosting heater 2g is energized. This energization heats the cooler 2a and defrosts it. When the defrosting of the cooler 2a is completed, the defrosting of the other cooler 2b is subsequently performed in the same manner. On the other hand, in response to the defrost signal output from the defrost control unit 6, the capacity control unit 7 forcibly stops one of the compressors 1b and 1c until the end of defrosting, and the capacity of the variable capacity compressor 1-1 is reduced to that level. The capacity is controlled to be smaller than the full capacity.

【0010】なお、上記実施例においては、複数台の圧
縮機により容量可変圧縮装置1−1を構成し、容量制御
部7により、上記複数台の圧縮機を運転・停止制御する
ことにより、その容量を制御するようにしたものについ
て述べたが、これに限らず、例えばインバータ制御また
はアンローダ制御によって容量制御される1台の圧縮機
からなる容量可変圧縮装置を容量制御部7により、イン
バータの周波数または多シリンダ圧縮器の休止シリンダ
数を制御しその容量を前述と同様に制御するようにして
も良く、前述の実施例と同様の作用効果を奏する。
In the above embodiment, the variable capacity compressor 1-1 is composed of a plurality of compressors, and the capacity control unit 7 controls the operation and stop of the plurality of compressors. Although the capacity is controlled in the above description, the present invention is not limited to this. For example, a variable capacity compression device consisting of one compressor whose capacity is controlled by inverter control or unloader control can be controlled by the capacity control unit 7 to adjust the frequency of the inverter. Alternatively, the number of idle cylinders of the multi-cylinder compressor may be controlled and the capacity thereof may be controlled in the same manner as described above, and the same effects as in the above-mentioned embodiments can be obtained.

【0011】[0011]

【発明の効果】以上のように、この発明によれば除霜時
に容量可変圧縮装置の容量をその全容量よりも小さい所
定の容量に制御するように構成したので、契約電力が少
なくでき、かつ庫内温度変化が小さくなる等の効果があ
る。
[Effects of the Invention] As described above, according to the present invention, since the capacity of the variable capacity compression device is controlled to a predetermined capacity smaller than the total capacity during defrosting, contract power can be reduced, and This has the effect of reducing internal temperature changes.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例による冷凍装置の構成図で
ある。
FIG. 1 is a configuration diagram of a refrigeration system according to an embodiment of the present invention.

【図2】従来の冷凍装置の構成図である。FIG. 2 is a configuration diagram of a conventional refrigeration system.

【図3】冷凍回路の低圧側の冷媒圧力の領域を示す図で
ある。
FIG. 3 is a diagram showing a region of refrigerant pressure on the low pressure side of the refrigeration circuit.

【図4】冷凍装置の容量制御運転の説明である。FIG. 4 is an explanation of capacity control operation of the refrigeration system.

【符号の説明】[Explanation of symbols]

1  冷凍回路 1a  凝縮器 1b  圧縮機 1c  圧縮機 1−1  容量可変圧縮装置 2−1  ショーケース 2−2  ショーケース 2a  冷却器 2b  冷却器 2c  電磁弁 2d  電磁弁 2e  絞り装置 2f  絞り装置 2g  除霜ヒータ 2h  除霜ヒータ 3  圧力検出部 4  圧力設定部 5  制御部 6  除霜制御部 7  容量制御部 1 Refrigeration circuit 1a Condenser 1b Compressor 1c Compressor 1-1 Variable capacity compression device 2-1 Showcase 2-2 Showcase 2a Cooler 2b Cooler 2c Solenoid valve 2d Solenoid valve 2e Squeezing device 2f Aperture device 2g Defrost heater 2h Defrost heater 3 Pressure detection part 4 Pressure setting section 5 Control section 6 Defrost control section 7 Capacity control section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  容量可変圧縮装置と、上記容量可変圧
縮装置から吐出された冷媒を凝縮液化させる凝縮器と、
上記凝縮器から送出される冷媒を膨張させ蒸発気化させ
る複数個の電磁弁、絞り装置、冷却器とが閉回路を形成
するように順次配管接続された冷凍回路と、上記複数個
の冷却器にそれぞれ配設された除霜ヒータと、除霜時に
除霜信号を発生すると共に上記複数個の冷却器にそれぞ
れ接続された上記電磁弁を交互に閉にし、その冷却器に
配設された上記除霜ヒータに通電する除霜制御部と、上
記冷凍回路の低圧側冷媒圧力を検出する圧力検出部と、
上記冷凍回路の低圧側冷媒圧力の基準値を設定する圧力
設定部と、上記圧力検出部で検出された検出圧力と上記
基準値とを比較し、その比較結果に基づき上記容量可変
圧縮装置の容量制御信号を発生する制御部と、上記制御
部の容量制御信号に基づき上記容量可変圧縮装置の容量
を制御すると共に除霜時に上記除霜信号により上記容量
可変圧縮装置の容量を、その全容量よりも小さい所定の
容量に容量制御する容量制御部とを備えていることを特
徴とする冷凍装置。
1. A variable capacity compression device; a condenser that condenses and liquefies refrigerant discharged from the variable capacity compression device;
A refrigeration circuit includes a plurality of electromagnetic valves that expand and evaporate the refrigerant sent out from the condenser, a throttle device, and a cooler, which are connected by piping in order to form a closed circuit, and the plurality of coolers. The defrosting heaters installed in the respective coolers generate a defrosting signal during defrosting, and the solenoid valves respectively connected to the plurality of coolers are alternately closed. a defrost control unit that energizes the frost heater; a pressure detection unit that detects the low pressure side refrigerant pressure of the refrigeration circuit;
A pressure setting section that sets a reference value for the low-pressure side refrigerant pressure of the refrigeration circuit, and a pressure detection section that compares the detected pressure detected by the pressure detection section with the reference value, and based on the comparison result, the capacity of the variable capacity compression device. a control section that generates a control signal; and a control section that controls the capacity of the variable capacity compression device based on the capacity control signal of the control section, and also controls the capacity of the variable capacity compression device based on the defrosting signal during defrosting from the total capacity of the variable capacity compression device. A refrigeration system comprising: a capacity control section that controls the capacity to a predetermined capacity that is small.
JP14471091A 1991-06-17 1991-06-17 Refrigerator Pending JPH04369354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14471091A JPH04369354A (en) 1991-06-17 1991-06-17 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14471091A JPH04369354A (en) 1991-06-17 1991-06-17 Refrigerator

Publications (1)

Publication Number Publication Date
JPH04369354A true JPH04369354A (en) 1992-12-22

Family

ID=15368489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14471091A Pending JPH04369354A (en) 1991-06-17 1991-06-17 Refrigerator

Country Status (1)

Country Link
JP (1) JPH04369354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163100A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioner
JP2009139028A (en) * 2007-12-07 2009-06-25 Sanyo Electric Co Ltd Control device and control method for control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163100A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioner
JP2009139028A (en) * 2007-12-07 2009-06-25 Sanyo Electric Co Ltd Control device and control method for control device
US8397526B2 (en) 2007-12-07 2013-03-19 Sanyo Electric Co., Ltd. Controller and control method for refrigerating system

Similar Documents

Publication Publication Date Title
US5265434A (en) Method and apparatus for controlling capacity of a multiple-stage cooling system
US4951475A (en) Method and apparatus for controlling capacity of a multiple-stage cooling system
EP2592372A2 (en) Refrigerator using non-azeotropic refrigerant mixture and control method thereof
US5067326A (en) Method and apparatus for controlling capacity of a multiple-stage cooling system
US4798057A (en) Refrigerating apparatus and control method thereof
JP2012072920A (en) Refrigeration apparatus
KR20020036544A (en) Method for controlling Linear Expantion Valve of air conditioner with 2 compressors
JP2002257425A (en) Refrigerating device
JPH04369354A (en) Refrigerator
JPH07243711A (en) Two-stage cooler
JP2701598B2 (en) Freezer refrigerator
JPH11118264A (en) Freezer adapted to hfc refrigerant
CN214371043U (en) Compression refrigeration system of refrigerator and refrigerator
JPH09229498A (en) Refrigeration apparatus and operation and control system of same
JPH065569Y2 (en) Refrigeration equipment
JPH065570Y2 (en) Refrigeration equipment
JP2614253B2 (en) Air conditioner
JPH04369350A (en) Operation control device for freezing device
JP2686128B2 (en) Refrigeration equipment
KR100535676B1 (en) Control method of cooling cycling apparatus
JPH01219373A (en) Compressor controlling method for refrigerator
JPH1038396A (en) Method of controlling freezer
JPH0534026A (en) Freezing cycle device
JPH051972U (en) Refrigeration equipment
JPH03129254A (en) Freezer