JPH065139B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH065139B2
JPH065139B2 JP28040386A JP28040386A JPH065139B2 JP H065139 B2 JPH065139 B2 JP H065139B2 JP 28040386 A JP28040386 A JP 28040386A JP 28040386 A JP28040386 A JP 28040386A JP H065139 B2 JPH065139 B2 JP H065139B2
Authority
JP
Japan
Prior art keywords
pressure
capacity
refrigerant
setting
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28040386A
Other languages
Japanese (ja)
Other versions
JPS63131958A (en
Inventor
和弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28040386A priority Critical patent/JPH065139B2/en
Publication of JPS63131958A publication Critical patent/JPS63131958A/en
Publication of JPH065139B2 publication Critical patent/JPH065139B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、たとえば、マーケットなど同一場所に設置
された複数台の冷蔵・冷凍ショーケース群で使用される
冷凍装置、すなわち、負荷変動の大きい冷凍装置におい
て、常に最適な状態で運転できるようにした冷凍装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is, for example, a refrigerating apparatus used in a plurality of refrigerating / freezing showcase groups installed in the same place such as a market, that is, a load variation is large. The present invention relates to a refrigerating device that can be always operated in an optimum state.

〔従来の技術〕[Conventional technology]

従来のこの種の冷凍装置として、第3図に示すものがあ
った。この第3図において、1は並列圧縮式冷凍装置、
2は複数台のショーケースなどの冷却器2a,2b,2
cの組合わせで構成された冷却装置である。
As a conventional refrigerating apparatus of this type, there is one shown in FIG. In FIG. 3, 1 is a parallel compression type refrigeration system,
2 is a plurality of coolers 2a, 2b, 2 such as showcases
It is a cooling device configured by a combination of c.

並列圧縮式冷凍装置1は水冷式の凝縮器1aあるいは空
冷式凝縮器(図示せず)の下流側に接続される受液器の
上に圧縮器の定格容量比がほぼ2対1で選定されている
大容量の圧縮機1bと小容量の圧縮機1cの2台が並列
に搭載されており、かつ各圧縮機1bと1cの冷媒吐出
管1dおよび吸入管1eが互いに並列接続されている。
The parallel compression refrigeration system 1 has a rated capacity ratio of approximately 2 to 1 selected on a receiver connected downstream of a water-cooled condenser 1a or an air-cooled condenser (not shown). The large capacity compressor 1b and the small capacity compressor 1c are mounted in parallel, and the refrigerant discharge pipe 1d and the suction pipe 1e of each compressor 1b and 1c are connected in parallel with each other.

なお、1fは各圧縮機1bと1cのクランク室を相互に
連通させる均圧均油管である。
In addition, 1f is a pressure equalizing and equalizing pipe that connects the crank chambers of the compressors 1b and 1c to each other.

また、5は低圧側の冷媒圧力を検出する圧力検出部3の
出力信号と収束させようとする低圧側の冷媒圧力を設定
する圧力設定部4で設定された冷媒圧力との圧力差に応
じて圧縮機1bと1cを個別に運転、停止の制御を行う
制御部である。
Further, 5 is according to the pressure difference between the output signal of the pressure detection unit 3 for detecting the low pressure side refrigerant pressure and the refrigerant pressure set by the pressure setting unit 4 for setting the low pressure side refrigerant pressure to be converged. This is a control unit that controls the operation and stop of the compressors 1b and 1c individually.

さらに、第4図に示すように、通常圧力領域は、上記圧
力設定部4によって設定される容量アップ圧力値、容量
ダウン圧力値、低圧カット値の三つによって、並列圧縮
式冷凍装置1に容量アップ信号を出す容量アップ圧力値
以上の領域ニと、並列圧縮式冷凍装置1に容量ダウン信
号も容量アップ信号も出さない容量ダウン圧力値以上
で、かつ容量アップ圧力値未満の領域ハと、並列圧縮式
冷凍装置1に容量ダウン信号を出す容量ダウン圧力値未
満の領域ロと、並列圧縮式冷凍装置1に停止信号を出す
低圧カット値以下の領域イの四つに分けられる。
Further, as shown in FIG. 4, the normal pressure region has a capacity in the parallel compression refrigeration system 1 which is set by the capacity increasing pressure value, the capacity decreasing pressure value, and the low pressure cut value set by the pressure setting unit 4. In parallel with the area D above the capacity up pressure value that outputs an up signal, and the area c below the capacity down pressure value that is neither the capacity down signal nor the capacity up signal to the parallel compression refrigeration system 1 and less than the capacity up pressure value. It is divided into four areas, i.e., an area b below the capacity down pressure value for outputting the capacity down signal to the compression type refrigeration apparatus 1 and an area a below the low pressure cut value for outputting a stop signal to the parallel compression type refrigeration apparatus 1.

次に、動作について説明する。たとえば、冷却装置2の
冷凍負荷に対する所要の冷凍能力を得るための所要動力
が15である場合に、一方の圧縮機1bの定格容量は
10、他方の圧縮機1cの定格容量は5に選定され
ている。
Next, the operation will be described. For example, when the required power for obtaining the required refrigerating capacity for the refrigerating load of the cooling device 2 is 15, the rated capacity of one compressor 1b is set to 10, and the rated capacity of the other compressor 1c is set to 5. ing.

一方、複数台の冷却器2a,2b,2cからなを冷却装
置2では、各ショーケースの使用状況によって冷却負荷
は0から100%まで大幅に変動する。
On the other hand, in the cooling device 2 composed of a plurality of coolers 2a, 2b, 2c, the cooling load greatly changes from 0 to 100% depending on the usage status of each showcase.

ここで、冷凍負荷が少なくなると、冷凍サイクルの低圧
側の冷媒圧力が下がり、これにともなって圧力検出部3
から制御部5に出力される圧力検出信号のレベルも低下
する。
Here, when the refrigerating load decreases, the refrigerant pressure on the low pressure side of the refrigerating cycle decreases, and with this, the pressure detecting unit 3
The level of the pressure detection signal output from the control unit 5 also decreases.

制御部5では、上記圧力検出信号を基準値(容量アップ
圧力値あるいは容量ダウン圧力値)と比較する比較回路
を有しているため、圧力検出信号が容量ダウン圧力値よ
りも低い場合、すなわち、領域ロの場合には、制御部5
は並列圧縮式冷凍装置1の容量が低下するように制御
し、冷却能力を下げる。
Since the control unit 5 has a comparison circuit that compares the pressure detection signal with a reference value (capacity up pressure value or capacity down pressure value), when the pressure detection signal is lower than the capacity down pressure value, that is, In the case of area B, the control unit 5
Controls to reduce the capacity of the parallel compression type refrigeration system 1 and lowers the cooling capacity.

このようにして、冷却能力が下げられると、冷凍サイク
ルの低圧側の冷媒圧力が上昇し、領域ハに収束し、運転
は安定する。
In this way, when the cooling capacity is lowered, the refrigerant pressure on the low pressure side of the refrigeration cycle rises, converges to the region C, and the operation becomes stable.

また、冷却負荷が高い場合には、冷凍サイクルの低圧側
の冷媒圧力が上昇し、これにともなって、圧力検出部3
から制御部5に出力される圧力検出信号のレベルが上昇
する。
Further, when the cooling load is high, the refrigerant pressure on the low pressure side of the refrigeration cycle rises, and with this, the pressure detection unit 3
The level of the pressure detection signal output from the control unit 5 to the control unit 5 increases.

この結果、圧力検出信号が容量アップ圧力値よりも高い
場合、すなわち、領域ニの場合には、制御部5は並列圧
縮式冷凍1の容量がアップするように制御し、冷却能力
を増加させる。
As a result, when the pressure detection signal is higher than the capacity increase pressure value, that is, in the case of region D, the control unit 5 controls the capacity of the parallel compression refrigeration unit 1 to increase, and increases the cooling capacity.

このようにして、冷却能力が増加すると、冷凍サイクル
の低圧側の冷媒圧力は低下し、領域ハに収束し、運転は
安定する。
In this way, when the cooling capacity is increased, the refrigerant pressure on the low pressure side of the refrigeration cycle is reduced, converges to the area C, and the operation is stabilized.

なお、圧力検出部3が領域ニあるいは領域ロの圧力を検
出した後、制御部5より出力される容量アップ信号、あ
るいは容量ダウン信号が発生するまでの時間は同じで運
転の安定性等を考慮して3分間に設定されている。
After the pressure detection unit 3 detects the pressure in the area D or the area B, the time until the capacity up signal or the capacity down signal output from the control unit 5 is the same, and the stability of operation is taken into consideration. Then it is set to 3 minutes.

なお、冷凍サイクルの低圧側の冷媒圧力が低圧カット値
以下、すなわち領域イになった場合、圧縮機1b,1c
は直ちに停止するようになっている。
When the pressure of the refrigerant on the low pressure side of the refrigeration cycle is equal to or lower than the low pressure cut value, that is, when the region b is reached, the compressors 1b and 1c are
Is supposed to stop immediately.

したがって、上記の冷凍負荷変動に対し、冷凍負荷が3
3%以下の部分負荷時には、定格容量5の圧縮機1c
のみが単独運転される。
Therefore, the refrigeration load is 3 when the above refrigeration load changes.
Compressor 1c with a rated capacity of 5 when the partial load is 3% or less
Only is operated alone.

また、冷凍負荷が33〜66%の範囲では、定格容量1
0の圧縮機1bのみが単独運転される。
When the refrigeration load is 33 to 66%, the rated capacity is 1
Only the compressor 1b of 0 operates independently.

さらに、冷凍負荷が66〜100%になれば、圧縮機1
bと1bが同時に並列運転される。この容量制御運転の
推移を示せば第5図のようになる。
Further, if the refrigeration load becomes 66 to 100%, the compressor 1
b and 1b are simultaneously operated in parallel. The transition of this capacity control operation is shown in FIG.

すなわち、第5図に示されているように、圧縮機の定格
容量比がほぼ2対1に選定されている大小の圧縮機を選
択的に運転、停止制御することによって、0,33,6
6%の4段階の容量制御運転を行うことができる。
That is, as shown in FIG. 5, 0, 33, 6 is controlled by selectively operating and stopping the large and small compressors whose rated capacity ratio is selected to be about 2: 1.
It is possible to perform 4 steps of capacity control operation of 6%.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の冷凍装置は以上のように構成されているので、負
荷の変動が緩やかなときは安定した運転を行なうが、容
量アップあるいは容量ダウンの信号が出るまでに3分か
かるので負荷変動が急激な場合、容量の変化が遅れるた
め庫内温度が上昇し、この結果、冷却物の鮮度を損ねた
り効率の悪い運転となるという問題点があった。また、
容量変更時間を容量アップ時とダウン時とを同じとした
ので、容量アップ時に過電流が流れたり、高圧側冷媒圧
が急激に上昇するため、容量ダウン時間を短くできるに
も関わらず、容量変更時間をあまり短くすることができ
ないという問題点もあった。
Since the conventional refrigeration system is configured as described above, stable operation is performed when the load fluctuation is gentle, but it takes 3 minutes until a capacity up or capacity down signal is output, so the load fluctuation is rapid. In this case, there is a problem in that the internal temperature rises because the change in capacity is delayed, and as a result, the freshness of the coolant is impaired and the operation becomes inefficient. Also,
Since the capacity change time is the same when the capacity is increased and when the capacity is decreased, overcurrent flows when the capacity is increased and the high pressure side refrigerant pressure rises sharply, so the capacity change time can be shortened, but the capacity change There was also a problem that the time could not be shortened too much.

この発明は上記のような問題点を解消するためになされ
たもので、負荷の変動速度に応じ迅速に容量を変化させ
ることのできる効率がよく、省エネルギーの運転を行な
える冷凍装置を得ることを目的とする。
The present invention has been made in order to solve the above problems, and an efficient refrigeration apparatus capable of rapidly changing the capacity according to the changing speed of the load, to obtain a refrigeration apparatus capable of energy-saving operation. To aim.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷凍装置は、圧縮機容量を変化させる時
間を、圧力検出部で検出した冷凍サイクルの低圧側圧力
と圧力設定部に設定された圧力との差に応じた長さで、
かつ常に容量アップ時の方が容量ダウン時より長くなる
よう設定する時間設定部を設けたものである。
The refrigeration apparatus according to the present invention, the time to change the compressor capacity, the length according to the difference between the pressure set on the low pressure side of the refrigeration cycle detected by the pressure detection unit and the pressure setting unit,
In addition, a time setting unit is provided to always set the capacity to be longer when the capacity is increased than when the capacity is decreased.

〔作用〕[Action]

この発明においては、時間設定部により圧力検出信号と
収束圧力値の圧力差に応じた長さで、かつ常に容量アッ
プ時の方が容量ダウン時より長くなるよう圧縮機容量を
変化させる時間が設定され、容量アップ時の過電流や急
激な高圧上昇を伴なうことなく迅速に所定の圧力に到達
するように作用する。
In the present invention, the time setting unit sets the length according to the pressure difference between the pressure detection signal and the convergent pressure value, and the time for changing the compressor capacity so that the capacity increase is always longer than the capacity decrease time. Therefore, it works so as to quickly reach a predetermined pressure without being accompanied by an overcurrent at the time of increasing the capacity or a rapid increase in high voltage.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は冷凍装置の構成図であり第3図に示した従来の
装置と同一部分には同一符号を付して説明を省略する。
第1図において、符号1〜5は第3図と同様であり、符
号6で示す時間設定部が第3図の装置に新たに付加され
たものである。
FIG. 1 is a block diagram of a refrigerating apparatus, and the same parts as those of the conventional apparatus shown in FIG.
In FIG. 1, reference numerals 1 to 5 are the same as those in FIG. 3, and a time setting unit indicated by reference numeral 6 is newly added to the apparatus of FIG.

すなわち、上記時間設定部6は圧力検出部3が領域ニあ
るいは領域ロの圧力を検出したのち、制御部5より出さ
れる容量アップあるいは容量ダウンの信号が発生するま
での時間を圧力検出信号と収束圧力値の圧力差に応じて
決定する機能を有しており、その関係は第2図のように
なっている。
That is, the time setting unit 6 converges the time from the pressure detection unit 3 detecting the pressure in the area D or the area B to the generation of the capacity up or capacity down signal output from the control unit 5 with the pressure detection signal. It has a function of determining according to the pressure difference between the pressure values, and the relationship is as shown in FIG.

次にこの発明の動作について説明する。制御部5より発
生する容量制御用出力信号により、例えば圧縮機1bが
領域ハで運転していたときに冷却負荷が上昇し、これに
つれて検出圧力が上昇を始め1.6kg/cm2になった場合、
検出圧力(1.6kg/cm2)と設定圧力(1.3kg/cm2)の差が0.3k
g/cm2であるので第2図に示すように検出圧力が1.3kg/c
m2を越えたときから105秒後に制御部5から容量アッ
プの信号が出力され、圧縮機1bと1cの運転に移行し
負荷の上昇に対処する。逆に圧縮機1bが領域ハで運転
中に負荷が減少し検出圧力が低下して0.6kg/cm2になっ
た場合は、圧力差が0.2kg/cm2になるので第2図に示す
ように検出圧力が0.8kg/cm2を下廻ったときから23秒
後に制御部5から容量ダウンの信号が出力され、圧縮機
1cのみの運転に移行する。また、圧縮機1b,1cが
共に停止中の場合は領域ニへ移行すると、Aによって決
まる時間後に圧縮機1cが起動しその時から次のモード
への時間計測が始まる。もし、負荷が大でそのまま領域
ニにおればAの特性にて圧縮機1bの運転に移行する。
Next, the operation of the present invention will be described. When the cooling load increases due to the output signal for capacity control generated from the control unit 5 when the compressor 1b is operating in the area C, and the detected pressure starts increasing and becomes 1.6 kg / cm 2 accordingly. ,
The difference between the detected pressure (1.6kg / cm 2 ) and the set pressure (1.3kg / cm 2 ) is 0.3k.
Since it is g / cm 2 , the detected pressure is 1.3 kg / c as shown in Fig. 2.
After 105 seconds from when m 2 is exceeded, a capacity increase signal is output from the control unit 5, and the operation of the compressors 1b and 1c is started to cope with an increase in load. Conversely, if the load decreases and the detected pressure drops to 0.6 kg / cm 2 while the compressor 1b is operating in the area C, the pressure difference becomes 0.2 kg / cm 2 , so as shown in Fig. 2. 23 seconds after the detected pressure falls below 0.8 kg / cm 2 , the control unit 5 outputs a capacity down signal, and the compressor 1c only operates. Further, when both the compressors 1b and 1c are stopped, when moving to the area D, the compressor 1c is started after a time determined by A, and the time measurement to the next mode starts from that time. If the load is large and the area is in the area D as it is, the operation of the compressor 1b is started with the characteristic of A.

〔発明の効果〕〔The invention's effect〕

以上説明したようにこの発明によれば、冷凍サイクルの
低圧側における冷媒圧力を圧力検出部で検出して圧力検
出信号を発生させ、収束させようとする冷媒圧力を圧力
設定部で設定すると共に、圧力検出信号が収束させよう
とする冷媒圧力以上か、以下かを判定し冷凍機の容量制
御を行なうための容量制御用出力信号を発生する制御部
と、この容量制御用出力信号により圧縮機容量を変化さ
せる時間を、圧力検出信号と収束圧力値との差に応じた
長さで、かつ常に容量アップ時の方が容量ダウン時より
長くなるよう設定する時間設定部とを備えたので、負荷
の変動方向及び速度に応じ異なった時間で容量を変化す
ることができる。したがって急激な容量アップによる過
電流や急激な高圧上昇を併うことなく、安定した運転が
行なえ、かつ迅速に所定の圧力に到達できるので冷却物
の温度が一定となり鮮度が保てる。また省エネルギーで
効率のよい運転が行なえる。
As described above, according to the present invention, the pressure detection section detects the refrigerant pressure on the low pressure side of the refrigeration cycle to generate a pressure detection signal, and the refrigerant pressure to be converged is set by the pressure setting section, A control unit that generates a capacity control output signal for controlling the capacity of the refrigerator by judging whether the pressure detection signal is above or below the refrigerant pressure to be converged, and the compressor capacity based on this capacity control output signal. Since a time setting unit that sets the time for changing the time according to the difference between the pressure detection signal and the convergent pressure value and always sets the capacity up time longer than the capacity down time, It is possible to change the capacity at different times depending on the changing direction and speed of the. Therefore, stable operation can be performed without causing overcurrent and sudden rise in high pressure due to sudden capacity increase, and a predetermined pressure can be reached quickly, so that the temperature of the cooling object is constant and freshness can be maintained. In addition, energy saving and efficient operation can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による冷凍装置の構成図、
第2図は検出圧力と設定圧力との差と圧縮機容量変化時
間との関係を示す特性図、第3図は従来の冷凍装置の構
成図、第4図は第3図における圧力側の冷媒圧力の領域
を示す図、第5図は同じく容量制御運転の説明図であ
る。 1a…凝縮器、1b,1c…圧縮機、2a〜2c…冷却
装置、3…圧力検出部、4…圧力設定部、5…制御部、
6…時間設定部。 なお、図中同一符号は同一又は相当部分を示す。
FIG. 1 is a block diagram of a refrigerating apparatus according to an embodiment of the present invention,
FIG. 2 is a characteristic diagram showing the relationship between the difference between the detected pressure and the set pressure and the compressor capacity change time, FIG. 3 is a configuration diagram of a conventional refrigeration system, and FIG. 4 is the pressure-side refrigerant in FIG. FIG. 5 is a diagram showing the region of pressure, and FIG. 5 is an explanatory diagram of the same capacity control operation. 1a ... condenser, 1b, 1c ... compressor, 2a-2c ... cooling device, 3 ... pressure detection part, 4 ... pressure setting part, 5 ... control part,
6 ... Time setting section. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】それぞれ並列に接続された吸入管および吐
出管を有する複数台の圧縮機と、これらの圧縮機から吐
出される冷媒を凝縮液化する凝縮器と、この凝縮器から
送出される冷媒を蒸発気化する冷却器とが閉回路を形成
するように順次配管接続された冷凍回路、この冷凍回路
の低圧側の冷媒圧力を検出し、この冷媒圧力に応じた圧
力検出信号を発生する圧力検出部、収束させようとする
上記低圧側の冷媒圧力の収束圧力値を設定する圧力設定
部、上記圧力検出信号が上記収束圧力値以上か以下かを
判定し、その判定結果に基づいて出力信号を発生すると
ともに、この出力信号に基づき上記冷凍機の容量のアッ
プダウン制御を行うための容量制御用出力信号を発生す
る制御部、及び、この容量制御用出力信号により圧縮機
容量を変化させる時間を、上記圧力検出信号と収束圧力
値との差に応じた長さで、かつ常に容量アップ時の方が
容量ダウン時より長くなるよう設定する時間設定部とを
備えたことを特徴とする冷凍装置。
1. A plurality of compressors each having a suction pipe and a discharge pipe connected in parallel, a condenser for condensing and liquefying the refrigerant discharged from these compressors, and a refrigerant discharged from this condenser. A refrigeration circuit sequentially connected to form a closed circuit with a cooler that evaporates and detects the refrigerant pressure on the low pressure side of this refrigeration circuit, and a pressure detection that generates a pressure detection signal according to this refrigerant pressure. Section, a pressure setting section for setting a convergent pressure value of the low-pressure side refrigerant pressure to be converged, it is determined whether the pressure detection signal is equal to or more than the convergent pressure value, the output signal based on the determination result. A controller that generates a capacity control output signal for performing up / down control of the capacity of the refrigerator based on the output signal, and a compressor capacity is changed by the capacity control output signal. Is provided with a time setting unit for setting the length according to the difference between the pressure detection signal and the converged pressure value and always setting the capacity up time longer than the capacity down time. Refrigeration equipment.
JP28040386A 1986-11-24 1986-11-24 Refrigeration equipment Expired - Lifetime JPH065139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28040386A JPH065139B2 (en) 1986-11-24 1986-11-24 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28040386A JPH065139B2 (en) 1986-11-24 1986-11-24 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS63131958A JPS63131958A (en) 1988-06-03
JPH065139B2 true JPH065139B2 (en) 1994-01-19

Family

ID=17624545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28040386A Expired - Lifetime JPH065139B2 (en) 1986-11-24 1986-11-24 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH065139B2 (en)

Also Published As

Publication number Publication date
JPS63131958A (en) 1988-06-03

Similar Documents

Publication Publication Date Title
JP2012072920A (en) Refrigeration apparatus
JPH0814672A (en) Freezer device
JP2000046423A (en) Natural circulation cooling apparatus
JPH07243711A (en) Two-stage cooler
JPH065139B2 (en) Refrigeration equipment
JPH05296516A (en) Cooling apparatus
KR20000037566A (en) Method for controlling inverter compressor of air conditioner
CN108027176A (en) Multiple compression refrigerating circulatory device
JP2508191B2 (en) Refrigeration equipment
CN112665239A (en) Water chilling unit starting method and device and water chilling unit
JP2510697B2 (en) Method of controlling rotation speed of blower of air-cooled refrigeration system
JPH025310Y2 (en)
JPH11281172A (en) Chiller
JP3462551B2 (en) Speed control device for blower for condenser
JPH0563701B2 (en)
JP3426715B2 (en) Refrigeration equipment
JPH0756418B2 (en) Refrigeration equipment
JPH09229498A (en) Refrigeration apparatus and operation and control system of same
JP3019747B2 (en) Refrigeration equipment
JPS62178853A (en) Refrigerator
JPS6342175B2 (en)
JPH08178439A (en) Controller for refrigerator
JP2853977B2 (en) Refrigeration cycle device
JPS6150220B2 (en)
JPH0784953B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term