JPH11281172A - Chiller - Google Patents

Chiller

Info

Publication number
JPH11281172A
JPH11281172A JP10213698A JP10213698A JPH11281172A JP H11281172 A JPH11281172 A JP H11281172A JP 10213698 A JP10213698 A JP 10213698A JP 10213698 A JP10213698 A JP 10213698A JP H11281172 A JPH11281172 A JP H11281172A
Authority
JP
Japan
Prior art keywords
compressor
temperature
outside air
side refrigerant
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10213698A
Other languages
Japanese (ja)
Inventor
Akira Sugawara
晃 菅原
Hiroyuki Umezawa
浩之 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10213698A priority Critical patent/JPH11281172A/en
Publication of JPH11281172A publication Critical patent/JPH11281172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize energy saving by varying the rotational speed of a compressor based on the outer air temperature for determining the refrigeration load and the suction side refrigerant temperature of a compressor thereby determining the refrigeration load accurately and reducing power consumption. SOLUTION: When the difference between the outer air temperature and the suction side refrigerant temperature of a compressor 11 is 21 deg.C or above, refrigeration load is low and power consumption is low even if the compressor 11 is rotated at a high speed. A controller 19 controls the operating frequency being outputted from an inverter 12 to the compressor 11 such that the compressor 11 is rotated at a high speed. When the temperature difference is 10 deg.C or below, refrigeration load is high and power is consumed excessively if the compressor 11 is rotated at high speed. The controller 19 controls the operating frequency being outputted from the inverter 12 to the compressor 11 such that the compressor is rotated at an intermediate or low speed thus reducing power consumption. When the temperature difference is between 10-21 deg.C, the rotational frequency is controlled to rotate the compressor at an intermediate speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、消費電力を削減す
る冷凍装置に関する。
The present invention relates to a refrigeration system for reducing power consumption.

【0002】[0002]

【従来の技術】一般に、ショーケース、業務用冷蔵庫、
自動販売機等においては、圧縮機、コンデンサ、キャピ
ラリーチューブ、及びエバポレータを冷媒管で接続した
冷凍装置が知られている。
2. Description of the Related Art Generally, showcases, commercial refrigerators,
As a vending machine or the like, a refrigeration apparatus in which a compressor, a condenser, a capillary tube, and an evaporator are connected by a refrigerant tube is known.

【0003】[0003]

【発明が解決しようとする課題】この種の冷凍装置で
は、冷凍負荷に応じて圧縮機の回転速度を変更するもの
がある。上記冷凍負荷は、ショーケースなどの庫内に設
置されて庫内温度を検出する温度センサの検出値に基づ
いて判定される。
In this type of refrigerating apparatus, there is a refrigerating apparatus in which the rotational speed of a compressor is changed according to a refrigerating load. The refrigeration load is determined based on a detection value of a temperature sensor that is installed in a refrigerator such as a showcase and detects the temperature in the refrigerator.

【0004】従って、同一量の商品であっても、温度セ
ンサの近傍に配置されるか否かによって、冷凍負荷が異
なってしまう。例えば、温度センサから離れた位置に商
品が配置されて、実際の冷凍負荷が大きいにも拘わらず
冷凍負荷が小さいと判定された場合に、圧縮機を高速回
転してしまうと、電力を過剰に消費してしまうことがあ
る。
[0004] Therefore, even if the products are of the same quantity, the refrigeration load differs depending on whether or not they are arranged near the temperature sensor. For example, if the product is arranged at a position distant from the temperature sensor and it is determined that the refrigeration load is small in spite of the fact that the actual refrigeration load is large, if the compressor is rotated at a high speed, the electric power is excessively increased. May consume.

【0005】本発明の課題は、上述の事情を考慮してな
されたものであり、消費電力を削減して省エネルギーを
実現できる冷凍装置を提供することにある。
An object of the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a refrigeration apparatus capable of reducing power consumption and realizing energy saving.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
回転速度可変型の圧縮機、凝縮器、減圧装置及び蒸発器
を備え、上記圧縮機が制御装置により制御される冷凍装
置において、上記制御装置は、冷凍負荷を判定可能な、
外気温度と上記圧縮機の吸込側冷媒温度に基づいて、上
記圧縮機の回転速度を変更させるようにしたものであ
る。
According to the first aspect of the present invention,
In a refrigerating device including a variable-speed compressor, a condenser, a decompression device, and an evaporator, wherein the compressor is controlled by a control device, the control device can determine a refrigerating load,
The rotation speed of the compressor is changed based on the outside air temperature and the suction-side refrigerant temperature of the compressor.

【0007】請求項2記載の発明は、請求項1に記載の
発明において、上記制御装置には、複数種類の運転モー
ドが格納された記憶装置が接続され、上記運転モード
は、外気温度と圧縮機の吸込側冷媒温度との温度差に対
応して定められた上記圧縮機の回転速度が、上記外気温
度を基準に、それぞれの上記温度差ごとに配列されたも
のであり、上記制御装置は、上記外気温度と上記圧縮機
の吸込側冷媒温度とに基づき、上述の各運転モードから
上記圧縮機の回転速度を選定して、上記圧縮機の回転速
度を変更させるものである。
According to a second aspect of the present invention, in the first aspect of the present invention, a storage device storing a plurality of types of operation modes is connected to the control device. The rotational speed of the compressor determined in accordance with the temperature difference with the suction side refrigerant temperature of the machine, based on the outside air temperature, is arranged for each temperature difference, the control device is The rotational speed of the compressor is selected from the above operation modes based on the outside air temperature and the suction-side refrigerant temperature of the compressor to change the rotational speed of the compressor.

【0008】請求項3記載の発明は、請求項1又は2に
記載の発明において、上記制御装置は、圧縮機の吸込側
冷媒温度における所定時間毎の検出温度を、移動平均法
を用いて演算して平均値を求め、この平均値を上記圧縮
機の吸込側冷媒温度とするものである。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the control device calculates a detected temperature at a predetermined time in a suction side refrigerant temperature of the compressor using a moving average method. Then, an average value is obtained, and this average value is used as the suction-side refrigerant temperature of the compressor.

【0009】請求項1又は2に記載の発明には、次の作
用がある。
The invention described in claim 1 or 2 has the following operation.

【0010】制御装置が、冷凍負荷を判定可能な、外気
温度と圧縮機の吸込側冷媒温度に基づいて、圧縮機の回
転速度を変更させることから、冷凍負荷を判定可能な、
蒸発器を収容した庫内温度に基づいて、圧縮機の回転速
度を変更する場合に比べ、冷凍負荷を正確に判定でき
る。この結果、冷凍負荷に対応して設定される圧縮機の
回転速度が適正となり、電力の過剰消費を抑制できるの
で、消費電力を削減して省エネルギーを実現できる。
The control device changes the rotation speed of the compressor based on the outside air temperature and the suction-side refrigerant temperature of the compressor, which can determine the refrigeration load.
The refrigeration load can be determined more accurately than in the case where the rotation speed of the compressor is changed based on the temperature in the refrigerator housing the evaporator. As a result, the rotational speed of the compressor set corresponding to the refrigeration load becomes appropriate, and excessive consumption of electric power can be suppressed, so that power consumption can be reduced and energy saving can be realized.

【0011】請求項3に記載の発明には、次の作用があ
る。
The third aspect of the invention has the following operation.

【0012】蒸発器を収容したショーケース等が頻繁に
開閉されて、その都度冷凍負荷が変動しても、圧縮機の
吸込側冷媒温度の検出値をそのまま用いず、その検出値
を移動平均法で算出した値を吸込側冷媒温度としている
ので、圧縮機の吸込側冷媒温度と外気温度との温度差に
基づき決定される圧縮機の回転速度が頻繁に変更せず、
制御の安定性を実現できる。
Even if a showcase or the like accommodating the evaporator is frequently opened and closed and the refrigerating load fluctuates each time, the detected value of the refrigerant temperature on the suction side of the compressor is not used as it is, and the detected value is calculated by the moving average method. Since the value calculated in the above is the suction side refrigerant temperature, the rotation speed of the compressor determined based on the temperature difference between the suction side refrigerant temperature of the compressor and the outside air temperature does not frequently change,
Control stability can be realized.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1に示す冷凍装置10は、ショーケー
ス、業務用冷蔵庫、自動販売機などの冷凍装置である。
この冷凍装置10において、符号11は、インバータ1
2によりその回転数が調整される圧縮機を示している。
The refrigeration apparatus 10 shown in FIG. 1 is a refrigeration apparatus such as a showcase, a commercial refrigerator, a vending machine, and the like.
In the refrigeration system 10, reference numeral 11 denotes the inverter 1
2 shows a compressor whose rotation speed is adjusted.

【0015】圧縮機11にはコンデンサ13(凝縮
器)、キャピラリーチューブ14(減圧装置)及びエバ
ポレータ15(蒸発器)が冷媒管16を用いて閉ループ
に接続され、更に、コンデンサ13にコンデンサファン
17が付設され、エバポレータ15にエバポレータファ
ン18が付設されている。エバポレータ15は、ショー
ケース等の庫内に設置され、当該庫内を冷却する。
A condenser 13 (condenser), a capillary tube 14 (decompression device) and an evaporator 15 (evaporator) are connected to the compressor 11 in a closed loop by using a refrigerant pipe 16, and a condenser fan 17 is connected to the condenser 13. The evaporator 15 is provided with an evaporator fan 18. The evaporator 15 is installed in a storage such as a showcase and cools the storage.

【0016】インバータ12は、圧縮機11の電動モー
タへ供給される電流の周波数を調整して、圧縮機11の
回転速度を変更させるものであり、制御装置19により
制御される。この制御装置19に外気温度センサ20、
吸込側冷媒温度センサ21及び記憶装置22が接続され
ている。
The inverter 12 adjusts the frequency of the current supplied to the electric motor of the compressor 11 to change the rotation speed of the compressor 11, and is controlled by the control device 19. This controller 19 has an outside air temperature sensor 20,
The suction-side refrigerant temperature sensor 21 and the storage device 22 are connected.

【0017】外気温度センサ20は、ショーケース等の
庫内の外気温度を検出し、その検出信号を制御装置19
へ送信する。また、吸込側冷媒温度センサ21は、圧縮
機11へ吸込まれる冷媒ガスの温度を検出するものであ
り、その検出信号が制御装置19へ送信される。
The outside air temperature sensor 20 detects the outside air temperature in a storage such as a showcase or the like, and outputs the detection signal to the control device 19.
Send to Further, the suction-side refrigerant temperature sensor 21 detects the temperature of the refrigerant gas sucked into the compressor 11, and the detection signal is transmitted to the control device 19.

【0018】制御装置19は、吸込側冷媒温度センサ2
1にて検出された所定時間(例えば5分)ごとの検出値
から移動平均法を用いて平均値を演算し、この平均値を
吸込側冷媒温度とする。つまり、制御装置19は、吸込
側冷媒温度センサ21にて検出された所定時間ごとの検
出値A、B、C、D、E…のうち、隣接する複数(例え
ば3個)の検出値の平均値α[=(A+B+C)/
3]、β[=(B+C+D)/3]、γ[=(C+D+
E)/3]…を連続して演算し、この平均値α、β、γ
…を各時点における吸込側冷媒温度とする。
The control device 19 includes a suction-side refrigerant temperature sensor 2
An average value is calculated using the moving average method from the detection values detected at a predetermined time (for example, 5 minutes) detected in step 1, and the average value is set as the suction side refrigerant temperature. That is, the control device 19 calculates an average of a plurality of (eg, three) adjacent detection values among the detection values A, B, C, D, E,... Detected by the suction-side refrigerant temperature sensor 21 at predetermined time intervals. Value α [= (A + B + C) /
3], β [= (B + C + D) / 3], γ [= (C + D +
E) / 3]... Are continuously calculated, and the average values α, β, γ
... are the suction-side refrigerant temperatures at each time point.

【0019】記憶装置22は、図4に示すように、複数
種類の運転モード(急速運転モード、省1運転モード、
省2運転モード、省3運転モード)を格納する。上記省
3運転モードが、最も消費電力の少ない運転モードであ
り、省2運転モードが、省3運転モードの次に消費電力
の少ない運転モードであり、省1運転モードが省2運転
モードの次に消費電力の少ない運転モードである。急速
運転モードは、省エネルギーを無視した運転モードであ
り、消費電力が最も大きい。これらの運転モードは、冷
凍装置10の使用者によって選択可能に設けられる。
As shown in FIG. 4, the storage device 22 stores a plurality of types of operation modes (rapid operation mode, 1-saving operation mode,
2 saved operation mode and 3 saved operation mode). The three-saving operation mode is an operation mode with the least power consumption, the two-saving operation mode is an operation mode with the lowest power consumption next to the three-saving operation mode, and the one-saving operation mode is next to the two-saving operation mode. This is an operation mode with low power consumption. The rapid operation mode is an operation mode in which energy saving is ignored, and has the largest power consumption. These operation modes are provided to be selectable by a user of the refrigeration apparatus 10.

【0020】図4に示す各運転モードは、外気温度と圧
縮機11の吸込側冷媒温度との温度差ΔTに対応して定
められた圧縮機11の回転速度が、外気温度を基準に、
上記温度差ΔTごとに配列されたものである。
In each operation mode shown in FIG. 4, the rotation speed of the compressor 11 determined in accordance with the temperature difference ΔT between the outside air temperature and the suction-side refrigerant temperature of the compressor 11 is based on the outside air temperature.
These are arranged for each of the temperature differences ΔT.

【0021】つまり、外気温度が超高温領域(35℃
〜、例えば40℃)、高温領域(25〜34℃、例えば
30)、中温領域(10〜24℃、例えば15℃)及び
低温領域(〜9℃、例えば5℃)の各領域において、吸
込冷媒温度との温度差ΔTを算出する。
That is, when the outside air temperature is in an extremely high temperature range (35 ° C.)
, For example, 40 ° C.), a high temperature region (25 to 34 ° C., for example, 30), a medium temperature region (10 to 24 ° C., for example, 15 ° C.), and a low temperature region (領域 9 ° C., for example, 5 ° C.). The temperature difference ΔT from the temperature is calculated.

【0022】省1運転モードにおいて、上記温度差ΔT
が21℃以上のときには、冷凍負荷が小さく圧縮機11
を高速回転させても消費電力が少ないので、圧縮機11
を高速回転させるべく、インバータ12から圧縮機11
へ出力される運転周波数が制御装置19により制御され
る。また、上記温度差ΔTが10℃以下のときには、冷
凍負荷が大きく圧縮機11を高速回転させると消費電力
が過大となるので、圧縮機11を中速又は低速回転させ
るべく、インバータ12から圧縮機11へ出力される運
転周波数が制御装置19により制御されて、消費電力の
削減が図られる。更に、上記温度差ΔTが10〜21℃
のときには、冷凍負荷が中程度であり、圧縮機11を高
速回転させて消費電力が過大となることを避けるため
に、圧縮機11を中速回転とすべく、インバータ12か
ら圧縮機11へ出力される回転周波数が制御装置19に
より制御されて、消費電力の削減が図られる。
In the first operation mode, the temperature difference ΔT
Is higher than 21 ° C., the refrigeration load is small and the compressor 11
Power consumption is small even when the compressor is rotated at high speed.
To rotate the compressor 11
The operating frequency output to the controller is controlled by the controller 19. When the temperature difference ΔT is equal to or less than 10 ° C., the refrigeration load is large, and if the compressor 11 is rotated at a high speed, the power consumption becomes excessive. The operating frequency output to 11 is controlled by the control device 19 to reduce power consumption. Further, the temperature difference ΔT is 10 to 21 ° C.
In the case of, the refrigeration load is medium, and in order to prevent the compressor 11 from rotating at a high speed by rotating the compressor 11 at a high speed, the output from the inverter 12 to the compressor 11 is set so that the compressor 11 is rotated at a medium speed. The rotation frequency to be controlled is controlled by the control device 19 to reduce power consumption.

【0023】省3運転モードでは、消費電力を削減する
ことが最も優先されるため、外気温度のすべての領域に
おいて、圧縮機11がすべて低速回転となるように、イ
ンバータ12から圧縮機11へ出力される運転周波数が
制御装置19により制御されて、消費電力の削減が図ら
れる。
In the three-save operation mode, reduction of power consumption is given the highest priority. Therefore, in all regions of the outside air temperature, the output from the inverter 12 to the compressor 11 is set so that the compressor 11 rotates at a low speed. The operating frequency to be performed is controlled by the control device 19 to reduce power consumption.

【0024】また、同様の理由で、省2運転モードの場
合には、外気温度の低温領域を除く各領域で、圧縮機1
1が中速回転となるように、インバータ12から圧縮機
11へ出力される運転周波数が制御装置19により制御
されて、消費電力の削減が図られる。ただし、外気温度
が低温領域にある場合には、冷凍能力が殆ど必要でない
ので、圧縮機11が低速回転となるように、インバータ
12から圧縮機11へ出力される運転周波数が制御装置
19により制御されて、消費電力の削減が図られる。
For the same reason, in the case of the two-save operation mode, the compressor 1 does not operate in each region except the low outside air temperature region.
The operating frequency output from the inverter 12 to the compressor 11 is controlled by the control device 19 so that 1 rotates at the medium speed, thereby reducing power consumption. However, when the outside air temperature is in a low temperature range, the refrigeration capacity is hardly needed, and the operating frequency output from the inverter 12 to the compressor 11 is controlled by the controller 19 so that the compressor 11 rotates at low speed. As a result, power consumption is reduced.

【0025】更に、急速運転モードでは、消費電力の削
減を無視して急速に冷却することを優先するので、外気
温度の超高温領域及び高温領域で、圧縮機11が高速回
転となるように、インバータ12から圧縮機11へ出力
される運転周波数が制御装置19により制御される。外
気温度が低温領域及び中温領域にある場合には、冷凍能
力がそれほど又は殆ど必要とならないので、圧縮機11
が中速回転となるように、インバータ12から圧縮機1
1へ出力される運転周波数が制御装置19により制御さ
れて、消費電力の削減が図られる。
Further, in the rapid operation mode, priority is given to rapid cooling ignoring the reduction in power consumption, so that the compressor 11 rotates at a high speed in an ultra-high temperature region and a high temperature region of the outside air temperature. The operating frequency output from the inverter 12 to the compressor 11 is controlled by the control device 19. When the outside air temperature is in the low temperature range and the medium temperature range, the refrigeration capacity is not so much or almost not necessary.
Compressor 1 from inverter 12 so that
The operating frequency output to 1 is controlled by the control device 19 to reduce power consumption.

【0026】外気温度と圧縮機11の吸込側冷媒温度と
の具体的検出値に基づく圧縮機11の回転数の設定を、
各運転モードについて示した一例を図5に示す。
The setting of the number of revolutions of the compressor 11 based on a concrete detection value of the outside air temperature and the temperature of the refrigerant on the suction side of the compressor 11
One example shown for each operation mode is shown in FIG.

【0027】ところで、ショーケースなどの庫内温度
は、図2に示すように、冷凍装置10の運転開始後庫内
が冷却されて下降し、設定温度t1(サーモーオフ温
度)に到達したときに、運転待機状態(サーモオフ)に
入って熱リークにより徐々に上昇し、設定温度t2(サ
ーモオン温度)に到達すると、再び運転状態に入って下
降する。通常、上述の制御が制御装置19により繰り返
されて、ショーケース等の庫内はほぼ一定幅の温度に調
整される。この図2において、実線Aは圧縮機11が高
速回転である場合、実線Bは圧縮機11が中速回転であ
る場合、実線Cは圧縮機11が低速回転である場合をそ
れぞれ示す。
By the way, as shown in FIG. 2, when the inside of the refrigerator such as a showcase is cooled after the operation of the refrigeration system 10 is started, and reaches a set temperature t1 (thermo-off temperature), It enters the operation standby state (thermo-off), gradually rises due to heat leak, and when it reaches the set temperature t2 (thermo-on temperature), it enters the operation state again and falls. Normally, the above-described control is repeated by the control device 19, and the inside of the refrigerator such as a showcase is adjusted to a temperature having a substantially constant width. In FIG. 2, a solid line A indicates a case where the compressor 11 is rotating at high speed, a solid line B indicates a case where the compressor 11 is rotating at medium speed, and a solid line C indicates a case where the compressor 11 is rotating at low speed.

【0028】前記制御装置19は、使用者により選択さ
れた運転モードに基づいて、圧縮機11の回転速度を変
更すべく、インバータ12から圧縮機11へ出力される
運転周波数を制御する。このとき、制御装置19は、吸
込側冷媒温度センサ21の検出値から移動平均法で連続
して算出した隣り合う先後の吸込側冷媒温度(平均値
α、β、γ…)の温度差(β−α、γ−β、…)が所定
の温度差以上となったときに、冷凍負荷に変化があった
と判定する。そしてこのとき、制御装置19は、外気温
度センサ20にて検出された外気温度と、最後に算出さ
れた吸込側冷媒温度(例えばγ)との温度差ΔTを算出
し、図4に示す運転モードテーブルにおいて、外気温度
センサ20にて検出された現時点での外気温度が属する
外気温度領域と選択された運転モードとから、上記温度
差ΔTに対応する圧縮機11の回転速度を選定する。制
御装置19は、この選定された回転速度で圧縮機11を
回転させるべく、インバータ12から圧縮機11へ出力
される運転周波数を変更させる。このようにして、制御
装置19は、外気温度と吸込側冷媒温度との温度差ΔT
に基づいて圧縮機11の回転速度を変更させる。
The control device 19 controls the operation frequency output from the inverter 12 to the compressor 11 to change the rotation speed of the compressor 11 based on the operation mode selected by the user. At this time, the control device 19 determines the temperature difference (β) between the adjacent preceding and succeeding suction-side refrigerant temperatures (average values α, β, γ...) Continuously calculated by the moving average method from the detection values of the suction-side refrigerant temperature sensor 21. −α, γ−β,...) Are equal to or greater than the predetermined temperature difference, it is determined that the refrigeration load has changed. At this time, the control device 19 calculates a temperature difference ΔT between the outside air temperature detected by the outside air temperature sensor 20 and the last calculated suction side refrigerant temperature (for example, γ), and the operation mode shown in FIG. In the table, the rotation speed of the compressor 11 corresponding to the temperature difference ΔT is selected from the outside air temperature range to which the current outside air temperature detected by the outside air temperature sensor 20 belongs and the selected operation mode. The control device 19 changes the operating frequency output from the inverter 12 to the compressor 11 so as to rotate the compressor 11 at the selected rotation speed. Thus, the control device 19 determines the temperature difference ΔT between the outside air temperature and the suction side refrigerant temperature.
The rotation speed of the compressor 11 is changed based on the above.

【0029】例えば、使用者により省1運転モードが選
択されていたとき、外気温度が超高温領域にあれば、運
転当初には冷凍負荷が大きく、外気温度と吸込冷媒温度
との温度差ΔTが20℃と小さいので、制御装置19は
圧縮機11を中速回転で運転させて消費電力の上昇を抑
え、冷凍負荷が小さくなった段階、つまり、外気温度と
吸込冷媒温度との温度差ΔTが25℃以上となったとき
に圧縮機11を高速回転させる。この制御により実現さ
れる庫内温度の変化が、図3に示される。
For example, when the low-operation mode is selected by the user, if the outside air temperature is in the ultra-high temperature range, the refrigeration load is large at the beginning of the operation, and the temperature difference ΔT between the outside air temperature and the suction refrigerant temperature is reduced. Since the temperature is as small as 20 ° C., the controller 19 operates the compressor 11 at a medium speed to suppress an increase in power consumption, and when the refrigeration load is reduced, that is, the temperature difference ΔT between the outside air temperature and the suction refrigerant temperature is reduced. When the temperature reaches 25 ° C. or higher, the compressor 11 is rotated at a high speed. FIG. 3 shows a change in the internal temperature realized by this control.

【0030】上述の省1運転モードにおける圧縮機11
の回転速度制御は、冷凍装置10の起動当初には、コン
デンサ13及びエバポレータ15のそれぞれの入口側と
出口側との冷媒圧力が同一となっておらず、圧力バラン
スが良好に維持されていないので、冷凍装置10の起動
当初圧縮機11を中速回転とし、その後、冷凍装置10
を流れる冷媒の圧力バランスが良好に確保された段階
で、圧縮機11を高速回転とすればよいという技術的背
景からも肯定できる対応である。
Compressor 11 in the above-mentioned one-save operation mode
Is that the refrigerant pressures on the inlet side and the outlet side of the condenser 13 and the evaporator 15 are not the same at the beginning of the refrigerating apparatus 10, and the pressure balance is not maintained well. In the initial state of the refrigeration apparatus 10, the compressor 11 is rotated at a medium speed.
This is an affirmative response from the technical background that the compressor 11 should be rotated at a high speed when the pressure balance of the refrigerant flowing through the compressor is sufficiently ensured.

【0031】上記実施の形態によれば、次の効果及び
を奏する。
According to the above embodiment, the following effects and advantages can be obtained.

【0032】制御装置19が、冷凍負荷を判定可能な
外気温度と圧縮機11の吸込側冷媒温度との温度差ΔT
に基づいて圧縮機11の回転速度を変更させることか
ら、冷凍負荷を判定可能な庫内温度に基づいて圧縮機1
1の回転速度を変更する場合に比べ、冷凍負荷を正確に
判定できる。この結果、この冷凍負荷に対応して設定さ
れる圧縮機11の回転速度が適正となり、電力の過剰消
費を抑制できるので、消費電力を削減して省エネルギー
を実現できる。
The temperature difference ΔT between the outside air temperature at which the refrigeration load can be determined and the temperature of the refrigerant on the suction side of the compressor 11 is determined by the control device 19.
, The rotational speed of the compressor 11 is changed on the basis of the temperature of the compressor 1 based on the internal temperature at which the refrigeration load can be determined.
The refrigeration load can be determined more accurately than in the case where the rotation speed is changed. As a result, the rotational speed of the compressor 11 set corresponding to the refrigeration load becomes appropriate, and excessive consumption of electric power can be suppressed, so that power consumption can be reduced and energy saving can be realized.

【0033】エバポレータ15を収容したショーケー
ス等が頻繁に開閉されて、その都度冷凍負荷が変動して
も、圧縮機11の吸込側冷媒温度の検出値をそのまま用
いず、その検出値を移動平均法で算出した値α、β、γ
…を圧縮機11の吸込側冷媒温度としているので、圧縮
機11の吸込側冷媒温度と外気温度との温度差ΔTに基
づき決定される圧縮機11の回転速度が頻繁に変更され
ず、制御の安定性を確保できる。
Even if the showcase or the like accommodating the evaporator 15 is frequently opened and closed and the refrigeration load fluctuates each time, the detected value of the suction-side refrigerant temperature of the compressor 11 is not used as it is, and the detected value is moved to the moving average. Α, β, γ
... is the suction-side refrigerant temperature of the compressor 11, the rotation speed of the compressor 11, which is determined based on the temperature difference ΔT between the suction-side refrigerant temperature of the compressor 11 and the outside air temperature, is not frequently changed. Stability can be ensured.

【0034】以上、一実施の形態に基づいて本発明を説
明したが、本発明はこれに限定されるものではない。例
えば、上記圧縮機11の回転速度制御はインバータ12
を用いて実施するものを述べたが、タップ切換によるも
のでもよい。
Although the present invention has been described based on one embodiment, the present invention is not limited to this. For example, the rotation speed of the compressor 11 is controlled by the inverter 12.
Has been described, but tapping may be used.

【0035】[0035]

【発明の効果】以上のように、本発明に係る冷凍装置に
よれば、冷凍負荷を判定可能な外気温度と圧縮機の吸込
側冷媒温度との温度差に基づいて圧縮機の回転速度を変
更させることから、冷凍負荷を正確に判定でき、消費電
力を削減して省エネルギーを実現することができる。
As described above, according to the refrigeration system of the present invention, the rotation speed of the compressor is changed based on the temperature difference between the outside air temperature at which the refrigeration load can be determined and the temperature of the suction side refrigerant of the compressor. As a result, the refrigeration load can be accurately determined, and the power consumption can be reduced to realize energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る冷凍装置の一実施の形態を示す冷
媒回路図である。
FIG. 1 is a refrigerant circuit diagram showing an embodiment of a refrigeration apparatus according to the present invention.

【図2】図1の圧縮機の回転速度と庫内温度の経時的変
化との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the rotational speed of the compressor of FIG.

【図3】図4の省1運転モードにおいて外気温度が超高
温領域にある時の、圧縮機の回転速度と庫内温度の経時
的変化の一例を示すグラフである。
3 is a graph showing an example of a change over time of a rotation speed of a compressor and a temperature in a refrigerator when an outside air temperature is in an ultra-high temperature range in the 1-saving operation mode of FIG. 4;

【図4】図1の記憶装置に格納された運転モードテーブ
ルを示す図表である。
FIG. 4 is a table showing an operation mode table stored in the storage device of FIG. 1;

【図5】図4の運転モードテーブルにより実行される各
運転モードにおける圧縮機の回転数を示す具体例の図表
である。
FIG. 5 is a table of a specific example showing the number of revolutions of the compressor in each operation mode executed by the operation mode table of FIG. 4;

【符号の説明】[Explanation of symbols]

10 冷凍装置 11 圧縮機 12 インバータ 13 コンデンサ(凝縮器) 14 キャピラリチューブ(減圧装置) 15 エバポレータ(蒸発器) 19 制御装置 20 外気温度センサ 21 吸込側冷媒温度センサ 22 記憶装置 DESCRIPTION OF SYMBOLS 10 Refrigerator 11 Compressor 12 Inverter 13 Condenser (Condenser) 14 Capillary tube (Decompression device) 15 Evaporator (Evaporator) 19 Control device 20 Outside air temperature sensor 21 Suction side refrigerant temperature sensor 22 Storage device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転速度可変型の圧縮機、凝縮器、減圧
装置及び蒸発器を備え、上記圧縮機が制御装置により制
御される冷凍装置において、 上記制御装置は、冷凍負荷を判定可能な、外気温度と上
記圧縮機の吸込側冷媒温度に基づいて、上記圧縮機の回
転速度を変更させることを特徴とする冷凍装置。
1. A refrigeration apparatus comprising a variable-speed compressor, a condenser, a decompression device, and an evaporator, wherein the compressor is controlled by a control device, wherein the control device can determine a refrigeration load. A refrigeration apparatus characterized by changing a rotation speed of the compressor based on an outside air temperature and a suction-side refrigerant temperature of the compressor.
【請求項2】 上記制御装置には、複数種類の運転モー
ドが格納された記憶装置が接続され、 上記運転モードは、外気温度と圧縮機の吸込側冷媒温度
との温度差に対応して定められた上記圧縮機の回転速度
が、上記外気温度を基準に、それぞれの上記温度差ごと
に配列されたものであり、 上記制御装置は、上記外気温度と上記圧縮機の吸込側冷
媒温度とに基づき、上述の各運転モードから上記圧縮機
の回転速度を選定して、上記圧縮機の回転速度を変更さ
せることを特徴とする請求項1に記載の冷凍装置。
2. A storage device in which a plurality of types of operation modes are stored is connected to the control device, wherein the operation mode is determined in accordance with a temperature difference between an outside air temperature and a suction-side refrigerant temperature of a compressor. The rotation speed of the compressor is arranged for each of the temperature differences on the basis of the outside air temperature, and the control device controls the outside air temperature and the suction-side refrigerant temperature of the compressor. 2. The refrigeration apparatus according to claim 1, wherein a rotation speed of the compressor is selected from the respective operation modes and the rotation speed of the compressor is changed.
【請求項3】 上記制御装置は、圧縮機の吸込側冷媒温
度における所定時間毎の検出温度を、移動平均法を用い
て演算して平均値を求め、この平均値を上記圧縮機の吸
込側冷媒温度とすることを特徴とする請求項1又は2に
記載の冷凍装置。
3. The control device calculates an average value by calculating a detected temperature at a predetermined time at a suction side refrigerant temperature of the compressor using a moving average method, and calculates the average value on the suction side refrigerant temperature of the compressor. The refrigeration apparatus according to claim 1 or 2, wherein the temperature is a refrigerant temperature.
JP10213698A 1998-03-30 1998-03-30 Chiller Pending JPH11281172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10213698A JPH11281172A (en) 1998-03-30 1998-03-30 Chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10213698A JPH11281172A (en) 1998-03-30 1998-03-30 Chiller

Publications (1)

Publication Number Publication Date
JPH11281172A true JPH11281172A (en) 1999-10-15

Family

ID=14319361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10213698A Pending JPH11281172A (en) 1998-03-30 1998-03-30 Chiller

Country Status (1)

Country Link
JP (1) JPH11281172A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144860A (en) * 2000-11-08 2002-05-22 Mitsubishi Heavy Ind Ltd Vehicular air conditioner
JP2003172565A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Refrigerator, and method for determining odor level of refrigerator
WO2013111579A1 (en) * 2012-01-25 2013-08-01 ダイヤモンド電機株式会社 Compressor control device for cooling device
WO2019045371A1 (en) * 2017-08-28 2019-03-07 삼성전자주식회사 Refrigerator and method for controlling same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144860A (en) * 2000-11-08 2002-05-22 Mitsubishi Heavy Ind Ltd Vehicular air conditioner
JP2003172565A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Refrigerator, and method for determining odor level of refrigerator
WO2013111579A1 (en) * 2012-01-25 2013-08-01 ダイヤモンド電機株式会社 Compressor control device for cooling device
WO2019045371A1 (en) * 2017-08-28 2019-03-07 삼성전자주식회사 Refrigerator and method for controlling same
US11454436B2 (en) 2017-08-28 2022-09-27 Samsung Electronics Co., Ltd. Refrigerator having variable speed compressor and control method thereof

Similar Documents

Publication Publication Date Title
US6109048A (en) Refrigerator having a compressor with variable compression capacity
US6216478B1 (en) Operation speed change system and method for refrigerator
US10753675B2 (en) Refrigerator and method of controlling the same
JP2010078272A (en) Air-conditioning and refrigerating system
JP4584107B2 (en) Cooling storage
JP2012072920A (en) Refrigeration apparatus
JP3748098B2 (en) Refrigerator for refrigerated showcase
JP3398022B2 (en) Freezer refrigerator
JP3593474B2 (en) Refrigerator control method
JPH11281172A (en) Chiller
KR20200082221A (en) Refrigerator and method for controlling the same
JP2001056173A (en) Freezer/refrigerator
JP2006207893A (en) Cooling device
KR100207087B1 (en) Refrigerator operating control method
JPH06174316A (en) Cold water supply apparatus
JP2011153788A (en) Refrigerator
KR100208364B1 (en) Refrigerator and its control method
CN112344615B (en) Control method of refrigerator
JP3288001B2 (en) Control device for inverter-driven refrigerator
JP2010078265A (en) Cooling system
KR100234121B1 (en) Refrigerator and control method
JP2001074262A (en) Hot-water supplying device
JP2001153474A (en) Refrigerating machine
KR20040069634A (en) Method and system for controlling refrigerator driving
JPH1038440A (en) Controller for refrigerator