JP3748098B2 - Refrigerator for refrigerated showcase - Google Patents

Refrigerator for refrigerated showcase Download PDF

Info

Publication number
JP3748098B2
JP3748098B2 JP24350999A JP24350999A JP3748098B2 JP 3748098 B2 JP3748098 B2 JP 3748098B2 JP 24350999 A JP24350999 A JP 24350999A JP 24350999 A JP24350999 A JP 24350999A JP 3748098 B2 JP3748098 B2 JP 3748098B2
Authority
JP
Japan
Prior art keywords
compressor
value
showcase
load
excessive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24350999A
Other languages
Japanese (ja)
Other versions
JP2001066032A (en
Inventor
伸一 中山
修 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP24350999A priority Critical patent/JP3748098B2/en
Publication of JP2001066032A publication Critical patent/JP2001066032A/en
Application granted granted Critical
Publication of JP3748098B2 publication Critical patent/JP3748098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation

Description

【0001】
【発明の属する技術分野】
この発明は、冷蔵ショーケース(以下、単にショーケースという。)の冷却装置に関し、特に複数台のショーケースを共通の冷凍機により冷却する冷却装置に関する。
【0002】
【従来の技術】
図7は従来例を示すシステムブロック図である。図7において、ショーケース群1はショーケース1A,1B,1C…(以下、1A…などと記す)からなり、これらは店内に並設されて一つのグループをなしている。各ショーケース1A…はそれぞれ蒸発器2A…、この蒸発器2A…への冷媒の流れをオン・オフ制御するショーケース用コントローラ34A…、冷媒の流れをオン・オフする図示しない電磁弁、及びショーケース1A…の吹き出し空気の温度を測定する温度センサ14A…を備えている。ここで、ショーケース内の温度測定個所として、空気の吹き出し個所が選ばれた理由は、一つには格納商品の量の多寡によって影響されない個所であり、もう一つには制御に基づく温度変化が最も先行的に現れる個所であることによる。ショーケース1A…には共通に1台の冷凍機6が設置され、この冷凍機6は、定速回転の圧縮機9、凝縮器31、圧縮機9の吸入冷媒圧力を測定する圧力センサ7及び測定された圧力値と予め設定されたその上限値及び下限値とに基づいて、圧縮機9をオン・オフ制御する冷凍機用コントローラ12を備えている。
【0003】
蒸発器2A…は互いに並列接続され、この並列接続されたものに圧縮機9と凝縮器31とが直列接続されて、冷凍サイクルが構成される。各コントローラ34A…は、それぞれ対応するセンサ14A…からの温度信号と、予め設定されたその上限値及び下限値とに基づいて、対応する蒸発器2A…への冷媒の流れをオン・オフ制御する。冷媒は圧縮機9から凝縮器31を経た後に分流して各蒸発器2A…に流れてから圧縮機9に戻るように循環する。図7では各コントローラ34A…の制御信号を対応する蒸発器2A…の前段に入力させて、その冷媒の流れをオン・オフ制御することを示したが、詳しくは後述する図8に示す。
【0004】
図8は図7における冷凍サイクルの詳細を示すブロック図である。この冷凍サイクルは、冷凍機6に内蔵された圧縮機9及び凝縮器31と、各ショーケース1A…に内蔵された蒸発器2A…、電磁弁33A…及び膨張弁32A…とから構成される。この冷凍サイクルの制御は、ショーケース1A…においては、吹き出し空気温度の上・下限設定値と、温度センサ14A…(図7)の測定値との比較に基づき、コントローラ34A…(図7)を介して、蒸発器2A…への冷媒の流れをオン・オフすることにより行われる。つまり、温度測定値が上限設定値になると電磁弁33A…を開き(オン)、温度測定値が下限設定値になると電磁弁33A…を閉じる(オフ)ように、蒸発器2A…への冷媒の流れをオン・オフする。一方、冷凍機6においては、圧縮機9の吸入冷媒圧力の上・下限設定値と、圧力センサ7による測定値との比較に基づき、冷凍機用コントローラ12を介して、圧縮機9の運転をオン・オフ制御する。つまり、圧力測定値が上限設定値になると圧縮機9をオンし、また圧力測定値が下限設定値になるとオフする。
【0005】
図9は上記冷凍サイクルの動作を示すタイムチャートである。図9において、
(1)時点▲1▼では、温度センサ14A…(図7)によるショーケース1A…の吹き出し空気温度の測定値がいずれも設定値(下限)以下であるため、電磁弁33A…(図8)は閉じている(オフ)。このとき、圧力センサ7(図7)による吸入冷媒圧力の測定値は設定値(下限)以下であるため、圧縮機9は停止しており、吹き出し空気温度は上昇傾向にある。
(2)時点▲2▼では、ショーケース1Aの吹き出し空気温度が上昇して設定値(上限)を超えるため、電磁弁33Aが開く(オン)。それと同時に吸入冷媒圧力の測定値が設定値(上限)以上になるため、圧縮機9が運転される。その後、ショーケース1B,1Cの吹き出し空気温度が順次上昇して設定値(上限)以上になるため、電磁弁33B,33Cが開く。これにより、各ショーケース1A…の冷却が行われ、各吹き出し空気温度が下降する。
(3)時点▲3▼では、まずショーケース1Aの吹き出し空気温度が設定値未満となって、電磁弁33Aが閉状態となり、これに続いて順次、電磁弁33B,33Cが閉状態となる。
(4)時点▲4▼で、全ての電磁弁33A…が閉状態となり、蒸発器2A…と冷凍機9との間にある冷媒が冷凍機9に回収される、いわゆるポンプダウン運転が行われる。その結果、
(5)時点▲5▼で、吸入冷媒圧力の測定値が設定値(下限)未満となって圧縮機9が停止する。
【0006】
圧縮機9の運転・停止とショーケース1A…の吹き出し空気温度の時間的変化について、図10(A),(B)に示す。図10(A)では、圧縮機9が継続的に運手・停止(オン・オフ)され、同(B)では、吹き出し空気温度は設定値を中心にして上下に変動する。なお、上限・下限の各設定値の表示は省略した。
【0007】
ところで、一般に冷凍機は夏期での負荷を基準に容量の選定が行われるため、夏期以外では冷凍能力がショーケース負荷に比べて過大になる。その結果、一つには無駄な電力消費が起こって低効率運転となり、もう一つには圧縮機のオン・オフ頻度が高くなり、ショーケースにおける冷風の吹き出し温度の変動幅が大きくなるという問題がある。
【0008】
この対策として、インバータにより回転数を可変制御するようにした圧縮機(インバータ圧縮機)を用いて、ショーケース負荷に応じた冷凍能力で運転するようにした冷却装置がある。図11はそのような従来装置における圧縮機制御ブロック図である。図11において、回転数指令演算部5は冷凍機6の圧力センサ7からの圧力測定値と予め設定された圧力目標値との偏差を求め、この圧力偏差をPID演算器10により圧縮機回転数指令に変換し、冷凍機6側のインバータ8に与えて圧縮機9の回転数を変更させる。ここで、圧縮機9の回転数は、圧力測定値が圧力目標値を上回ると大きく、また下回ると小さくなるように制御される。これにより、圧縮機9の吸入冷媒圧力は、圧力センサ7を介して回転数指令演算部5にフィードバックされ、圧力目標値を目標とするネガティブ・フィードバック制御回路が形成される。
【0009】
【発明が解決しようとする課題】
上記従来装置において、冬期の夜間などの低負荷時には、「冷凍能力≫ショーケース負荷」の状態となり、下記のような効率の悪い運転状況になる。
すなわち、圧縮機が定速で運転される冷凍機の設置時には、夏期の昼間などの高負荷時にも冷却不良が発生しないように、下限圧力設定値を低めに設定する。すると、本来は圧縮機を停止させた方がよい低負荷時でも圧縮機が連続運転状態となり、無駄に電力消費をしてしまう低効率運転になる。
【0010】
また、インバータにより圧縮機が可変速運転される冷凍機においても、一般に圧縮機を連続運転させながら回転数制御をするように、冷凍機設置時に下限圧力設定値を低めに設定する。そのため、冬期の夜間など本来は圧縮機をオン・オフ運転させた方がよい低負荷条件の時にも、圧縮機が最低回転数で連続運転状態となり、無駄な電力消費をして低効率運転になる。
そこで、この発明の課題は、ショーケースの負荷条件に応じて冷凍機の圧縮機を高効率で運転できるようにすることにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、この発明は、1台又は2台以上の冷蔵ショーケースにそれぞれ設置され、ショーケース本体内所定個所の空気温度と予め設定されたその上限値及び下限値とに基づいて、電磁弁を介して冷媒の流れがオン・オフ制御される蒸発器と、この蒸発器と冷凍サイクルを構成する前記各冷蔵ショーケースに共通の冷凍機とからなり、この冷凍機の圧縮機は圧力センサにより測定された吸入冷媒圧力の測定値と予め設定されたその上限値及び下限値とに基づいてオン・オフ制御される冷蔵ショーケースの冷却装置において、前記冷蔵ショーケースの冷却負荷に対する前記冷凍機の冷凍能力の過不足(負荷バランス)を判定する手段と、この判定手段の出力に基づいて前記吸入冷媒圧力の予め設定された上限値及び下限値を調整する手段とを設けるものとする(請求項1)。
【0012】
その場合において、前記吸入冷媒圧力の設定値を通常用と、これよりもシフトアップした低負荷用の2種類設けておき、前記判定手段が冷凍能力が過剰と判断したときは、前記設定値を通常用から低負荷用に切り換えて前記圧縮機をオン・オフ制御するようにすることができる(請求項2)。
【0013】
更に、圧力センサにより測定した吸入冷媒圧力の測定値と予め設定したその目標値との偏差に基づいて、前記圧縮機の回転数を所定の範囲内で可変制御する場合には、前記判定手段の出力に基いて前記圧縮機の回転数制御範囲を調整する手段を設けることができる(請求項3)。その場合、前記判定手段が冷凍能力が過剰と判断したときは、前記回転数制御範囲の上限値を低く抑えるようにするのがよい(請求項4)。
【0014】
前記判定手段は一定時間内の前記電磁弁の運転率から、前記冷却負荷に対する冷凍能力の過不足を判定するものとすることができる(請求項5)。また、圧縮機をインバータにより可変速制御する場合には、前記判定手段は一定時間内の前記圧縮機の平均回転数から、前記冷却負荷に対する冷凍能力の過不足を判定するものとすることができる(請求項6)。
【0015】
【発明の実施の形態】
図1は定速圧縮機を用いた冷却装置における実施の形態を示すシステムブロック図、図2は負荷バランスの判定基準を示す図である。図1の配管系統は図7の従来例と同じなので、以下、制御系統の相違点について説明する。図1において、ショーケース群1の冷却負荷に対する冷凍機6の冷凍能力の過不足を判定する負荷バランス判定部35が新たに設けられ、負荷バランス判定部35は負荷率演算部36と負荷バランス指令演算部37とからなっている。ここで、負荷率演算部36は各ショーケース1A…のコントローラ34A…から出力される電磁弁の運転信号を入力し、一定時間、例えば15分ごとにその間の電磁弁運転率(一定時間に対する電磁弁のオン時間の割合)を各ショーケース1A…ごとに求める。
【0016】
負荷バランス指令演算部37は負荷率演算部36から各ショーケース1A…の電磁弁運転率を入力し、図2に示すように、電磁弁運転率が一定値、例えば40%以上のショーケース1A…が1台でもあるときは通常状態と判定し、これに対して全てのショーケース1A…が40%未満のときを冷凍能力過剰(低負荷状態)と判定して、その判定結果をコントローラ12に出力する。ここで、圧縮機9をオン・オフ制御するための圧力設定値(上・下限値)は、図2に示すように上記負荷率に応じて通常用と低負荷用の2種類が設定されている。
【0017】
そこで、コントローラ12は負荷バランス指令演算部37から入力される判定結果に応じて2種類の圧力設定値の一方を選択し、この圧力設定値に基いて圧縮機9をオン・オフ制御する。図2において圧力設定値の下限値は通常用では0kgf/cm2G 、低負荷用では0.5kgf/cm2G 、また上限値は通常用では 2.5kgf/cm2G 、低負荷用では3.0kgf/cm2G で、冷凍能力過剰時は通常時に対して上限値,下限値とも0.5kgf/cm2G だけシフトアップされている。従って、冷凍能力過剰時はシフトアップ分だけ圧縮機9が停止するタイミングが早く、また再起動するタイミングが遅くなる。その結果として、圧縮機9のオン時間が短くなり省エネが図られる。
【0018】
図3はインバータ圧縮機を用いた冷却装置における実施の形態を示すシステムブロック図、図4は負荷バランスの判定基準を示す図である。図3の場合、負荷率演算部36は回転数指令演算部5から圧縮機回転数を入力し、一定時間、例えば15分ごとにその間の平均値を求める。負荷バランス指令演算部37は負荷率演算部36から平均回転数を入力し、図4に示すように、平均回転数が一定値、例えば35Hz以上であれば通常状態と判定し、35Hz未満のときを冷凍能力過剰(低負荷状態)と判定して、その判定結果を回転数指令演算部に出力する。この場合も圧縮機9をオン・オフ制御するための圧力設定値(上・下限値)は、上記判定結果に応じて通常用と低負荷用の2種類設定されており、更にそれに対応して圧縮機の回転数制御範囲も2種類設定されている。
【0019】
図11で述べたように、回転数指令演算部5は圧力センサ7からの吸入冷媒圧力の測定値と、予め設定された圧力目標値(例えば2.0kgf/cm2G)との偏差に基いて回転数指令をインバータ8に与え、圧縮機9の回転数を所定の回転数制御範囲内、例えば30〜60Hzで変更させる。すなわち、圧力測定値が圧力目標値を上回ると回転数を大きくまた下回ると小さくするように制御する。これにより、通常の負荷状態では、吸入冷媒圧力は圧力目標値の上下の僅かな変動幅内に維持される。しかしながら、冬期の夜間など負荷が大幅に低下した状態で、例えば全部のショーケース1A…の電磁弁がオフしたとすると、圧縮機9が回転数の下限値(例えば30Hz)で運転されても吸入冷媒圧力は低下を続ける。
【0020】
そこで、圧縮機9の運転効率から吸入冷媒圧力に下限値を設定しておき、圧力測定値が下限設定値まで低下したら回転数指令演算部5は回転数0、つまり停止の指令を出す。圧縮機9が停止した後、いずれかのショーケース1A…の電磁弁がオンすると、吸入冷媒圧力は上昇を始める。そこで、その上限値を設定しておき、圧力測定値が上限設定値まで上昇したら、回転数指令演算部5は圧縮機9を再起動する指令を出す。その後の回転数制御はすでに述べた圧力測定値と圧力目標値との偏差に基づくPID演算によるが、圧縮機9の回転数の上昇には当然許容限度があり、回転数は上記下限値と上限値(例えば60Hz)の範囲内で制御される。
【0021】
さて、図3において、平均回転数が35Hz以上であり、負荷バランス指令演算部37から冷凍能力適正との判定指令が回転数指令演算部5に入力されると、回転数指令演算部5は図4に示すように、回転数制御範囲30〜60Hzでインバータ8に回転数の変更を指令する一方、オン・オフ制御は通常用の上・下限設定値で行う。これに対して、平均回転数が35Hz未満であり、冷凍能力過剰との判定指令が回転数指令演算部5に入力されると、回転数指令演算部5は0.5kgf/cm2G シフトアップされた低負荷用の上・下限設定値でオンオフ制御を行い、同時に回転数制御も上限値を例えば40Hz(図4参照)に抑制して行う。このような圧力設定値のシフトアップにより、低負荷時での圧縮機9の不必要な連続運転が回避され、また回転数制御範囲の抑制により必要以上のハイゲイン制御が回避されて運転効率が向上する。
【0022】
図5はインバータ圧縮機を用いた冷却装置において、負荷バランスを電磁弁運転率から判定する実施の形態を示すブロック図、図6は負荷バランスの判定基準を示す図である。負荷率演算部36は図1における場合と同様に電磁弁運転率を負荷バランス指令演算部37に出力し、負荷バランス指令演算部37は図2における場合と同様に、判定結果に応じて、図6の判定基準に従って圧縮機9を運転制御する。その他の構成・作用は図1及び図2の実施の形態と同じなので、それについての説明は省略する。なお、上記実施の形態では、冷凍能力過剰時に圧力設定値の上限値及び下限値の両方をシフトアップする例を示したが、いずれか一方のみシフトアップすることも可能である。
【0023】
【発明の効果】
以上の通り、この発明によれば、冷凍能力がショーケース負荷を上回った状態で、吸入冷媒圧力の設定値をシフトアップし、また圧縮機回転数範囲を抑制することにより、効率のよい冷凍サイクル運転を実現することができ、大幅な省エネが可能になる。更に、冷凍能力過剰時にも適正なゲインで冷凍サイクルを運転することができるため、ショーケース内の空気温度のばらつきを抑え、商品を従来以上に高鮮度に維持することがであきる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示すシステムブロック図である。
【図2】図1の装置における負荷バランスの判定基準を示す図である。
【図3】この発明の異なる実施の形態を示すシステムブロック図である。
【図4】図3の装置における負荷バランスの判定基準を示す図である。
【図5】この発明の更に異なる実施の形態を示すシステムブロック図である。
【図6】図5の装置における負荷バランスの判定基準を示す図である。
【図7】従来例を示すシステムブロック図である。
【図8】図7における冷凍サイクルの詳細を示すブロック図である。
【図9】図8における電磁弁と圧縮機のオン・オフ関係を示すタイムチャートである。
【図10】圧縮機のオン・オフとショーケース吹き出し空気温度の時間的変化との関係を示すタイムチャートで、(A)は圧縮機の運転状況を示し、(B)はショーケース吹き出し空気温度の変化を示す。
【図11】圧縮機の回転数制御を示す制御ブロック図である。
【符号の説明】
1 ショーケース群
1A ショーケース
1B ショーケース
1C ショーケース
2A 蒸発器
2B 蒸発器
2C 蒸発器
5 回転数指令演算部
6 冷凍機
7 圧力センサ
8 インバータ
9 圧縮機
33A 電磁弁
33B 電磁弁
33C 電磁弁
34A コントローラ
34B コントローラ
34C コントローラ
35 負荷バランス判定部
36 負荷率演算部
37 負荷バランス指令演算部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling device for a refrigerated showcase (hereinafter simply referred to as a showcase), and more particularly to a cooling device that cools a plurality of showcases with a common refrigerator.
[0002]
[Prior art]
FIG. 7 is a system block diagram showing a conventional example. In FIG. 7, the showcase group 1 is composed of showcases 1A, 1B, 1C (hereinafter referred to as 1A, etc.), which are arranged side by side in the store to form one group. Each showcase 1A ... has an evaporator 2A ..., a showcase controller 34A for turning on / off the flow of refrigerant to the evaporator 2A ..., a solenoid valve (not shown) for turning on / off the refrigerant flow, and a show Temperature sensors 14A for measuring the temperature of the air blown from the case 1A are provided. Here, the reason why the air blowing location was selected as the temperature measurement location in the showcase was partly unaffected by the amount of stored goods, and the other was temperature change based on control. Is because it is the place that appears most first. A single refrigerator 6 is installed in common in the showcase 1A. The refrigerator 6 includes a constant speed rotating compressor 9, a condenser 31, a pressure sensor 7 for measuring the refrigerant pressure sucked by the compressor 9, and Based on the measured pressure value and the preset upper limit value and lower limit value, a refrigerator controller 12 for turning on / off the compressor 9 is provided.
[0003]
The evaporators 2A are connected in parallel to each other, and the compressor 9 and the condenser 31 are connected in series to the parallel connection to constitute a refrigeration cycle. Each controller 34A ... controls on / off the flow of the refrigerant to the corresponding evaporator 2A ... based on the temperature signal from the corresponding sensor 14A ... and the preset upper limit value and lower limit value. . The refrigerant circulates from the compressor 9 after passing through the condenser 31 and then diverts to the evaporators 2A, and then returns to the compressor 9. 7 shows that the control signal of each controller 34A is input to the preceding stage of the corresponding evaporator 2A, and the flow of the refrigerant is controlled to be turned on / off. The details are shown in FIG.
[0004]
FIG. 8 is a block diagram showing details of the refrigeration cycle in FIG. This refrigeration cycle includes a compressor 9 and a condenser 31 built in the refrigerator 6, and evaporators 2A, electromagnetic valves 33A, and expansion valves 32A built in each showcase 1A. The control of this refrigeration cycle is based on a comparison between the upper and lower limit values of the blown air temperature and the measured values of the temperature sensors 14A (FIG. 7) in the showcase 1A. Then, the flow of the refrigerant to the evaporators 2A is turned on and off. That is, when the measured temperature value reaches the upper limit set value, the solenoid valves 33A are opened (ON), and when the measured temperature value reaches the lower limit set value, the solenoid valves 33A are closed (OFF). Turn the flow on and off. On the other hand, in the refrigerator 6, the operation of the compressor 9 is performed via the controller 12 for the refrigerator based on the comparison between the upper and lower set values of the suction refrigerant pressure of the compressor 9 and the measured value by the pressure sensor 7. On / off control. That is, the compressor 9 is turned on when the measured pressure value reaches the upper limit set value, and turned off when the measured pressure value reaches the lower limit set value.
[0005]
FIG. 9 is a time chart showing the operation of the refrigeration cycle. In FIG.
(1) At time point (1), the measured values of the blown air temperature of the showcase 1A ... by the temperature sensors 14A ... (Fig. 7) are all equal to or less than the set value (lower limit), so the solenoid valve 33A ... (Fig. 8) Is closed (off). At this time, since the measured value of the suction refrigerant pressure by the pressure sensor 7 (FIG. 7) is equal to or lower than the set value (lower limit), the compressor 9 is stopped and the blown air temperature tends to increase.
(2) At time point (2), the temperature of the air blown from the showcase 1A rises and exceeds the set value (upper limit), so the electromagnetic valve 33A is opened (ON). At the same time, the measured value of the suction refrigerant pressure becomes equal to or higher than the set value (upper limit), so the compressor 9 is operated. After that, the temperature of the air blown from the showcases 1B and 1C sequentially increases and becomes equal to or higher than the set value (upper limit), so that the solenoid valves 33B and 33C are opened. Thereby, each showcase 1A ... is cooled, and each blowing air temperature falls.
(3) At time {circle around (3)}, the temperature of the air blown from the showcase 1A becomes less than the set value, the electromagnetic valve 33A is closed, and subsequently, the electromagnetic valves 33B and 33C are sequentially closed.
(4) At time {circle around (4)}, all the solenoid valves 33 </ b> A are closed, and a so-called pump-down operation is performed in which the refrigerant between the evaporators 2 </ b> A and the refrigerator 9 is collected by the refrigerator 9. . as a result,
(5) At time point (5), the measured value of the suction refrigerant pressure becomes less than the set value (lower limit), and the compressor 9 stops.
[0006]
10A and 10B show the operation / stop of the compressor 9 and the temporal change in the temperature of the air blown from the showcase 1A. In FIG. 10A, the compressor 9 is continuously maneuvered / stopped (on / off), and in FIG. 10B, the blown air temperature fluctuates up and down around the set value. In addition, the display of each set value of the upper limit and the lower limit was omitted.
[0007]
By the way, since the capacity of a refrigerator is generally selected based on the load in the summer, the refrigeration capacity is excessive compared to the showcase load except in the summer. As a result, wasteful power consumption occurs on the one hand, resulting in low-efficiency operation, and on the other, the compressor is turned on and off more frequently, and the fluctuation range of the cold air blowing temperature in the showcase increases. There is.
[0008]
As a countermeasure, there is a cooling device that is operated with a refrigerating capacity corresponding to a showcase load by using a compressor (inverter compressor) whose rotation speed is variably controlled by an inverter. FIG. 11 is a compressor control block diagram in such a conventional apparatus. In FIG. 11, the rotational speed command calculation unit 5 obtains a deviation between the pressure measurement value from the pressure sensor 7 of the refrigerator 6 and a preset pressure target value, and this pressure deviation is calculated by the PID computing unit 10. This is converted into a command and given to the inverter 8 on the refrigerator 6 side to change the rotational speed of the compressor 9. Here, the rotation speed of the compressor 9 is controlled so as to increase when the measured pressure value exceeds the target pressure value and decrease when the measured pressure value decreases. As a result, the suction refrigerant pressure of the compressor 9 is fed back to the rotation speed command calculation unit 5 via the pressure sensor 7, and a negative feedback control circuit targeting the pressure target value is formed.
[0009]
[Problems to be solved by the invention]
In the above-described conventional apparatus, when the load is low, such as at night in winter, the state becomes “refrigeration capacity >> showcase load”, resulting in an inefficient operation state as described below.
That is, at the time of installing a refrigerator in which the compressor is operated at a constant speed, the lower limit pressure set value is set low so that a cooling failure does not occur even at high loads such as in the summertime. As a result, the compressor is in a continuous operation state even at a low load, which is normally better to stop the compressor, resulting in low-efficiency operation that wastes power consumption.
[0010]
Further, even in a refrigerator in which the compressor is operated at a variable speed by an inverter, the lower limit pressure set value is set to a low value at the time of installing the refrigerator so that the number of revolutions is generally controlled while the compressor is continuously operated. Therefore, even during low-load conditions, where it is better to operate the compressor on / off at night, such as during the winter, the compressor will be in a continuous operation state at the minimum number of revolutions, resulting in wasted power consumption and low-efficiency operation. Become.
Accordingly, an object of the present invention is to enable a compressor of a refrigerator to be operated with high efficiency in accordance with a load condition of a showcase.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is installed in one or more refrigerated showcases, respectively, and is based on the air temperature at a predetermined location in the showcase body and preset upper and lower limits. And an evaporator in which the flow of the refrigerant is controlled on and off via a solenoid valve, and a refrigerator common to each of the refrigerated showcases constituting the evaporator and the refrigeration cycle. Is a cooling device for a refrigerated showcase that is controlled to be turned on / off based on a measured value of the suction refrigerant pressure measured by the pressure sensor and preset upper and lower limits thereof, with respect to the cooling load of the refrigerated showcase means for determining excess or deficiency (load balancing) of the refrigeration capacity of the refrigerator, preset upper limit value and adjust the lower limit value of the suction refrigerant pressure based on the output of the determination means It shall provide a means for (claim 1).
[0012]
In that case, two types of setting values for the suction refrigerant pressure are provided, one for normal use and one for low loads shifted up from this, and when the determination means determines that the refrigerating capacity is excessive, the set value is The compressor can be switched on / off by switching from normal use to low load (Claim 2).
[0013]
Furthermore, when the rotational speed of the compressor is variably controlled within a predetermined range based on the deviation between the measured value of the suction refrigerant pressure measured by the pressure sensor and the preset target value, the determination means Means for adjusting the rotational speed control range of the compressor based on the output can be provided. In that case, when the determination means determines that the refrigerating capacity is excessive, it is preferable to keep the upper limit value of the rotation speed control range low.
[0014]
The determination means may determine whether the refrigerating capacity is excessive or insufficient with respect to the cooling load from the operating rate of the solenoid valve within a predetermined time. In addition, when the compressor is controlled at a variable speed by an inverter, the determination unit can determine whether the cooling capacity is excessive or insufficient from the average rotation speed of the compressor within a predetermined time. (Claim 6).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system block diagram showing an embodiment of a cooling apparatus using a constant speed compressor, and FIG. 2 is a diagram showing judgment criteria for load balance. Since the piping system of FIG. 1 is the same as that of the conventional example of FIG. 7, the differences between the control systems will be described below. In FIG. 1, a load balance determination unit 35 that newly determines whether the refrigerating capacity of the refrigerator 6 with respect to the cooling load of the showcase group 1 is excessive or insufficient is provided. The load balance determination unit 35 includes a load factor calculation unit 36 and a load balance command. The calculation unit 37 is included. Here, the load factor calculation unit 36 inputs the solenoid valve operation signal output from the controller 34A of each showcase 1A ..., and the solenoid valve operation rate (electromagnet for the constant time) during a certain time, for example, every 15 minutes. The ratio of the on time of the valve) is obtained for each showcase 1A.
[0016]
The load balance command calculating unit 37 inputs the solenoid valve operating rate of each showcase 1A ... from the load factor calculating unit 36, and as shown in FIG. 2, the showcase 1A having a constant solenoid valve operating rate, for example, 40% or more. When there is at least one unit, it is determined that it is in the normal state. On the other hand, when all the showcases 1A are less than 40%, it is determined that the refrigeration capacity is excessive (low load state). Output to. Here, as shown in FIG. 2, two types of pressure setting values (upper / lower limits) for controlling the on / off of the compressor 9 are set according to the load factor as shown in FIG. Yes.
[0017]
Therefore, the controller 12 selects one of the two types of pressure setting values according to the determination result input from the load balance command calculation unit 37, and controls the compressor 9 on / off based on the pressure setting value. The lower limit of the pressure set value 2 is in the normal use 0 kgf / cm 2 G, the low load 0.5 kgf / cm 2 G is for, and the upper limit value is for normal 2.5 kgf / cm 2 G For low loads, it is 3.0 kgf / cm 2 G, and when the refrigeration capacity is excessive, the upper and lower limits are both upshifted by 0.5 kgf / cm 2 G compared to normal times. Therefore, when the refrigerating capacity is excessive, the timing at which the compressor 9 stops is advanced by the amount corresponding to the upshift, and the timing at which the compressor 9 is restarted is delayed. As a result, the on-time of the compressor 9 is shortened and energy saving is achieved.
[0018]
FIG. 3 is a system block diagram showing an embodiment of a cooling device using an inverter compressor, and FIG. 4 is a diagram showing a judgment criterion for load balance. In the case of FIG. 3, the load factor calculation unit 36 inputs the compressor rotation speed from the rotation speed command calculation unit 5, and obtains an average value during a certain time, for example, every 15 minutes. The load balance command calculation unit 37 receives the average rotation number from the load factor calculation unit 36, and as shown in FIG. 4, when the average rotation number is a constant value, for example, 35 Hz or more, it is determined as a normal state, and when it is less than 35 Hz Is determined to be excessive in refrigeration capacity (low load state), and the determination result is output to the rotation speed command calculation unit. Also in this case, two types of pressure setting values (upper and lower limit values) for controlling the on / off of the compressor 9 are set according to the determination result, for normal use and for low load. Two types of compressor speed control ranges are also set.
[0019]
As described in FIG. 11, the rotational speed command calculation unit 5 is based on the deviation between the measured value of the suction refrigerant pressure from the pressure sensor 7 and a preset pressure target value (for example, 2.0 kgf / cm 2 G). Then, the rotational speed command is given to the inverter 8, and the rotational speed of the compressor 9 is changed within a predetermined rotational speed control range, for example, 30 to 60 Hz. In other words, the control is performed so that the measured pressure value is larger when the pressure value exceeds the target pressure value, and is smaller when the pressure value is smaller or smaller. Thereby, in a normal load state, the suction refrigerant pressure is maintained within a slight fluctuation range above and below the pressure target value. However, if the solenoid valves of all the showcases 1A, for example, are turned off in a state where the load is greatly reduced, such as at night in winter, even if the compressor 9 is operated at the lower limit of the rotational speed (for example, 30 Hz), suction is performed. The refrigerant pressure continues to decrease.
[0020]
Therefore, a lower limit value is set for the suction refrigerant pressure from the operation efficiency of the compressor 9, and when the measured pressure value decreases to the lower limit set value, the rotation speed command calculation unit 5 issues a rotation speed 0, that is, a stop command. When the solenoid valve of one of the showcases 1A... Is turned on after the compressor 9 is stopped, the suction refrigerant pressure starts to rise. Therefore, the upper limit value is set, and when the pressure measurement value rises to the upper limit set value, the rotation speed command calculation unit 5 issues a command to restart the compressor 9. The subsequent rotation speed control is based on the PID calculation based on the deviation between the pressure measurement value and the pressure target value already described. However, there is a permissible limit to the increase in the rotation speed of the compressor 9, and the rotation speed is the above lower limit value and upper limit value. It is controlled within a range of values (for example 60 Hz).
[0021]
Now, in FIG. 3, when the average rotation speed is 35 Hz or more and a determination command that the refrigerating capacity is appropriate is input from the load balance command calculation section 37 to the rotation speed command calculation section 5, the rotation speed command calculation section 5 As shown in FIG. 4, while the inverter 8 is instructed to change the rotational speed in the rotational speed control range of 30 to 60 Hz, the on / off control is performed with the normal upper and lower limit set values. On the other hand, when the average rotation speed is less than 35 Hz and a determination command indicating that the refrigerating capacity is excessive is input to the rotation speed command calculation section 5, the rotation speed command calculation section 5 is shifted up by 0.5 kgf / cm 2 G. On / off control is performed with the upper and lower limit set values for low load, and at the same time, the rotational speed control is also performed with the upper limit being suppressed to 40 Hz (see FIG. 4). By such an increase in the pressure set value, unnecessary continuous operation of the compressor 9 at low load is avoided, and by controlling the rotational speed control range, unnecessary high gain control is avoided and operation efficiency is improved. To do.
[0022]
FIG. 5 is a block diagram showing an embodiment in which the load balance is determined from the solenoid valve operating rate in the cooling device using the inverter compressor, and FIG. 6 is a diagram showing a judgment criterion for the load balance. The load factor calculation unit 36 outputs the solenoid valve operating rate to the load balance command calculation unit 37 in the same manner as in FIG. The operation of the compressor 9 is controlled according to the criterion of No. 6. Other configurations and operations are the same as those of the embodiment shown in FIGS. 1 and 2, and the description thereof is omitted. In the above-described embodiment, an example in which both the upper limit value and the lower limit value of the pressure set value are shifted up when the refrigeration capacity is excessive has been described. However, it is possible to shift up only one of them.
[0023]
【The invention's effect】
As described above, according to the present invention, an efficient refrigeration cycle can be achieved by shifting up the set value of the suction refrigerant pressure and suppressing the compressor rotation speed range while the refrigeration capacity exceeds the showcase load. Operation can be realized and significant energy saving is possible. Furthermore, since the refrigeration cycle can be operated with an appropriate gain even when the refrigeration capacity is excessive, it is possible to suppress variations in the air temperature in the showcase and maintain the product at a higher freshness than before.
[Brief description of the drawings]
FIG. 1 is a system block diagram showing an embodiment of the present invention.
FIG. 2 is a diagram showing a determination criterion for load balance in the apparatus of FIG. 1;
FIG. 3 is a system block diagram showing a different embodiment of the present invention.
4 is a diagram showing a determination criterion for load balance in the apparatus of FIG. 3; FIG.
FIG. 5 is a system block diagram showing still another embodiment of the present invention.
6 is a diagram showing a determination criterion for load balance in the apparatus of FIG. 5; FIG.
FIG. 7 is a system block diagram showing a conventional example.
8 is a block diagram showing details of the refrigeration cycle in FIG. 7. FIG.
9 is a time chart showing the on / off relationship between the solenoid valve and the compressor in FIG. 8. FIG.
FIGS. 10A and 10B are time charts showing the relationship between compressor on / off and temporal change in showcase blown air temperature, where FIG. 10A shows the operating state of the compressor, and FIG. 10B shows the showcase blown air temperature; Shows changes.
FIG. 11 is a control block diagram showing compressor speed control.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Showcase group 1A Showcase 1B Showcase 1C Showcase 2A Evaporator 2B Evaporator 2C Evaporator 5 Rotation speed command calculating part 6 Refrigerator 7 Pressure sensor 8 Inverter 9 Compressor 33A Electromagnetic valve 33B Electromagnetic valve 33C Electromagnetic valve 34A Controller 34B controller 34C controller 35 load balance determination unit 36 load factor calculation unit 37 load balance command calculation unit

Claims (6)

1台又は2台以上の冷蔵ショーケースにそれぞれ設置され、ショーケース本体内所定個所の空気温度と予め設定されたその上限値及び下限値とに基づいて、電磁弁を介して冷媒の流れがオン・オフ制御される蒸発器と、この蒸発器と冷凍サイクルを構成する前記各冷蔵ショーケースに共通の冷凍機とからなり、この冷凍機の圧縮機は圧力センサにより測定された吸入冷媒圧力の測定値と予め設定されたその上限値及び下限値とに基づいてオン・オフ制御される冷蔵ショーケースの冷却装置において、前記冷蔵ショーケースの冷却負荷に対する前記冷凍機の冷凍能力の過不足を判定する手段と、この判定手段の出力に基づいて前記吸入冷媒圧力の予め設定された上限値及び下限値を調整する手段とを設けたことを特徴とする冷蔵ショーケースの冷却装置。Each is installed in one or more refrigerated showcases, and the refrigerant flow is turned on via the solenoid valve based on the air temperature at a predetermined location in the showcase body and preset upper and lower limits. An evaporator controlled to be off and a refrigerator common to each of the refrigerated showcases constituting the evaporator and the refrigeration cycle. The compressor of the refrigerator measures the suction refrigerant pressure measured by a pressure sensor. In a cooling device for a refrigerated showcase that is controlled to be turned on / off based on a value and a preset upper limit value and lower limit value, it is determined whether the refrigeration capacity of the refrigerator is excessive or insufficient with respect to the cooling load of the refrigerated showcase means and, in the refrigerated showcase which is characterized in that a means for adjusting the predetermined upper limit value and the lower limit value of the suction refrigerant pressure based on the output of the determination means Retirement system. 前記吸入冷媒圧力の設定値を通常用と、これよりもシフトアップした低負荷用の2種類設けておき、前記判定手段が冷凍能力が過剰と判断したときは、前記設定値を通常負荷状態用から低負荷状態用に切り換えて前記圧縮機をオン・オフ制御するようにしたことを特徴とする請求項1記載の冷蔵ショーケースの冷却装置。There are two types of setting values for the suction refrigerant pressure, one for normal use and one for low load that is shifted up from this, and when the determination means determines that the refrigeration capacity is excessive, the set value is used for normal load conditions. The cooling device for a refrigerated showcase according to claim 1, wherein the compressor is controlled to be turned on and off by switching to a low load state. 圧力センサにより測定した吸入冷媒圧力の測定値と予め設定したその目標値との偏差に基づいて、前記圧縮機の回転数を所定の範囲内で可変制御する手段と、前記判定手段の出力に基づいて前記圧縮機の回転数制御範囲を調整する手段とを設けたことを特徴とする請求項1又は請求項2記載の冷蔵ショーケースの冷却装置。Based on the difference between the measured value of the suction refrigerant pressure measured by the pressure sensor and the preset target value, based on the output of the determination means and the means for variably controlling the rotation speed of the compressor within a predetermined range The cooling device for a refrigerated showcase according to claim 1 or 2, further comprising means for adjusting a rotation speed control range of the compressor. 前記判定手段が冷凍能力が過剰と判断したときは、前記回転数制御範囲の上限値を低く抑えるようにしたことを特徴とする請求項3記載の冷蔵ショーケースの冷却装置。4. The cooling apparatus for a refrigerated showcase according to claim 3, wherein when the determination means determines that the refrigerating capacity is excessive, the upper limit value of the rotation speed control range is kept low. 前記判定手段は一定時間内の前記電磁弁の運転率から、前記冷却負荷に対する冷凍能力の過不足を判定することを特徴とする請求項1〜請求項4のいずれかに記載の冷蔵ショーケースの冷却装置。5. The refrigerated showcase according to claim 1, wherein the determination unit determines whether the refrigeration capacity is excessive or insufficient with respect to the cooling load from an operation rate of the solenoid valve within a predetermined time. Cooling system. 前記判定手段は一定時間内の前記圧縮機の平均回転数から、前記冷却負荷に対する冷凍能力の過不足を判定することを特徴とする請求項1〜請求項4のいずれかに記載の冷蔵ショーケースの冷却装置。The refrigeration showcase according to any one of claims 1 to 4, wherein the determination unit determines whether the cooling capacity is excessive or insufficient from the average rotation speed of the compressor within a predetermined time. Cooling system.
JP24350999A 1999-08-30 1999-08-30 Refrigerator for refrigerated showcase Expired - Fee Related JP3748098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24350999A JP3748098B2 (en) 1999-08-30 1999-08-30 Refrigerator for refrigerated showcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24350999A JP3748098B2 (en) 1999-08-30 1999-08-30 Refrigerator for refrigerated showcase

Publications (2)

Publication Number Publication Date
JP2001066032A JP2001066032A (en) 2001-03-16
JP3748098B2 true JP3748098B2 (en) 2006-02-22

Family

ID=17104971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24350999A Expired - Fee Related JP3748098B2 (en) 1999-08-30 1999-08-30 Refrigerator for refrigerated showcase

Country Status (1)

Country Link
JP (1) JP3748098B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101095019B (en) * 2005-01-03 2010-05-12 阿塞里克股份有限公司 A cooling device and a control method
JP4845710B2 (en) * 2006-12-20 2011-12-28 三洋電機株式会社 Inverter refrigerator control device and power consumption system
JP2008245798A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Showcase
JP2010236729A (en) * 2009-03-30 2010-10-21 Okamura Corp Centralized control system for freezing-refrigeration facility
JP6386778B2 (en) * 2014-05-09 2018-09-05 日立ジョンソンコントロールズ空調株式会社 Refrigeration equipment
JP6634705B2 (en) * 2015-06-01 2020-01-22 富士電機株式会社 Cooling device monitoring device and cooling device monitoring method
JP6519323B2 (en) * 2015-06-02 2019-05-29 富士電機株式会社 Cooling control device and cooling control method
KR102417449B1 (en) * 2015-06-30 2022-07-07 주식회사 위니아 Cooling control method of kimchi refrigerator
JP2017150728A (en) * 2016-02-24 2017-08-31 富士電機株式会社 Cooling device
WO2021240615A1 (en) * 2020-05-25 2021-12-02 三菱電機株式会社 Refrigeration cycle device
JPWO2022195854A1 (en) * 2021-03-19 2022-09-22

Also Published As

Publication number Publication date
JP2001066032A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
US4720982A (en) Multi-type air conditioner with optimum control for each load
US11181304B2 (en) Chilling unit and temperature control system using water circulation
EP2587193B1 (en) Air conditioner
US5074120A (en) Multi-type air-conditioning system with fast hot starting for heating operation
GB2251959A (en) Multi-type air conditioner system with optimum control for gaseous flow adjustment valve and liquid expansion valve
JP3748098B2 (en) Refrigerator for refrigerated showcase
US7207184B2 (en) Method for regulating a most loaded circuit in a multi-circuit refrigeration system
JP2003083660A (en) Showcase cooler
CN112665239B (en) Water chilling unit starting method and device and water chilling unit
JP4026624B2 (en) Showcase cooling system
JP2001272149A (en) Show case cooling device
JP2000205672A (en) Refrigerating system
JP2006317050A (en) Control device for cooling and heating concurrent operation type air conditioner
JP3685298B2 (en) Refrigerator for refrigerated showcase
JPH10103834A (en) Refrigerator
JP2003254635A (en) Multi-chamber type air conditioner
JP3626517B2 (en) Air conditioner
JPH02223757A (en) Air conditioner
JP3658911B2 (en) Showcase cooling system
JPH0799287B2 (en) Air conditioner
JP3586996B2 (en) Showcase cooling system
JPS63290354A (en) Heat pump type air conditioner
JPH0379946A (en) Multi-room air conditioner
CA2941479C (en) System for managing lubricant levels in tandem compressor assemblies of an hvac system
JPH09145130A (en) Multi-room type air conditioner system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051123

R150 Certificate of patent or registration of utility model

Ref document number: 3748098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees