JPH0563701B2 - - Google Patents

Info

Publication number
JPH0563701B2
JPH0563701B2 JP61315105A JP31510586A JPH0563701B2 JP H0563701 B2 JPH0563701 B2 JP H0563701B2 JP 61315105 A JP61315105 A JP 61315105A JP 31510586 A JP31510586 A JP 31510586A JP H0563701 B2 JPH0563701 B2 JP H0563701B2
Authority
JP
Japan
Prior art keywords
pressure
capacity
signal
refrigerant
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61315105A
Other languages
Japanese (ja)
Other versions
JPS63163738A (en
Inventor
Kazuhiro Ueda
Masao Kimura
Toshiaki Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31510586A priority Critical patent/JPS63163738A/en
Publication of JPS63163738A publication Critical patent/JPS63163738A/en
Publication of JPH0563701B2 publication Critical patent/JPH0563701B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、たとえばスーパーマーケツトなど
同一場所に設置された複数台の冷蔵、冷凍シヨー
ケース群で使用される冷凍装置、すなわち負荷変
動の大きい冷凍装置において、常に最適な状態で
運転できるようにした冷凍装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to refrigeration equipment used in a group of multiple refrigeration and freezing show cases installed in the same place, such as a supermarket, that is, refrigeration equipment with large load fluctuations. This invention relates to a refrigeration system that can be operated in an optimal state at all times.

〔従来の技術〕[Conventional technology]

従来、この種の装置として第3図に示すものが
あつた。この第3図において1は並列圧縮式冷凍
装置、2は複数台のシヨーケース2a,2b,2
cの組合せで構成された冷却装置である。並列圧
縮式冷凍装置1は水冷式の凝縮器1aあるいは空
冷式凝縮器(図示せず)の下流側に接続される受
液器の上に圧縮機の定格容量比がほぼ2対1に選
定されている大容量の圧縮機1bと小容量の圧縮
機1cの2台が並列に搭載されており、かつ各圧
縮機1bと1cの冷媒吐出管1dおよび吸入管1
eが互いに並列接続されている。なお、1fは各
圧縮機1bと1cのクランク室を相互に連通させ
る均圧均油管である。
Conventionally, there has been a device of this type as shown in FIG. In FIG. 3, 1 is a parallel compression type refrigeration system, and 2 is a plurality of show cases 2a, 2b, 2.
This is a cooling device composed of a combination of c. The parallel compression type refrigeration system 1 has a compressor with a rated capacity ratio of approximately 2:1 selected above a liquid receiver connected to the downstream side of a water-cooled condenser 1a or an air-cooled condenser (not shown). Two large-capacity compressors 1b and small-capacity compressors 1c are installed in parallel, and the refrigerant discharge pipes 1d and suction pipes 1 of each compressor 1b and 1c are installed in parallel.
e are connected in parallel with each other. Note that 1f is a pressure-equalizing oil pipe that connects the crank chambers of the compressors 1b and 1c with each other.

また、5は、低圧側の冷媒圧力を検出する圧力
検出部3の出力信号と収束させようとする低圧側
の冷媒圧力を設定する圧力設定部4で設定された
冷媒圧力との圧力差に応じて上記圧縮機1bと1
cを個別に運転、停止の制御を行う制御部であ
る。
Further, 5 corresponds to the pressure difference between the output signal of the pressure detection unit 3 that detects the refrigerant pressure on the low pressure side and the refrigerant pressure set in the pressure setting unit 4 that sets the refrigerant pressure on the low pressure side to be converged. The above compressors 1b and 1
This is a control unit that individually controls the operation and stopping of the controllers c.

また、第4図に示すように、通常圧力領域は、
上記圧力設定部4によつて設定される容量アツプ
圧力値、容量ダウン圧力値、低圧カツト値の3つ
によつて、並列圧縮式冷凍装置1に容量アツプ信
号を出す容量アツプ圧力値以上の領域ニと、並列
圧縮式冷凍装置1に容量ダウン信号も容量アツプ
信号も出さない容量ダウン圧力値以上で、かつ容
量アツプ圧力値未満の領域ハと、並列圧縮式冷凍
装置1に容量ダウン信号を出す容量ダウン圧力値
未満の領域ロ、並列圧縮式冷凍装置1に停止信号
を出す低圧カツト値以下の領域イの4つに分けら
れる。
Also, as shown in Figure 4, the normal pressure region is
A region above the capacity up pressure value in which a capacity up signal is sent to the parallel compression refrigeration system 1 based on the capacity up pressure value, capacity down pressure value, and low pressure cut value set by the pressure setting section 4. (2) In a region where the pressure is above the capacity down pressure value and below the capacity up pressure value in which neither a capacity down signal nor a capacity up signal is issued to the parallel compression refrigeration system 1, a capacity down signal is issued to the parallel compression refrigeration system 1. It is divided into four regions: region (b) below the capacity down pressure value, and region (b) below the low pressure cut value that issues a stop signal to the parallel compression type refrigeration system 1.

次に動作について説明する。たとえば、冷却装
置2の冷凍負荷に対する所要の冷凍能力を得るた
めの所要能力が15である場合に、一方の圧縮機
1bの定格容量は10、他方の圧縮機1cの定格
容量は5に選定されている。
Next, the operation will be explained. For example, if the required capacity to obtain the required refrigerating capacity for the refrigerating load of the cooling device 2 is 15, the rated capacity of one compressor 1b is selected to be 10, and the rated capacity of the other compressor 1c is selected to be 5. ing.

一方、複数台のシヨーケース2a,2b,2c
からなる冷却装置2では、各シヨーケースの使用
状況によつて冷凍負荷は0から100%まで大幅に
変動する。
On the other hand, multiple show cases 2a, 2b, 2c
In the cooling device 2, the refrigeration load varies greatly from 0 to 100% depending on the usage status of each case.

ここで、冷凍負荷が少なくなると、冷凍サイク
ルの低圧側の冷媒圧力が下がり、これに伴つて圧
力検出部3から制御部5に出力される圧力検出信
号のレベルも低下する。
Here, when the refrigeration load decreases, the refrigerant pressure on the low pressure side of the refrigeration cycle decreases, and the level of the pressure detection signal output from the pressure detection section 3 to the control section 5 also decreases accordingly.

制御部5では、上記圧力検出信号を基準値(容
量アツプ圧力値あるいは容量ダウン圧力値)と比
較する比較回路を有しているため、圧力検出信号
が容量ダウン圧力値よりも低い場合、すなわち、
領域ロの場合には、制御部5は並列圧縮式冷凍装
置1の容量が低下するように制御し、冷却能力を
下げる。このようにして冷却能力が下げられる
と、冷凍サイクルの低圧側の冷媒圧力が上昇し、
領域ハに収束し、運転は安定する。
Since the control unit 5 has a comparison circuit that compares the pressure detection signal with a reference value (capacity up pressure value or capacity down pressure value), if the pressure detection signal is lower than the capacity down pressure value, that is,
In the case of region B, the control unit 5 controls the capacity of the parallel compression type refrigeration device 1 to decrease, thereby lowering the cooling capacity. When the cooling capacity is reduced in this way, the refrigerant pressure on the low pressure side of the refrigeration cycle increases,
It converges to region C, and operation becomes stable.

また、冷却負荷が高い場合には、冷凍サイクル
の低圧側の冷媒圧力が上昇し、これに伴つて圧力
検出部3から制御部5に出力される圧力検出信号
のレベルが上昇する。この結果、圧力検出信号が
容量アツプ圧力値よりも高い場合、すなわち、領
域ニの場合には、制御部5は並列圧縮式冷凍装置
1の容量がアツプするように制御し、冷却能力を
増加させる。このようにして冷却能力が増加する
と、冷凍サイクルの低圧側の冷媒圧力は低下し、
領域ハに収束し、運転は安定する。なお、圧力検
出部3が領域ニ或いは領域ロの圧力を検出した
後、制御部5より出力される容量アツプ信号、或
は容量ダウン信号が発生するまでの時間は同じで
ある。
Further, when the cooling load is high, the refrigerant pressure on the low pressure side of the refrigeration cycle increases, and the level of the pressure detection signal output from the pressure detection section 3 to the control section 5 increases accordingly. As a result, when the pressure detection signal is higher than the capacity up pressure value, that is, in the case of region 2, the control unit 5 controls the capacity of the parallel compression refrigeration system 1 to increase, thereby increasing the cooling capacity. . When the cooling capacity increases in this way, the refrigerant pressure on the low pressure side of the refrigeration cycle decreases,
It converges to region C, and operation becomes stable. It should be noted that the time from when the pressure detection section 3 detects the pressure in the region N or the region L until the capacity up signal or capacity down signal output from the control section 5 is generated is the same.

なお、冷凍サイクルの低圧側の冷媒圧力が低圧
カツト値以下すなわち領域イになつた場合、圧縮
機1b,1cは直ちに停止するようになつてい
る。
Note that when the refrigerant pressure on the low-pressure side of the refrigeration cycle falls below the low-pressure cut value, that is, falls into region A, the compressors 1b and 1c are designed to immediately stop.

したがつて、上記の冷凍負荷変動に対し、冷凍
負荷が33%以下の部分負荷時には定格容量5の
圧縮機1cのみが単独運転される。また、冷凍負
荷が33〜66%の範囲では定格容量10の圧縮機1
bのみが単独運転される。
Therefore, with respect to the above-mentioned refrigeration load fluctuation, only the compressor 1c with a rated capacity of 5 is operated independently when the refrigeration load is at a partial load of 33% or less. In addition, when the refrigeration load is in the range of 33% to 66%, compressor 1 with a rated capacity of 10
Only b is operated independently.

さらに、冷凍負荷が66〜100%になれば圧縮機
1bと1cが同時に並列運転される。この容量制
御運転の推移を示せば、第5図のようになる。
Furthermore, when the refrigeration load becomes 66 to 100%, compressors 1b and 1c are simultaneously operated in parallel. The transition of this capacity control operation is shown in FIG. 5.

すなわち、第5図に示されているように圧縮機
の定格容量比がほぼ2対1に選定されている大小
の圧縮機を選択的に運転、停止制御することによ
つて0,33,66,100%の4段階の容量制御運転
を行うことができる。
That is, as shown in Fig. 5, by selectively operating and stopping large and small compressors whose rated capacity ratio is selected to be approximately 2:1, 0, 33, 66 , 100% capacity control operation can be performed in four stages.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の冷凍装置では、冷媒
圧力が大きく変動する場合、あるいは運転開始時
および除霜後のプルダウン時等の冷媒圧力が、収
束させようとする冷媒圧力と比較して高い場合に
おいては、容量アツプ圧力設定値以上の領域ニと
容量ダウン圧力設定値以下の領域ロにおいて、そ
の圧力検出後、圧力変更のための出力信号が発生
するまでの時間が同じであり、しかも容量変更に
よる圧力変動をできるだけ押えるため、上記出力
信号が発生するまでの時間を3分以上とする必要
があるため、その時間が長く、したがつて目標冷
媒圧力に到達するまでの時間が長くかかり、被冷
却物の鮮度が保持されないという欠点があつた。
However, in the conventional refrigeration equipment described above, when the refrigerant pressure fluctuates greatly, or when the refrigerant pressure at the start of operation and during pulldown after defrosting is higher than the refrigerant pressure to be converged, In region 2 above the capacity up pressure set value and region 2 below the capacity down pressure set value, the time from detection of the pressure until the output signal for changing the pressure is generated is the same, and moreover, the pressure fluctuation due to the change in capacity is the same. In order to suppress the refrigerant pressure as much as possible, it is necessary to make the time until the above output signal is generated at least 3 minutes. Therefore, it takes a long time to reach the target refrigerant pressure, and The drawback was that it did not retain its freshness.

また、目標冷媒圧力に到達するまでの時間を短
縮するために、容量変更の出力信号が発生される
まで時間を短縮すれば、冷凍能力が大幅に変動す
るため、冷却負荷変動にうまく対応できず、目標
冷媒圧力に収束しないという問題点がある。
In addition, in order to shorten the time until the target refrigerant pressure is reached, if the time until the output signal for changing the capacity is generated is shortened, the refrigeration capacity will fluctuate significantly, making it difficult to respond well to cooling load fluctuations. , there is a problem that the refrigerant pressure does not converge to the target refrigerant pressure.

この発明は、上記のような従来の問題点を解消
するためになされたもので、圧力変動が大きい場
合あるいは運転開始時や除霜後のように冷却負荷
が大きい場合においても迅速に所定の圧力に到達
でき、消費電力の低下が図れるようにした冷凍装
置を提供することを目的とする。
This invention was made to solve the conventional problems as described above, and it is possible to quickly maintain a predetermined pressure even when there are large pressure fluctuations or when there is a large cooling load such as at the start of operation or after defrosting. It is an object of the present invention to provide a refrigeration system capable of achieving the above goals and reducing power consumption.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷凍装置は、それぞれ並列に接
続された吸入管及び吐出管を有する複数台の圧縮
機、これらの圧縮機から吐出される冷媒を凝縮液
化する凝縮器、及びこの凝縮器から送出される冷
媒を蒸発気化する冷却器が閉回路を形成するよう
に順次配管接続された冷凍回路と、この冷凍回路
の低圧側の冷媒圧力を検出し、この冷媒圧力に応
じた圧力検出信号を発生する圧力検出部と、収束
させようとする上記低圧側の冷媒圧力の収束圧力
値を設定する圧力設定部と、上記圧力検出信号が
上記収束圧力値以上か以下かを判定し、その判定
結果に基づいて、容量アツプ圧力値以上の領域、
容量アツプ信号も容量ダウン信号も出さない領
域、容量ダウン圧力未満の領域及び運転停止信号
を出す低圧カツト値以下の領域の何れの領域かの
領域判定信号を発生する領域判定部と、この領域
判定部から発生する上記領域判定信号に基づき、
上記冷凍回路の容量制御を行うための容量制御用
出力信号を発生し、かつ上記容量制御用出力信号
が発生するまでの時間を、上記領域判定信号、及
び圧力検出信号と上記収束圧力値との圧力差に応
じて、逐次変化させ、最終的に上記容量制御用出
力信号を出力する直前の上記領域判定信号、及び
上記圧力差により、制御する出力制御部と、を備
え、上記出力制御部は、上記容量アツプ圧力値以
上の領域側における容量変更のための上記容量制
御用出力信号が発生されるまでの時間を上記容量
ダウン圧力未満の領域側における容量変更のため
の上記容量制御用出力信号が発生されるまでの時
間よりも長くするものである。
A refrigeration system according to the present invention includes a plurality of compressors each having a suction pipe and a discharge pipe connected in parallel, a condenser that condenses and liquefies refrigerant discharged from these compressors, and a refrigerant sent from the condenser. The system detects the refrigerant pressure on the low-pressure side of the refrigerant circuit and the refrigerant circuit in which condensers that evaporate refrigerant are connected in sequence to form a closed circuit, and generates a pressure detection signal according to the refrigerant pressure. a pressure detection section, a pressure setting section that sets a convergence pressure value of the refrigerant pressure on the low pressure side to be converged, and a pressure detection section that determines whether the pressure detection signal is greater than or equal to the convergence pressure value, and based on the determination result. In the area above the capacity up pressure value,
an area determination unit that generates an area determination signal for any of the following areas: an area where neither a capacity up signal nor a capacity down signal is issued; an area where the capacity down pressure is less than a low pressure cut value that issues an operation stop signal; Based on the area determination signal generated from the
A capacity control output signal for controlling the capacity of the refrigeration circuit is generated, and the time until the capacity control output signal is generated is determined by comparing the area determination signal and pressure detection signal with the convergence pressure value. an output control unit that controls based on the area determination signal that is successively changed according to the pressure difference and is just before finally outputting the capacity control output signal, and the pressure difference; , the time until the output signal for capacity control for changing the capacity in the area above the capacity up pressure value is generated; the output signal for controlling capacity for changing the capacity in the area below the capacity down pressure; The period of time required for the occurrence of the

〔作用〕[Effect]

この発明における冷凍装置は、低圧側冷媒圧力
を検出し、この低圧側冷媒圧力を収束圧力値に収
束させるとき、上記圧力検出信号が収束させよう
とする上記収束圧力値以上か、以下かを領域判定
部で判定し、その領域判定信号、及び上記圧力検
出信号と上記収束圧力値との圧力差に応じて出力
制御部で冷凍機の容量制御のための出力信号が発
生され、かつこの容量制御用出力信号が発生され
るまでの時間が最終的に、上記容量制御用出力信
号が出力される直前の上記領域判定信号、及び上
記圧力検出信号と上記収束圧力値との圧力差によ
り制御され、圧力変動が大きい場合あるいは運転
開始時や除霜後のように冷却負荷が大きい場合に
おいても迅速に所定の圧力に到達でき、消費電力
の低下が図れるとともに、出力制御部は、容量ア
ツプ圧力値以上の領域側における容量変更のため
の容量制御用出力信号が発生されるまでの時間を
容量ダウン圧力未満の領域側における容量変更の
ための容量制御用出力信号が発生されるまでの時
間よりも長くしているので、過電流が流れたり、
収束するまでの間の検出冷媒圧力が収束させよう
とする冷媒圧力以上あるいは以下に変化すること
がなく、迅速に所定の圧力に到達する。
The refrigeration system according to the present invention detects a low-pressure side refrigerant pressure, and when converging the low-pressure side refrigerant pressure to a convergence pressure value, determines whether the pressure detection signal is above or below the convergence pressure value to be converged. The determination unit makes a determination, and the output control unit generates an output signal for capacity control of the refrigerator in accordance with the area determination signal and the pressure difference between the pressure detection signal and the convergence pressure value, and the output control unit generates an output signal for capacity control of the refrigerator. The time until the capacity control output signal is generated is finally controlled by the area determination signal immediately before the capacity control output signal is output, and the pressure difference between the pressure detection signal and the convergence pressure value, Even when there are large pressure fluctuations or when the cooling load is large, such as at the start of operation or after defrosting, the predetermined pressure can be quickly reached, reducing power consumption. The time it takes to generate a capacity control output signal for capacity change in the area of less than the capacity down pressure is longer than the time it takes to generate a capacity control output signal for capacity change in the area of less than the capacity down pressure. Because of this, overcurrent may flow,
The detected refrigerant pressure until convergence does not change above or below the refrigerant pressure to be converged, and quickly reaches the predetermined pressure.

〔実施例〕〔Example〕

第1図は、この発明における冷凍装置の一実施
例を示す構成図であつて、第3図と同一部分は同
一記号を用いて示してある。同図において、6は
領域判定部であり、圧力検出部3で発生させられ
た圧力検出信号が収束させようとする冷媒圧力以
上か、以下かを判定するものである。また、7は
上記領域判定部6で判定された領域に応じて、上
記並列圧縮式冷凍装置1の容量制御のための出力
信号を発生し、かつこの出力信号が発生されるま
での時間を上記領域判定信号、及び上記圧力検出
信号と収束させようとする収束圧力値との圧力差
に応じて、逐次変化させ、最終的に上記容量制御
用出力信号を出力する直前の上記領域判定信号及
び上記圧力差により、領域ロおよび領域ニのいず
れに属するかを判定し、その判定結果に基いて領
域判定信号を発生する。出力制御部7において
は、上記領域判定信号が供給された後、上記並列
圧縮式冷凍装置1の容量制御のための容量制御用
出力信号を発生するまでの時間を、上記領域判定
信号、および上記圧力検出信号と収束させようと
する冷媒圧力の収束圧力値との圧力差に応じて自
由に変化させることができる。すなわち、圧力検
出から容量変更運転に至るまでの時間を自由に変
化させることができる。たとえば、第2図に示す
ように、圧力差に応じて容量変更時間を変更する
ことができる。すなわち、圧力検出部3より出力
される圧力検出信号が領域ロに属し、その圧力検
出信号と収束させようとする冷媒圧力との圧力差
が大きい場合には、容量変更のための出力信号が
発生されるまでの時間を10秒にし、その圧力検出
信号と収束させようとする冷媒圧力との圧力差が
小さい場合には、容量変更のための出力信号が発
生されるまでの時間を20秒にすることができる。
FIG. 1 is a block diagram showing one embodiment of a refrigeration system according to the present invention, and the same parts as in FIG. 3 are indicated using the same symbols. In the figure, reference numeral 6 denotes a region determining section, which determines whether the pressure detection signal generated by the pressure detecting section 3 is above or below the refrigerant pressure to be converged. Further, 7 generates an output signal for capacity control of the parallel compression type refrigeration apparatus 1 according to the area determined by the area determining section 6, and the time period until this output signal is generated is as described above. The area determination signal and the area determination signal and the above are sequentially changed according to the pressure difference between the area determination signal and the pressure detection signal and the convergence pressure value to be converged, and are finally outputted immediately before the output signal for capacity control. Based on the pressure difference, it is determined which region B or D belongs to, and a region determination signal is generated based on the determination result. The output control section 7 calculates the time period from when the area determination signal is supplied until generating a capacity control output signal for capacity control of the parallel compression refrigeration apparatus 1 based on the area determination signal and the above. It can be freely changed according to the pressure difference between the pressure detection signal and the convergence pressure value of the refrigerant pressure to be converged. That is, the time from pressure detection to capacity change operation can be freely changed. For example, as shown in FIG. 2, the capacity change time can be changed depending on the pressure difference. That is, if the pressure detection signal output from the pressure detection unit 3 belongs to region B and the pressure difference between the pressure detection signal and the refrigerant pressure to be converged is large, an output signal for changing the capacity is generated. If the pressure difference between the pressure detection signal and the refrigerant pressure to be converged is small, the time until the output signal for changing the capacity is generated is set to 20 seconds. can do.

しかも、運転状態の冷媒圧力を常に検出し、収
束させようとする冷媒圧力と比較しているので、
その圧力差に応じて出力時間が例えば10秒、11秒
……20秒と変化し冷媒圧力を収束させる。この収
束するまでの間の圧力検出信号が収束させようと
する冷媒圧力以上に変化することがなく、迅速に
所定の圧力に到達する。所定の圧力に到達した後
は、到達したときの容量で並列圧縮式冷凍装置1
の運転を続行する。
Moreover, the refrigerant pressure in the operating state is constantly detected and compared with the refrigerant pressure to be converged.
Depending on the pressure difference, the output time changes, for example, from 10 seconds to 11 seconds to 20 seconds, converging the refrigerant pressure. Until this convergence, the pressure detection signal does not change more than the refrigerant pressure to be converged, and quickly reaches the predetermined pressure. After reaching the predetermined pressure, parallel compression refrigeration equipment 1
Continue driving.

また、圧力検出部3より出力される圧力検出信
号が領域ニに属し、その圧力検出信号と収束させ
ようとする冷媒圧力との圧力差が大きい場合に
は、容量変更のための出力信号が発生されるまで
の時間を30秒にし、その圧力検出信号と収束させ
ようとする冷媒圧力との圧力差が小さい場合に
は、容量変更のための出力信号が発生されるまで
の時間を60秒にすることができる。
In addition, if the pressure detection signal output from the pressure detection unit 3 belongs to region 2 and the pressure difference between the pressure detection signal and the refrigerant pressure to be converged is large, an output signal for changing the capacity is generated. If the pressure difference between the pressure detection signal and the refrigerant pressure to be converged is small, the time until the output signal for capacity change is generated is set to 60 seconds. can do.

しかも、運転状態の冷媒圧力を常に検出し、収
束させようとする冷媒圧力と比較しているので、
その圧力差に応じて出力時間が例えば30秒、31秒
……60秒と変化し、冷媒圧力を収束させる。この
収束するまでの間の圧力検出信号が収束させよう
とする冷媒圧力以下に変化することがなく、迅速
に所定の圧力に到達する。所定の圧力に到達した
後は到達したときの容量で並列圧縮式冷凍装置1
の運転を続行する。
Moreover, the refrigerant pressure in the operating state is constantly detected and compared with the refrigerant pressure to be converged.
Depending on the pressure difference, the output time changes, for example, from 30 seconds to 31 seconds to 60 seconds, converging the refrigerant pressure. Until this convergence, the pressure detection signal does not change below the refrigerant pressure to be converged, and quickly reaches the predetermined pressure. After reaching the predetermined pressure, parallel compression refrigeration equipment 1
Continue driving.

すなわち、冷凍負荷が大きく変動する場合、冷
凍サイクルの低圧側の冷媒圧力の変動が大きくな
り、これに伴つて圧力検出部3から出力される圧
力検出信号のレベルの変動も大きくなるが、運転
状態の冷媒圧力を常に検出し、収束させようとす
る冷媒圧力と比較し、容量アツプ側における容量
変更のための出力信号が発生されるまでの時間を
容量ダウン側における容量変更のため出力信号が
発生されるまでの時間よりも長くしているので、
並列圧縮式冷凍装置1に過電流が流れたり、この
収束するまでの間の検出冷媒圧力が収束させよう
とする冷媒圧力以上あるいは以下に変化すること
がなく、迅速に所定の圧力に到達する。
In other words, when the refrigeration load fluctuates greatly, the refrigerant pressure on the low-pressure side of the refrigeration cycle fluctuates greatly, and the level of the pressure detection signal output from the pressure detection unit 3 also fluctuates accordingly. The refrigerant pressure is constantly detected and compared with the refrigerant pressure to be converged, and the output signal is generated to change the capacity on the capacity down side. Because it is longer than the time it takes to
The predetermined pressure is quickly reached without causing an overcurrent to flow through the parallel compression type refrigeration device 1, and without causing the detected refrigerant pressure to change above or below the refrigerant pressure to be converged until convergence.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の冷凍装置は、
それぞれ並列に接続された吸入管及び吐出管を有
する複数台の圧縮機、これらの圧縮機から吐出さ
れる冷媒を凝縮液化する凝縮器、及びこの凝縮器
から送出される冷媒を蒸発気化する冷却器が閉回
路を形成するように順次配管接続された冷凍回路
と、この冷凍回路の低圧側の冷媒圧力を検出し、
この冷媒圧力に応じた圧力検出信号を発生する圧
力検出部と、収束させようとする上記低圧側の冷
媒圧力の収束圧力値を設定する圧力設定部と、上
記圧力検出信号が上記収束圧力値以上か以下かを
判定し、その判定結果に基づいて、容量アツプ圧
力値以上の領域、容量アツプ信号も容量ダウン信
号も出さない領域、容量ダウン圧力未満の領域及
び運転停止信号を出す低圧カツト値以下の領域の
何れの領域かの領域判定信号を発生する領域判定
部と、この領域判定部から発生する上記領域判定
信号に基づき、上記冷凍回路の容量制御を行うた
めの容量制御用出力信号を発生し、かつ上記容量
制御用出力信号が発生するまでの時間を、上記領
域判定信号、及び圧力検出信号と上記収束圧力値
との圧力差に応じて、逐次変化させ、最終的に上
記容量制御用出力信号を出力する直前の上記領域
判定信号、及び上記圧力差により、制御する出力
制御部と、を備え、上記出力制御部は、上記容量
アツプ圧力値以上の領域側における容量変更のた
めの上記容量制御用出力信号が発生されるまでの
時間を上記容量ダウン圧力未満の領域側における
容量変更のための上記容量制御用出力信号が発生
されるまでの時間よりも長くする構成にしたの
で、圧力変動が大きい場合、あるいは運転開始時
や除霜後のように冷却負荷が大きい場合において
も迅速に所定の圧力に到達でき、消費電力の低下
が図れるとともに被冷却物の温度が一定となり鮮
度が保持される。さらに、過電流が流れたり、収
束するまでの間の検出冷媒圧力が収束させようと
する冷媒圧力以上あるいは以下に変化することが
なく、迅速に所定の圧力に到達する。
As explained above, the refrigeration system of the present invention is
A plurality of compressors each having a suction pipe and a discharge pipe connected in parallel, a condenser that condenses and liquefies the refrigerant discharged from these compressors, and a cooler that evaporates and vaporizes the refrigerant sent out from the condenser. Detects the refrigeration circuit that is connected to the piping in order to form a closed circuit, and the refrigerant pressure on the low pressure side of this refrigeration circuit.
a pressure detection section that generates a pressure detection signal according to the refrigerant pressure; a pressure setting section that sets a convergence pressure value of the refrigerant pressure on the low pressure side to be converged; Based on the judgment result, the following areas are determined: the area above the capacity up pressure value, the area where neither the capacity up signal nor the capacity down signal is issued, the area below the capacity down pressure, and the area below the low pressure cut value where the operation stop signal is issued. an area determination unit that generates an area determination signal for which area of the area; and a capacity control output signal for controlling the capacity of the refrigeration circuit based on the area determination signal generated from the area determination unit. Then, the time until the capacity control output signal is generated is successively changed according to the area determination signal and the pressure difference between the pressure detection signal and the convergence pressure value, and finally the capacity control output signal is generated. an output control unit that performs control based on the area determination signal immediately before outputting the output signal and the pressure difference; Since the configuration is such that the time until the output signal for capacity control is generated is longer than the time until the output signal for capacity control is generated for changing the capacity in the region below the capacity down pressure, the pressure Even when there are large fluctuations or when the cooling load is large, such as at the start of operation or after defrosting, the specified pressure can be quickly reached, reducing power consumption and keeping the temperature of the cooled object constant to maintain freshness. be done. Further, the predetermined pressure is quickly reached without causing an overcurrent to flow or causing the detected refrigerant pressure until the refrigerant pressure to converge to change above or below the refrigerant pressure to be converged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による冷凍装置の一実施例を
示す構成図、第2図は、低圧側冷媒圧力と収束圧
力値との圧力差に対する容量変更時間の一例を示
す特性図、第3図は従来の冷凍装置を示す構成
図、第4図は低圧側の冷媒圧力の領域を示す図、
第5図は第3図の冷凍装置の容量制御運転の説明
図である。 これらの図において、1aは凝縮器、1b,1
cは圧縮機、2a〜2cは冷却器、9は冷凍回
路、3は圧力検出部、4は圧力設定部、6は領域
判定部、7は出力制御部である。なお、各図中同
一符号は同一または相当部分を示す。
FIG. 1 is a configuration diagram showing an embodiment of a refrigeration system according to the present invention, FIG. 2 is a characteristic diagram showing an example of capacity change time with respect to the pressure difference between the low pressure side refrigerant pressure and the convergence pressure value, and FIG. A configuration diagram showing a conventional refrigeration system, FIG. 4 is a diagram showing a region of refrigerant pressure on the low pressure side,
FIG. 5 is an explanatory diagram of the capacity control operation of the refrigeration system shown in FIG. 3. In these figures, 1a is the condenser, 1b, 1
2a to 2c are coolers, 9 is a refrigeration circuit, 3 is a pressure detection section, 4 is a pressure setting section, 6 is a region determination section, and 7 is an output control section. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 それぞれ並列に接続された吸入管及び吐出管
を有する複数台の圧縮機、これらの圧縮機から吐
出される冷媒を凝縮液化する凝縮器、及びこの凝
縮器から送出される冷媒を蒸発気化する冷却器が
閉回路を形成するように順次配管接続された冷凍
回路と、この冷凍回路の低圧側の冷媒圧力を検出
し、この冷媒圧力に応じた圧力検出信号を発生す
る圧力検出部と、収束させようとする上記低圧側
の冷媒圧力の収束圧力値を設定する圧力設定部
と、上記圧力検出信号が上記収束圧力値以上か以
下かを判定し、その判定結果に基づいて、容量ア
ツプ圧力値以上の領域、容量アツプ信号も容量ダ
ウン信号も出さない領域、容量ダウン圧力未満の
領域及び運転停止信号を出す低圧カツト値以下の
領域の何れの領域かの領域判定信号を発生する領
域判定部と、この領域判定部から発生する上記領
域判定信号に基づき、上記冷凍回路の容量制御を
行うための容量制御用出力信号を発生し、かつ上
記容量用制御出力信号が発生するまでの時間を、
上記領域判定信号、及び圧力検出信号と上記収束
圧力値との圧力差に応じて、逐次変化させ、最終
的に上記容量制御用出力信号を出力する直前の上
記領域判定信号、及び上記圧力差により、制御す
る出力制御部と、を備え、上記出力制御部は、上
記容量アツプ圧力値以上の領域側における容量変
更のための上記容量制御用出力信号が発生される
までの時間を上記容量ダウン圧力未満の領域側に
おける容量変更のための上記容量制御用出力信号
が発生されるまでの時間よりも長くすることを特
徴とする冷凍装置。
1 Multiple compressors each having a suction pipe and a discharge pipe connected in parallel, a condenser that condenses and liquefies the refrigerant discharged from these compressors, and a cooling system that evaporates and vaporizes the refrigerant sent out from the condenser. A refrigeration circuit in which the pipes are connected in sequence to form a closed circuit, a pressure detection section that detects the refrigerant pressure on the low pressure side of this refrigeration circuit and generates a pressure detection signal according to this refrigerant pressure, and A pressure setting unit that sets a convergence pressure value of the refrigerant pressure on the low pressure side to be used; and a pressure setting unit that determines whether the pressure detection signal is greater than or equal to the convergence pressure value, and based on the determination result, the capacity increase pressure value is determined to be greater than or equal to the capacity increase pressure value. an area determination unit that generates an area determination signal for any of the following areas: an area where neither a capacity up signal nor a capacity down signal is issued, an area where the capacity down pressure is below, and an area below a low pressure cut value where an operation stop signal is issued; A capacity control output signal for controlling the capacity of the refrigeration circuit is generated based on the area determination signal generated from the area determination section, and the time taken until the capacity control output signal is generated;
The area determination signal and the pressure difference are sequentially changed according to the pressure difference between the pressure detection signal and the convergence pressure value, and the area determination signal and the pressure difference immediately before the output signal for capacity control is finally output. , and an output control unit for controlling the capacity up pressure value, and the output control unit is configured to control the capacity down pressure for a period of time until the capacity control output signal is generated for changing the capacity in a region equal to or higher than the capacity up pressure value. A refrigeration system characterized in that the time is set to be longer than the time until the capacity control output signal for changing the capacity in a region of less than or equal to the above is generated.
JP31510586A 1986-12-25 1986-12-25 Refrigerator Granted JPS63163738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31510586A JPS63163738A (en) 1986-12-25 1986-12-25 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31510586A JPS63163738A (en) 1986-12-25 1986-12-25 Refrigerator

Publications (2)

Publication Number Publication Date
JPS63163738A JPS63163738A (en) 1988-07-07
JPH0563701B2 true JPH0563701B2 (en) 1993-09-13

Family

ID=18061478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31510586A Granted JPS63163738A (en) 1986-12-25 1986-12-25 Refrigerator

Country Status (1)

Country Link
JP (1) JPS63163738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155607A (en) * 1995-12-14 1997-06-17 Matsuura Kikai Seisakusho:Kk Improved tool holding device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190189A (en) * 1984-03-08 1985-09-27 Sanyo Electric Co Ltd Inverter controller of refrigerator
JPS60223964A (en) * 1984-04-20 1985-11-08 三菱電機株式会社 Refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190189A (en) * 1984-03-08 1985-09-27 Sanyo Electric Co Ltd Inverter controller of refrigerator
JPS60223964A (en) * 1984-04-20 1985-11-08 三菱電機株式会社 Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155607A (en) * 1995-12-14 1997-06-17 Matsuura Kikai Seisakusho:Kk Improved tool holding device

Also Published As

Publication number Publication date
JPS63163738A (en) 1988-07-07

Similar Documents

Publication Publication Date Title
US5265434A (en) Method and apparatus for controlling capacity of a multiple-stage cooling system
CN107735625B (en) Refrigerating machine system
JPH0563701B2 (en)
JPH06174316A (en) Cold water supply apparatus
JPH09229498A (en) Refrigeration apparatus and operation and control system of same
JP2005127654A (en) Freezer-refrigerator
JPH0756418B2 (en) Refrigeration equipment
JPH11281172A (en) Chiller
JPS62178853A (en) Refrigerator
JPS62771A (en) Refrigerator
JPH065139B2 (en) Refrigeration equipment
JPH0289962A (en) Control of number of revolution of blower in refrigerating machine of air-cooling type
JPH0784953B2 (en) Refrigeration equipment
JPH065570Y2 (en) Refrigeration equipment
JPH1038396A (en) Method of controlling freezer
KR100234121B1 (en) Refrigerator and control method
JPH04369354A (en) Refrigerator
JPS6383556A (en) Refrigeration cycle
JPS63259353A (en) Refrigerator
JPH0534026A (en) Freezing cycle device
JPS6314051A (en) Refrigerator
JPH051972U (en) Refrigeration equipment
KR100377754B1 (en) Method of Cooling Cycle
KR20000034314A (en) Method for controlling temperature of refrigerator
JPH05296618A (en) Water cooler

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term