JP2005127654A - Freezer-refrigerator - Google Patents

Freezer-refrigerator Download PDF

Info

Publication number
JP2005127654A
JP2005127654A JP2003365670A JP2003365670A JP2005127654A JP 2005127654 A JP2005127654 A JP 2005127654A JP 2003365670 A JP2003365670 A JP 2003365670A JP 2003365670 A JP2003365670 A JP 2003365670A JP 2005127654 A JP2005127654 A JP 2005127654A
Authority
JP
Japan
Prior art keywords
compressor
temperature
sensor
refrigerator
freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003365670A
Other languages
Japanese (ja)
Inventor
Haruhiko Iwai
治彦 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003365670A priority Critical patent/JP2005127654A/en
Publication of JP2005127654A publication Critical patent/JP2005127654A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of a compressor by restricting temperature rise with respect to excessive temperature rise of a discharge gas temperature of the compressor and a controller for controlling operation frequency of electric power to the compressor since, when outdoor temperature is high, the operation of the compressor just after power-on is conducted at the maximum operation frequency of the compressor despite large load on the compressor. <P>SOLUTION: A freezer-refrigerator is structured so that the operation frequency of the compressor 1 just after power-on when the outdoor temperature is high can be fixed as an operation frequency lower than the maximum operation frequency for a predetermined period of time. Whereby, reliability can be improved as load on the compressor is decreased and excessive temperature rise of the discharge gas of the compressor 1 and the controller 19 are restricted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷凍冷蔵庫に関し、複数の蒸発器を備え、切替弁が各蒸発器への冷媒の流路を交互に切り替え、各庫内を交互に冷却する冷蔵庫に関する。   The present invention relates to a refrigerator-freezer, and more particularly, to a refrigerator that includes a plurality of evaporators, and a switching valve alternately switches a flow path of a refrigerant to each evaporator, and alternately cools the interior of each refrigerator.

近年、複数の庫内に分割し、各々の庫内に蒸発器を設けて冷却する冷凍冷蔵庫が提案されている(例えば、特許文献1参照。)。   In recent years, there has been proposed a refrigerator-freezer that is divided into a plurality of compartments and provided with an evaporator in each compartment for cooling (see, for example, Patent Document 1).

以下、図面を参照しながら上記従来の冷凍冷蔵庫を説明する。   Hereinafter, the conventional refrigerator-freezer will be described with reference to the drawings.

図3は従来の冷凍冷蔵庫の冷凍サイクル構成図、図4は従来の冷凍冷蔵庫の動作時における電源電圧、切替弁動作、圧縮機運転周波数、圧縮機吐出ガス温度、制御装置の温度、冷蔵室センサーの温度、冷凍室センサーの温度のタイミングチャートである。   FIG. 3 is a refrigeration cycle configuration diagram of a conventional refrigerator-freezer, and FIG. 4 is a power supply voltage, a switching valve operation, a compressor operating frequency, a compressor discharge gas temperature, a controller temperature, and a refrigerator compartment sensor during operation of the conventional refrigerator-freezer. It is a timing chart of the temperature of this and the temperature of a freezer compartment sensor.

図3に示すように従来の冷凍冷蔵庫の制御方法の冷凍サイクルは、圧縮機1と、圧縮機1の吐出管2と、吐出管2の下流側に設けた凝縮器3と、凝縮器3の下流側の設けられた切替弁4と、冷蔵室5内に設置された冷蔵室蒸発器6と、切替弁4から分岐され冷蔵室蒸発器6と連通している冷蔵室キャピラリ7と、冷凍室8内に設置された冷凍室蒸発器9と、切替弁4から分岐され冷凍室蒸発器9と切替弁4とを連通している冷凍室キャピラリ10と、圧縮機1の吸入管11と、冷蔵室蒸発器6の下流側と冷凍室蒸発器9の下流側を接続すると同時に吸入管11に接続する接続管12と、冷蔵室5内に設置され冷蔵室5の温度を検知する冷蔵室センサー13と、冷凍室8内に設置され冷凍室8の温度を検知する冷凍室センサー14と、外気温度を検知する外気温度センサー15と、冷蔵室センサー13と冷凍室センサー14と外気温度センサー15の温度を検知し圧縮機1に電力を与えて運転周波数を制御する電子部品からなる制御装置16とから構成されている。   As shown in FIG. 3, the refrigeration cycle of the conventional refrigerator-freezer control method includes a compressor 1, a discharge pipe 2 of the compressor 1, a condenser 3 provided on the downstream side of the discharge pipe 2, and a condenser 3. A switching valve 4 provided on the downstream side, a refrigerator compartment evaporator 6 installed in the refrigerator compartment 5, a refrigerator compartment capillary 7 branched from the selector valve 4 and communicating with the refrigerator compartment evaporator 6, and a freezer compartment 8, a freezer compartment evaporator 9, a freezer compartment capillary 10 that branches from the switching valve 4 and communicates with the freezer compartment evaporator 9 and the switching valve 4, a suction pipe 11 of the compressor 1, and refrigeration. A connecting pipe 12 that connects the downstream side of the chamber evaporator 6 and the downstream side of the freezer compartment evaporator 9 and simultaneously connects to the suction pipe 11, and a refrigerator compartment sensor 13 that is installed in the refrigerator compartment 5 and detects the temperature of the refrigerator compartment 5. A freezer sensor 14 installed in the freezer 8 for detecting the temperature of the freezer 8, and the outside air temperature An outside air temperature sensor 15 to be detected, and a control device 16 composed of electronic components that detect the temperature of the refrigerator compartment sensor 13, the freezer compartment sensor 14, and the outside air temperature sensor 15 and supply power to the compressor 1 to control the operating frequency. Has been.

以上のように構成された冷凍冷蔵庫について、以下その動作を説明する。   About the refrigerator refrigerator comprised as mentioned above, the operation | movement is demonstrated below.

まず、電源投入がなされると制御装置16が外気温度センサー15と冷凍室センサー14の検知温度に応じて圧縮機1の運転周波数を決定する。圧縮機1の運転周波数は、冷凍室センサー14の検知温度が高ければ高い周波数に決定され、逆に冷凍室センサー14の検知温度が低ければ低い周波数に決定されるが運転周波数の上限は外気温度センサー15によって制限される。外気温度センサー15の検知温度が高ければ高い運転周波数に制限され、逆に外気温度センサー15の検知温度が低ければ低い運転周波数に制限される。従って、電源投入時は冷凍室8の温度が外気温度とほぼ等しく、冷凍室センサー14の検知温度は冷凍温度に比べ高いため、圧縮機1の運転周波数は外気温度センサー15の検知温度で制限される上限の運転周波数(70Hz)で運転を開始される。圧縮機1が運転を開始すると、圧縮された高温高圧のガス化した冷媒が吐出管2より吐出されて凝縮器3で液化される。切替弁4は電源投入直後には冷凍室蒸発器9側に流路が切り替えられており(矢印17)、液化した冷媒は冷凍室キャピラリ10により減圧され冷凍室蒸発器9で冷凍室8を冷却し蒸発する。(以下、切替弁4が冷凍室蒸発器9側に流路が切り替えられている状態を冷凍室冷却モードという)冷凍室蒸発器9で蒸発しガス化した冷媒は接続管12、吸入管11の順に流れて再び圧縮機1で圧縮されるという冷凍サイクルが連続的に行われる。このとき、冷凍室8の温度は徐々に低下するので冷凍室センサー14も徐々に低下するが、圧縮機1には冷凍室8の温度が高いために大きな負荷がかかり圧縮機吐出ガス温度、制御装置16の温度が上昇する。   First, when the power is turned on, the control device 16 determines the operating frequency of the compressor 1 according to the detected temperatures of the outside air temperature sensor 15 and the freezer compartment sensor 14. The operating frequency of the compressor 1 is determined to be a high frequency if the detected temperature of the freezer compartment sensor 14 is high, and conversely, if the detected temperature of the freezer compartment sensor 14 is low, the operating frequency is determined to be a low frequency. Limited by sensor 15. If the detected temperature of the outside air temperature sensor 15 is high, it is limited to a high operating frequency. Conversely, if the detected temperature of the outside temperature sensor 15 is low, it is limited to a low operating frequency. Accordingly, when the power is turned on, the temperature of the freezer compartment 8 is substantially equal to the outside air temperature, and the detected temperature of the freezer compartment sensor 14 is higher than the freezer temperature. Therefore, the operating frequency of the compressor 1 is limited by the detected temperature of the outside air temperature sensor 15. The operation is started at the upper limit operation frequency (70 Hz). When the compressor 1 starts operation, the compressed high-temperature and high-pressure gasified refrigerant is discharged from the discharge pipe 2 and liquefied by the condenser 3. The flow path of the switching valve 4 is switched to the freezer compartment evaporator 9 side immediately after the power is turned on (arrow 17). The liquefied refrigerant is decompressed by the freezer compartment capillary 10, and the freezer compartment evaporator 9 cools the freezer compartment 8. Then evaporate. (Hereinafter, the state where the switching valve 4 is switched to the freezer compartment evaporator 9 side is referred to as a freezer compartment cooling mode.) The refrigerant evaporated and gasified in the freezer compartment evaporator 9 is connected to the connection pipe 12 and the suction pipe 11. A refrigeration cycle that flows in sequence and is compressed again by the compressor 1 is continuously performed. At this time, since the temperature of the freezer compartment 8 is gradually lowered, the freezer compartment sensor 14 is also gradually lowered. However, since the temperature of the freezer compartment 8 is high, the compressor 1 is subjected to a heavy load, and the compressor discharge gas temperature and control are increased. The temperature of the device 16 increases.

次に、冷凍室冷却モードが所定の時間行われるか、もしくは冷凍室センサー14の検知温度が所定の冷却温度以下になるという何れか一方が成立したとき、切替弁4が冷蔵室蒸発器6側に流路が切り替わり(矢印18)、液化した冷媒は冷蔵室キャピラリ7により減圧され冷蔵室蒸発器6で冷蔵室5を冷却し蒸発する。(以下、切替弁4が冷蔵室蒸発器6側に流路が切り替えられている状態を冷蔵室冷却モードという)冷蔵室蒸発器6で蒸発し、ガス化した冷媒は接続管12、吸入管11の順に流れて再び圧縮機1で圧縮されるという冷凍サイクルが連続的に行われる。この時の圧縮機1の運転周波数は、冷蔵室センサー13と外気温度センサー15によって冷凍室冷却モードと同様に運転周波数が決定されるが、電源投入直後は冷蔵室5の温度が外気温度とほぼ等しく、冷蔵室センサー13の検知温度は冷蔵温度に比べ高いため、圧縮機1の運転周波数は外気温度センサー15の検知温度で制限される上限の運転周波数(70Hz)で運転が継続される。このとき、冷蔵室5の温度は徐々に低下するので冷蔵室センサー13も徐々に低下するが、圧縮機1には冷蔵室5の温度が高いために大きな負荷がかかり、圧縮機吐出ガス温度、制御装置16の温度が更に上昇する。   Next, when either the freezing chamber cooling mode is performed for a predetermined time or the detection temperature of the freezing chamber sensor 14 is equal to or lower than the predetermined cooling temperature, the switching valve 4 is on the refrigerator compartment evaporator 6 side. The flow path is switched to (arrow 18), and the liquefied refrigerant is decompressed by the refrigerating chamber capillary 7, and the refrigerating chamber evaporator 6 cools the refrigerating chamber 5 to evaporate. (Hereinafter, the state in which the flow path of the switching valve 4 is switched to the refrigerator compartment evaporator 6 side is referred to as the refrigerator compartment cooling mode.) The refrigerant evaporated and gasified in the refrigerator compartment evaporator 6 is the connection pipe 12 and the suction pipe 11. The refrigeration cycle that flows in this order and is compressed again by the compressor 1 is continuously performed. The operating frequency of the compressor 1 at this time is determined by the refrigerator compartment sensor 13 and the outside air temperature sensor 15 in the same manner as in the freezer compartment cooling mode, but immediately after the power is turned on, the temperature of the refrigerator compartment 5 is almost equal to the outside air temperature. Equally, since the temperature detected by the cold room sensor 13 is higher than the temperature at the cold room, the operation frequency of the compressor 1 continues to operate at the upper limit frequency (70 Hz) limited by the temperature detected by the outside air temperature sensor 15. At this time, since the temperature of the refrigerator compartment 5 gradually decreases, the refrigerator compartment sensor 13 also gradually decreases. However, since the temperature of the refrigerator compartment 5 is high, the compressor 1 is heavily loaded, and the compressor discharge gas temperature, The temperature of the control device 16 further increases.

更に、冷蔵室冷却モードが所定の時間行われるか、もしくは冷蔵室センサー13の検知温度が所定の冷却温度以下になるという何れか一方が成立したとき、切替弁4が再び冷凍室蒸発器9側に流路が切り替わり、外気温度センサー15と冷凍室センサー14の検知温度に応じて圧縮機1の運転周波数を決定され、冷凍室冷却モードが行われる。このとき、圧縮機吐出ガス温度、制御装置16の温度が更に上昇する。   Further, when either one of the cold room cooling mode is performed for a predetermined time or the temperature detected by the cold room sensor 13 is equal to or lower than the predetermined cooling temperature, the switching valve 4 is again connected to the freezer compartment evaporator 9 side. The flow path is switched to, the operating frequency of the compressor 1 is determined according to the detected temperatures of the outside air temperature sensor 15 and the freezer compartment sensor 14, and the freezer compartment cooling mode is performed. At this time, the compressor discharge gas temperature and the temperature of the control device 16 further increase.

以後、冷凍室冷却モードと冷蔵室冷却モードが交互に繰り返され、各モード毎に圧縮機1の運転周波数が決定され、冷凍室8と冷蔵室5は徐々に各々所定の冷却温度まで冷却される。このとき、圧縮機1にかかる負荷はある時間ピークをむかえ、圧縮機吐出ガス温度、制御装置16の温度もピークに達するが、その後、圧縮機1にかかる負荷は徐々に軽くなり、圧縮機吐出ガス温度、制御装置16の温度も徐々に低下する。   Thereafter, the freezer compartment cooling mode and the refrigerator compartment cooling mode are alternately repeated, the operation frequency of the compressor 1 is determined for each mode, and the freezer compartment 8 and the refrigerator compartment 5 are gradually cooled to a predetermined cooling temperature. . At this time, the load applied to the compressor 1 reaches a certain time peak, and the compressor discharge gas temperature and the temperature of the control device 16 also reach the peak. Thereafter, the load applied to the compressor 1 gradually decreases, and the compressor discharge The gas temperature and the temperature of the control device 16 also gradually decrease.

更に、冷凍室8と冷蔵室及びGが冷却されて、冷凍室センサー14及び冷蔵室センサー13の検知温度が共に各々所定の冷却温度以下になった時、圧縮機1の運転は停止する。しかし、圧縮機1の停止中に冷凍室センサー14、もしくは冷蔵室センサー13の検知温度が各々所定の冷却温度より高くなれば、再び圧縮機1の運転は開始される。
特開2001−91130号公報
Further, when the freezer compartment 8, the refrigerator compartment, and the G are cooled and the detected temperatures of the freezer compartment sensor 14 and the refrigerator compartment sensor 13 are both equal to or lower than a predetermined cooling temperature, the operation of the compressor 1 is stopped. However, if the detected temperature of the freezer sensor 14 or the refrigerator compartment sensor 13 becomes higher than a predetermined cooling temperature while the compressor 1 is stopped, the operation of the compressor 1 is started again.
JP 2001-91130 A

しかしながら、上記従来の構成は、圧縮機1の運転周波数が外気温度センサー15と冷凍室センサー14及び冷蔵室センサー13の検知温度に応じて決定されるため、外気温度が高い時は、電源投入直後の冷凍室α及びH冷蔵室5の庫内温度も高いため、圧縮機にかかる負荷が大きいにもかかわらず、圧縮機1の運転周波数が、最高運転周波数で運転されることにより、圧縮機1の吐出ガス温度が過度に上昇してしまい、圧縮機1の信頼性に悪影響を与えてしまうという欠点があった。更に、圧縮機1に電力を与えて運転周波数を制御する制御装置16を構成している電子部品の温度も過度に上昇してしまい、制御装置16の信頼性にも悪影響を与えてしまうという欠点があった。   However, in the above conventional configuration, the operating frequency of the compressor 1 is determined according to the detected temperatures of the outside air temperature sensor 15, the freezer compartment sensor 14 and the refrigerating compartment sensor 13, so when the outside air temperature is high, immediately after turning on the power. Since the inside temperatures of the freezer compartment α and the H refrigerator compartment 5 are also high, the compressor 1 is operated at the maximum operating frequency even though the load applied to the compressor is large. The discharge gas temperature rises excessively, and the reliability of the compressor 1 is adversely affected. Further, the temperature of the electronic components constituting the control device 16 that controls the operating frequency by supplying electric power to the compressor 1 also rises excessively, and the reliability of the control device 16 is adversely affected. was there.

本発明は従来の課題を解決するもので、圧縮機の信頼性を向上させ、更に制御装置の信頼性を向上させた冷凍冷蔵庫を提供することを目的とする。   The present invention solves the conventional problems, and an object thereof is to provide a refrigerator-freezer in which the reliability of the compressor is improved and the reliability of the control device is further improved.

本発明は、外気温度を検知する外気温度センサーと、冷蔵室の温度を検知する冷蔵室センサーと、冷凍室の温度を検知する冷凍室センサーと、冷蔵室を冷却するための冷蔵室蒸
発器と、冷凍室を冷却するための冷凍室蒸発器と、回転数可変の圧縮機と、前記蒸発器が並列に接続され圧縮機からの冷媒の流路を冷蔵室蒸発器と冷凍室蒸発器とに切り替える切替弁と、前記圧縮機に電力を供給し運転周波数を制御する制御装置とからなり、電源投入直後に前記外気温度センサーが設定温度以上を検知したとき更に、前記冷蔵室センサー及び前記冷凍室センサーの少なくとも何れか一方が設定温度以上を検知した場合に、電源投入後所定時間内では冷凍室冷却モード時の前記圧縮機の運転周波数と冷蔵室冷却モード時の前記圧縮機の運転周波数が最高運転周波数より低い運転周波数に各々別に固定されて前記圧縮機を運転する事を特徴としたものであり、前記圧縮機にかかる負荷を軽減し、前記圧縮機の吐出ガス温度の過度な上昇を抑制し前記圧縮機の信頼性を向上させ、更に前記制御装置の温度の過度な上昇を抑制し前記制御装置の信頼性を向上させる。
The present invention includes an outside air temperature sensor that detects an outside air temperature, a refrigerating room sensor that detects the temperature of the refrigerating room, a freezing room sensor that detects the temperature of the freezing room, a refrigerating room evaporator for cooling the refrigerating room, A freezer compartment evaporator for cooling the freezer compartment, a compressor with a variable number of revolutions, and the evaporator is connected in parallel, and a refrigerant flow path from the compressor is connected to the refrigerator compartment evaporator and the freezer compartment evaporator. A switching valve for switching, and a control device for supplying electric power to the compressor and controlling an operating frequency, and when the outside air temperature sensor detects a set temperature or more immediately after turning on the power, the refrigerator compartment sensor and the freezer compartment When at least one of the sensors detects a set temperature or higher, the operating frequency of the compressor in the freezer cooling mode and the operating frequency of the compressor in the freezer cooling mode are the maximum within a predetermined time after turning on the power. It is characterized in that the compressor is operated by being separately fixed at an operating frequency lower than the operating frequency, and the load on the compressor is reduced, and an excessive increase in the discharge gas temperature of the compressor is suppressed. Then, the reliability of the compressor is improved, and an excessive increase in the temperature of the control device is suppressed to improve the reliability of the control device.

以上説明したように、請求項1に記載の発明は、電源投入直後に外気温度センサーが設定温度以上を検知したとき更に、冷蔵室センサー及び冷凍室センサーの少なくとも何れか一方が設定温度以上を検知した場合、電源投入後所定時間内では冷蔵室冷却モード時の圧縮機の運転周波数と、冷蔵室冷却モード時の圧縮機の運転周波数が最高運転周波数より低い運転周波数に各々別に固定されて圧縮機を運転するので、圧縮機にかかる負荷を軽減し、圧縮機吐出ガス温度の過度の上昇を抑制し圧縮機の信頼性を向上させ、更に制御装置の温度の過度な上昇を抑制し制御装置の信頼性を向上することができる。   As described above, according to the first aspect of the present invention, when the outside air temperature sensor detects the set temperature or more immediately after the power is turned on, at least one of the refrigerator compartment sensor and the freezer compartment sensor detects the set temperature or more. In this case, the compressor operating frequency in the cold room cooling mode and the operating frequency of the compressor in the cold room cooling mode are fixed to operating frequencies lower than the maximum operating frequency within a predetermined time after turning on the power, respectively. Therefore, the load on the compressor is reduced, the excessive increase in the compressor discharge gas temperature is suppressed, the reliability of the compressor is improved, and the excessive increase in the temperature of the control device is further suppressed. Reliability can be improved.

本発明の請求項1に記載の発明は、外気温度を検知する外気温度センサーと、冷蔵室の温度を検知する冷蔵室センサーと、冷凍室の温度を検知する冷凍室センサーと、冷蔵室を冷却するための冷蔵室蒸発器と、冷凍室を冷却するための冷凍室蒸発器と、回転数可変の圧縮機と、前記蒸発器が並列に接続され圧縮機からの冷媒の流路を冷蔵室蒸発器と冷凍室蒸発器とに切り替える切替弁と、前記圧縮機に電力を供給し運転周波数を制御する制御装置とからなり、電源投入直後に前記外気温度センサーが設定温度以上を検知したとき更に、前記冷蔵室センサー及び前記冷凍室センサーの少なくとも何れか一方が設定温度以上を検知した場合に、電源投入後所定時間内では冷凍室冷却モード時の前記圧縮機の運転周波数と冷蔵室冷却モード時の前記圧縮機の運転周波数が最高運転周波数より低い運転周波数に各々別に固定されて前記圧縮機を運転する事を特徴としたものであり、前記圧縮機にかかる負荷を軽減し、前記圧縮機の吐出ガス温度の過度な上昇を抑制し前記圧縮機の信頼性を向上させ、更に前記制御装置の温度の過度な上昇を抑制し前記制御装置の信頼性を向上させる。   The invention according to claim 1 of the present invention includes an outside temperature sensor for detecting outside temperature, a refrigerating room sensor for detecting the temperature of the refrigerating room, a freezing room sensor for detecting the temperature of the freezing room, and cooling the refrigerating room. A freezer compartment evaporator for cooling, a freezer compartment evaporator for cooling the freezer compartment, a compressor having a variable rotation speed, and the evaporator connected in parallel to evaporate the refrigerant flow path from the compressor. And a control valve that supplies power to the compressor to control the operating frequency, and when the outside temperature sensor detects a set temperature or more immediately after power-on, When at least one of the refrigerator compartment sensor and the freezer compartment sensor detects a set temperature or higher, the operating frequency of the compressor in the freezer compartment cooling mode and the temperature in the refrigerator compartment cooling mode are within a predetermined time after turning on the power. Above The compressor is operated with the operating frequency of the compressor being fixed to an operating frequency lower than the maximum operating frequency, respectively, and the load applied to the compressor is reduced, and the discharge gas of the compressor is reduced. An excessive increase in temperature is suppressed to improve the reliability of the compressor, and an excessive increase in temperature of the control device is further suppressed to improve the reliability of the control device.

以下、本発明による冷凍冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、従来と同一の構成については同一符号を付して詳細な説明を省略する。   Hereinafter, embodiments of a refrigerator-freezer according to the present invention will be described with reference to the drawings. In addition, about the structure same as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

(実施の形態1)
図1は、本発明の実施の形態1による冷凍冷蔵庫の冷凍サイクル構成図、図2は同実施形態の冷凍冷蔵庫の動作時における、電源電圧、切替弁動作、圧縮機運転周波数、圧縮機吐出ガス温度、制御装置の温度、冷蔵室センサーの温度、冷凍室センサーの温度のタイミングチャートである。
(Embodiment 1)
FIG. 1 is a refrigeration cycle configuration diagram of a refrigerator-freezer according to Embodiment 1 of the present invention, and FIG. 2 is a power supply voltage, switching valve operation, compressor operating frequency, compressor discharge gas during operation of the refrigerator-freezer of the embodiment. It is a timing chart of temperature, the temperature of a control apparatus, the temperature of a refrigerator compartment sensor, and the temperature of a freezer compartment sensor.

図1において、制御装置19は冷蔵室センサー13と冷凍室センサー14と外気温度センサー15の温度を検知し圧縮機1に電力を与えて運転周波数を制御する電子部品からなる。   In FIG. 1, the control device 19 is composed of electronic components that detect the temperatures of the refrigerator compartment sensor 13, the freezer compartment sensor 14, and the outside air temperature sensor 15 and apply power to the compressor 1 to control the operating frequency.

以上のように構成された冷凍冷蔵庫について、以下その動作を説明する。   About the refrigerator refrigerator comprised as mentioned above, the operation | movement is demonstrated below.

まず、冷凍冷蔵庫に電源投入がなされると制御装置19が外気温度センサー15と冷凍室センサー14の温度を検知する。このとき検知温度が共に設定値である30℃以上の時は冷蔵室センサー13の検知温度に関係なく、圧縮機1の運転周波数は最高運転周波数(70Hz)ではなく、冷凍室冷却モードでは一段階低い運転周波数(60Hz)に固定され、冷蔵室冷却モードでは更に一段低い運転周波数(50Hz)に固定されて電源投入時から所定時間である4時間、冷凍室冷却モードと冷蔵室冷却モードが交互に繰り返される。   First, when the refrigerator is turned on, the control device 19 detects the temperatures of the outside air temperature sensor 15 and the freezer compartment sensor 14. At this time, when the detected temperature is 30 ° C. or more, which is the set value, the operating frequency of the compressor 1 is not the maximum operating frequency (70 Hz) regardless of the detected temperature of the refrigerator compartment sensor 13 and is one step in the freezer compartment cooling mode. It is fixed at a low operating frequency (60 Hz) and is further fixed at a lower operating frequency (50 Hz) in the refrigerating room cooling mode, and the freezing room cooling mode and the refrigerating room cooling mode are alternated for 4 hours, which is a predetermined time after the power is turned on Repeated.

次に、電源投入より所定の時間である4時間が経過すると、圧縮機1の運転周波数は固定されずに、外気温度センサー15と冷凍室センサー14及び冷蔵室センサー13の検知温度に応じて決定され、運転が継続される。   Next, when 4 hours, which is a predetermined time, elapses after the power is turned on, the operating frequency of the compressor 1 is not fixed and is determined according to the detected temperatures of the outside air temperature sensor 15, the freezer compartment sensor 14, and the refrigerator compartment sensor 13. The operation is continued.

しかし、電源投入より所定の時間である4時間以内に冷凍室8と冷蔵室及びGが冷却されて、冷凍室センサー14及び冷蔵室センサー13の検知温度が共に各々所定の冷却温度以下になった時、圧縮機1の運転は停止し、次回の圧縮機1の運転開始時には、運転周波数は固定されずに、外気温度センサー15と冷凍室センサー14及び冷蔵室センサー13の検知温度に応じて決定される。   However, the freezer compartment 8, the refrigerator compartment, and the G are cooled within 4 hours, which is a predetermined time after the power is turned on, and the detected temperatures of the freezer compartment sensor 14 and the refrigerator compartment sensor 13 are both equal to or lower than the prescribed cooling temperature. At the time, the operation of the compressor 1 is stopped, and the operation frequency is not fixed when the operation of the compressor 1 is started next time, and is determined according to the detected temperatures of the outside air temperature sensor 15, the freezer compartment sensor 14 and the refrigerator compartment sensor 13. Is done.

一方、冷凍冷蔵庫の電源投入時に制御装置19が外気温度センサー15と冷凍室センサー14の検知温度が共に設定値である30℃より低いときは、従来の冷凍冷蔵庫と同様に外気温度センサー15と冷凍室センサー14及び冷蔵室センサー13の検知温度に応じて圧縮機1の運転周波数が決定される。   On the other hand, when the temperature of the outside air temperature sensor 15 and the freezer compartment sensor 14 is lower than the set value 30 ° C. when the controller 19 is turned on when the refrigerator is turned on, the outside air temperature sensor 15 and the freezer The operating frequency of the compressor 1 is determined according to the temperature detected by the room sensor 14 and the cold room sensor 13.

以上のように本実施の形態の冷凍冷蔵庫は、冷蔵室センサー13と冷凍室センサー14と外気温度センサー15の温度を検知し圧縮機1に電力を与えて運転周波数を制御する電子部品からなる制御装置19とから構成され、電源投入時に外気温度センサー15と冷凍室センサー14の検知温度が設定値である30℃以上の時は、圧縮機1の運転周波数は最高運転周波数(70Hz)ではなく、冷凍室冷却モードでは一段階低い運転周波数(60Hz)に固定され、冷蔵室冷却モードでは更に一段低い運転周波数(50Hz)に固定されて電源投入時から所定時間である4時間、冷凍室冷却モードと冷蔵室冷却モードが交互に繰り返されることにより、圧縮機1にかかる負荷がピークになる時に低い運転周波数で圧縮機1を運転するので、圧縮機1にかかる負荷を軽減し、圧縮機1の吐出ガス温度の過度の上昇を抑制し圧縮機1の信頼性を向上させ、更に制御装置19の温度の過度な上昇を抑制し制御装置19の信頼性を向上させる事ができる。   As described above, the refrigerator-freezer of the present embodiment is a control composed of electronic components that detect the temperatures of the refrigerator compartment sensor 13, the freezer compartment sensor 14, and the outside air temperature sensor 15 and supply power to the compressor 1 to control the operating frequency. When the temperature detected by the outside air temperature sensor 15 and the freezer compartment sensor 14 is 30 ° C. or more which is a set value when the power is turned on, the operating frequency of the compressor 1 is not the maximum operating frequency (70 Hz), In the freezer compartment cooling mode, the operation frequency is fixed to one step lower (60 Hz), and in the refrigerating compartment cooling mode, the operation frequency is fixed to one step lower (50 Hz). Since the refrigerator compartment cooling mode is alternately repeated, the compressor 1 is operated at a low operation frequency when the load applied to the compressor 1 reaches a peak. 1, the excessive increase in the discharge gas temperature of the compressor 1 is suppressed, the reliability of the compressor 1 is improved, and the excessive increase in the temperature of the control device 19 is further suppressed, so that the reliability of the control device 19 is improved. Can be improved.

なお、本実施の形態において外気温度センサー15と冷凍室センサー14の検知温度を設定値である30℃と比較したが、外気温度センサー15と冷蔵室センサー13の検知温度でもよい。外気温度センサー15と冷蔵室センサー13の検知温度を設定値である30℃と比較しても本実施の形態と同じ効果が得られる。   In the present embodiment, the detection temperatures of the outside air temperature sensor 15 and the freezer compartment sensor 14 are compared with the set value of 30 ° C., but the detection temperatures of the outside air temperature sensor 15 and the refrigerator compartment sensor 13 may be used. Even if the detected temperatures of the outside air temperature sensor 15 and the refrigerating room sensor 13 are compared with a set value of 30 ° C., the same effect as the present embodiment can be obtained.

また、本実施の形態において外気温度センサー15と冷凍室センサー14の検知温度を比較する設定値を同一の30℃と比較したが、外気温度センサー15の検知温度と冷凍室センサー14の検知温度の各々に別の設定値を設けてもよい。外気温度センサー15の検知温度と冷凍室センサー14の検知温度の各々に別の設定値を設けることにより、圧縮機1にかかる負荷の大きさを詳細に設定する事ができるので、更に圧縮機1と制御装置19の信頼性を向上させる事ができる。   Further, in the present embodiment, the set value for comparing the detected temperature of the outside air temperature sensor 15 and the freezer compartment sensor 14 is compared with the same 30 ° C., but the detected temperature of the outside air temperature sensor 15 and the detected temperature of the freezer compartment sensor 14 are compared. Different set values may be provided for each. By providing different set values for the detected temperature of the outside air temperature sensor 15 and the detected temperature of the freezer compartment sensor 14, the magnitude of the load applied to the compressor 1 can be set in detail. As a result, the reliability of the control device 19 can be improved.

以上のように本発明は、圧縮機にかかる負荷を軽減し、圧縮機吐出ガス温度の過度の上昇を抑制し圧縮機の信頼性を向上させ、更に制御装置の温度の過度な上昇を抑制し制御装
置の信頼性を向上することができ、冷却機器の分野に幅広く適用できる。
As described above, the present invention reduces the load on the compressor, suppresses an excessive increase in the compressor discharge gas temperature, improves the reliability of the compressor, and further suppresses an excessive increase in the temperature of the control device. The reliability of the control device can be improved, and it can be widely applied to the field of cooling equipment.

本発明による冷凍冷蔵庫の実施の形態1の冷凍サイクル構成図Refrigeration cycle block diagram of Embodiment 1 of the refrigerator-freezer according to the present invention 同実施の形態の冷凍冷蔵庫の動作時における、電源電圧、切替弁動作、圧縮機運転周波数、圧縮機吐出ガス温度、制御装置の温度、冷蔵室センサーの温度、冷凍室センサーの温度のタイミングチャートTiming chart of power supply voltage, switching valve operation, compressor operating frequency, compressor discharge gas temperature, control device temperature, refrigerator temperature, freezer temperature during operation of the refrigerator-freezer of the embodiment 従来の冷凍冷蔵庫の冷凍サイクル構成図Refrigeration cycle configuration diagram of conventional refrigerator-freezer 従来の冷凍冷蔵庫の動作時における、電源電圧、切替弁動作、圧縮機運転周波数、圧縮機吐出ガス温度、制御装置の温度、冷蔵室センサーの温度、冷凍室センサーの温度のタイミングチャートTiming chart of power supply voltage, switching valve operation, compressor operating frequency, compressor discharge gas temperature, controller temperature, refrigerator temperature, and freezer temperature during conventional refrigerator-freezer operation

符号の説明Explanation of symbols

1 圧縮機
4 切替弁
6 冷蔵室冷却器
9 冷凍室冷却器
13 冷蔵室センサー
14 冷凍室センサー
15 外気温度センサー
19 制御装置
DESCRIPTION OF SYMBOLS 1 Compressor 4 Switching valve 6 Cold room cooler 9 Freezer room cooler 13 Cold room sensor 14 Freezer room sensor 15 Outside temperature sensor 19 Control apparatus

Claims (1)

外気温度を検知する外気温度センサーと、冷蔵室の温度を検知する冷蔵室センサーと、冷凍室の温度を検知する冷凍室センサーと、冷蔵室を冷却するための冷蔵室蒸発器と、冷凍室を冷却するための冷凍室蒸発器と、回転数可変の圧縮機と、前記蒸発器が並列に接続され圧縮機からの冷媒の流路を冷蔵室蒸発器と冷凍室蒸発器とに切り替える切替弁と、前記圧縮機に電力を供給し運転周波数を制御する制御装置とからなり、電源投入直後に前記外気温度センサーが設定温度以上を検知したとき更に、前記冷蔵室センサー及び前記冷凍室センサーの少なくとも何れか一方が設定温度以上を検知した場合、電源投入後所定時間内では前記切替弁が前記冷蔵室蒸発器に切り替っている時の前記圧縮機の運転周波数と前記切替弁が前記冷凍室蒸発器に切り替っている時の前記圧縮機の運転周波数が最高運転周波数より低い運転周波数に各々別に固定されて前記圧縮機を運転する事を特徴とした冷凍冷蔵庫。   An outside air temperature sensor for detecting the outside air temperature, a refrigerating room sensor for detecting the temperature of the refrigerating room, a freezing room sensor for detecting the temperature of the freezing room, a refrigerating room evaporator for cooling the refrigerating room, and a freezing room A freezer compartment evaporator for cooling, a compressor having a variable number of revolutions, a switching valve for switching the refrigerant flow path from the compressor to the refrigerator compartment evaporator and the freezer compartment evaporator, wherein the evaporator is connected in parallel. And a control device for supplying electric power to the compressor and controlling an operating frequency, and when the outside temperature sensor detects a set temperature or more immediately after turning on the power, further, at least one of the refrigerator compartment sensor and the freezer compartment sensor When either of them detects a set temperature or higher, the operating frequency of the compressor when the switching valve is switched to the refrigerator compartment evaporator within a predetermined time after power-on and the switching valve is the freezer compartment evaporator. In Refrigerator was characterized by operating the compressor operation frequency of said compressor when on behalf Ri and each being separately secured to the lower operating frequency than the maximum operating frequency.
JP2003365670A 2003-10-27 2003-10-27 Freezer-refrigerator Pending JP2005127654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365670A JP2005127654A (en) 2003-10-27 2003-10-27 Freezer-refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365670A JP2005127654A (en) 2003-10-27 2003-10-27 Freezer-refrigerator

Publications (1)

Publication Number Publication Date
JP2005127654A true JP2005127654A (en) 2005-05-19

Family

ID=34644265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365670A Pending JP2005127654A (en) 2003-10-27 2003-10-27 Freezer-refrigerator

Country Status (1)

Country Link
JP (1) JP2005127654A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8209991B2 (en) 2007-03-13 2012-07-03 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method of operating the same
CN102798261A (en) * 2012-09-04 2012-11-28 合肥美的荣事达电冰箱有限公司 Refrigerating system and refrigerating equipment having same
JP2013092340A (en) * 2011-10-27 2013-05-16 Sharp Corp Refrigerator
JP2014036951A (en) * 2012-07-18 2014-02-27 Hitachi Koki Co Ltd Centrifuge
KR101504202B1 (en) * 2008-07-22 2015-03-19 엘지전자 주식회사 Compressor and air conditioner comprising the compressor therein
US9429158B2 (en) 2008-07-22 2016-08-30 Lg Electronics Inc. Air conditioner and compressor having power and saving modes of operation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8209991B2 (en) 2007-03-13 2012-07-03 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method of operating the same
KR101504202B1 (en) * 2008-07-22 2015-03-19 엘지전자 주식회사 Compressor and air conditioner comprising the compressor therein
US9429158B2 (en) 2008-07-22 2016-08-30 Lg Electronics Inc. Air conditioner and compressor having power and saving modes of operation
JP2013092340A (en) * 2011-10-27 2013-05-16 Sharp Corp Refrigerator
JP2014036951A (en) * 2012-07-18 2014-02-27 Hitachi Koki Co Ltd Centrifuge
CN102798261A (en) * 2012-09-04 2012-11-28 合肥美的荣事达电冰箱有限公司 Refrigerating system and refrigerating equipment having same

Similar Documents

Publication Publication Date Title
EP2592372A2 (en) Refrigerator using non-azeotropic refrigerant mixture and control method thereof
US20060236707A1 (en) Refrigerator controlling method
US20100095691A1 (en) Cooling storage and method of operating the same
EP3132212B1 (en) Refrigerator and method of controlling the same
JP2015102315A (en) Refrigerator
KR20150058995A (en) Refrigerator and control method for the same
JP2005127654A (en) Freezer-refrigerator
JP2006242531A (en) Control device of refrigerator
JPH1183274A (en) Freezer/refrigerator
JP2001056173A (en) Freezer/refrigerator
JP5261106B2 (en) Cooling system
KR100516636B1 (en) Method and system for controlling refrigerator driving
KR100208364B1 (en) Refrigerator and its control method
KR100238799B1 (en) Quick-freezing control method of a refrigerator
JPH11183006A (en) Freezer
KR100196943B1 (en) Fan rotative speed control method and its control apparatus of a refrigerator
JPH1038396A (en) Method of controlling freezer
KR100208336B1 (en) Refrigerator and its operating control method
KR100234121B1 (en) Refrigerator and control method
JP2006275497A (en) Method for controlling refrigerator
KR100251567B1 (en) Cooling cycle and its control method
KR100203988B1 (en) Cooling method for fixed temperature of refrigerator
JP2005164192A (en) Control system for refrigerator
KR100377754B1 (en) Method of Cooling Cycle
JP2000234831A (en) Cooling storage chamber