JPH0649637A - Bias sputtering method - Google Patents

Bias sputtering method

Info

Publication number
JPH0649637A
JPH0649637A JP20651692A JP20651692A JPH0649637A JP H0649637 A JPH0649637 A JP H0649637A JP 20651692 A JP20651692 A JP 20651692A JP 20651692 A JP20651692 A JP 20651692A JP H0649637 A JPH0649637 A JP H0649637A
Authority
JP
Japan
Prior art keywords
vapor deposition
substrate
target
film
bias sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20651692A
Other languages
Japanese (ja)
Inventor
Kunichika Kubota
邦親 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP20651692A priority Critical patent/JPH0649637A/en
Publication of JPH0649637A publication Critical patent/JPH0649637A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a densely vapor deposited film even on a surface which does not face a target by curving the incident direction of charge particles on a material by means of a magnet in the bias sputtering method. CONSTITUTION:The target 1 to which a DC power source 2 is connected, a rotating table 7 on which a substrate 9 for vapor deposition rides, a revolving table 6 which is connected to a high-frequency power source 4 via a matching circuit 3 and the permanent magnet 8 which is fixed to the revolving table 6 are installed in a vacuum chamber 5. The magnetic field in the radial direction of the revolving table 1 is applied to the substrate 9 for vapor deposition riding on the rotating table 7 and the locus of the Ar ions introduced by the high-frequency power source 4 is curved near the substrate 9 for vapor deposition when bias sputtering is executed by introducing the gaseous Ar constituting the charge particles from an introducing port 10 in this constitution. Since the substrate 9 for vapor deposition exists on the rotating table 7, the surface facing the infiltration direction of the Ar ions changes at all times and the entire periphery of the flank of the substrate 9 for vapor deposition is irradiated with the Ar ions. As a result, the uniform film is formed on the substrate 9 for vapor deposition having level differences and grooves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は段差や溝などの平面でな
い部分にスパッタリング膜を形成するのに特に優れたバ
イアススパッタリング方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bias sputtering method which is particularly excellent for forming a sputtering film on a non-planar portion such as a step or a groove.

【0002】[0002]

【従来の技術】物理蒸着法に分類されるスパッタリング
法あるいはイオンプレーティング法は、磁気ヘッド、L
SI等の電子デバイスの薄膜形成手段として、エレクト
ロニクス産業の分野で広く使用されている。またセラミ
ックスの分野においては、セラミックス同士の接合や金
属とセラミックスの接合において、セラミックス表面に
メタライズ膜を形成する必要があり、ここでも物理蒸着
法は使用されている。
2. Description of the Related Art A sputtering method or an ion plating method classified into physical vapor deposition is a magnetic head, L
It is widely used in the field of the electronics industry as a thin film forming means for electronic devices such as SI. Further, in the field of ceramics, it is necessary to form a metallized film on the surface of ceramics when joining ceramics to each other or joining metal and ceramics, and the physical vapor deposition method is also used here.

【0003】このような利点のある物理蒸着法にも蒸着
の対象に段差や溝等があるとターゲット等の蒸着源から
みて影になる部分の蒸着量が減少したり、蒸着できなか
ったりするいわゆるシャドウイング現象が発生するとい
う問題があった。たとえばLSIのアルミニウム配線を
物理蒸着手段を用いて形成しようとする場合、LSIの
コンタクト部が段差となっているため、シャドウイング
現象生じると断線の原因になる。このため、成膜中に蒸
着源もしくは蒸着対象となる材料を周期的に運動させ、
蒸着粒子が侵入してくる方向をたえず変化させることに
より、蒸着粒子の方向依存成を少なくするといったシャ
ドウイング現象を減らす方法が用いられていた。
Even in the physical vapor deposition method having such an advantage, if there is a step or a groove in the target of vapor deposition, the amount of vapor deposition in the shadowed portion as seen from the vapor deposition source such as the target is reduced, or vapor deposition cannot be performed. There was a problem that the shadowing phenomenon occurred. For example, when an aluminum wiring of an LSI is to be formed by using a physical vapor deposition means, the contact portion of the LSI has a step, so that a shadowing phenomenon causes a disconnection. Therefore, during the film formation, the evaporation source or the material to be evaporated is periodically moved,
A method of reducing the shadowing phenomenon, such as decreasing the direction-dependent composition of the vapor deposition particles by constantly changing the direction in which the vapor deposition particles enter has been used.

【0004】[0004]

【発明が解決しようとする課題】しかし、蒸着する材料
表面が蒸着源に対して傾いている状態では適当な膜質が
得られないことが知られており、蒸着粒子の方向依存性
をなくすだけでは、シャドウイングを防ぐことはできな
い。たとえばA.G.DIRKS and H.J.L
EAMY,Thin Soild Films,47
(1977)p219によれば、蒸着する基材表面の傾
角が80度になると、0度の場合(すなわち蒸着源表面
の法線に対して垂直な基材表面の場合)に比べ蒸着膜の
密度が5割以下になることが報告されており、このよう
な密度の低下は、蒸着粒子の方向依存性をなくすだけで
は解決することはできないものであった。
However, it is known that an appropriate film quality cannot be obtained when the surface of the material to be vapor-deposited is inclined with respect to the vapor-deposition source. Therefore, it is necessary to eliminate the direction dependence of vapor-deposited particles. , Shadowing cannot be prevented. For example, A. G. DIRKS and H.M. J. L
EAMY, Thin Oiled Films, 47
According to (1977) p219, when the inclination angle of the substrate surface to be vapor-deposited becomes 80 degrees, the density of the vapor-deposited film is higher than that when the inclination angle is 0 degrees (that is, the substrate surface perpendicular to the normal to the vapor deposition source surface). Was reported to be 50% or less, and such a decrease in density could not be solved only by eliminating the direction dependence of vapor deposition particles.

【0005】また、蒸着膜の密度を上げて膜質を改善す
る方法としては、蒸着粒子と加速された荷電粒子を同時
に照射するバイアススパッタリング法や蒸着基材の温度
を上げて、蒸着原子の拡散を活発化する方法も知られて
いる。しかしこのような方法は膜表面や膜中の原子拡散
を利用しているために、せいぜい数μmの微小段差のシ
ャドウイング防止に効果があるだけである。本発明の目
的は、数μm以上であっても極めて効果的にシャドウイ
ングによる蒸着膜厚の減少およびシャドウイングによる
蒸着膜密度の低下を抑えることのできるバイアススパッ
タリング方法を提供することである。
Further, as a method of increasing the density of the deposited film to improve the film quality, a bias sputtering method of simultaneously irradiating the deposited particles and accelerated charged particles or raising the temperature of the deposited substrate to diffuse the deposited atoms. It is also known how to activate it. However, since such a method utilizes the diffusion of atoms on the surface of the film or in the film, it is only effective in preventing shadowing of minute steps of at most several μm. An object of the present invention is to provide a bias sputtering method capable of extremely effectively suppressing a decrease in a vapor deposition film thickness due to shadowing and a reduction in a vapor deposition film density due to shadowing even when the thickness is several μm or more.

【0006】[0006]

【課題を解決するための手段】本発明者は、蒸着基材上
の段差によってターゲットに対向していない面にも、バ
イアススパッタリングによる荷電粒子を照射して、段差
部分の蒸着膜の密度を上げるとともに、バイアススパッ
タリングの荷電粒子により、基材に蒸着した膜の一部を
スパッタリングしてターゲットと対向しない面へ供給す
ることにより、シャドウイングを防止する方法を検討し
本発明に到達した。本発明は、スパッタリングターゲッ
トからのスパッタ粒子を材料上に付着するとともに、荷
電粒子を材料上に入射させるバイアススパッタリング方
法であって、前記荷電粒子の材料への入射方向を磁石に
よって湾曲させることを特徴とするバイアススパッタリ
ング方法である。
The inventor of the present invention increases the density of a vapor deposition film in a step portion by irradiating the surface of the vapor deposition substrate which is not opposed to the target with a step due to the step, with charged particles by bias sputtering. At the same time, a method of preventing shadowing by studying a method of sputtering a part of a film deposited on a substrate by biased charged particles to supply the film to a surface not facing the target was studied, and arrived at the present invention. The present invention is a bias sputtering method in which sputtered particles from a sputtering target are deposited on a material and charged particles are made to enter the material, wherein the incident direction of the charged particles to the material is curved by a magnet. The bias sputtering method is as follows.

【0007】[0007]

【作用】本発明の最も特徴とするところは、蒸着基材近
傍に配置した磁石によって荷電粒子の入射方向を湾曲す
ることである。たとえばアルゴンをスパッタリングガス
とした場合、通常のバイアススパッタリング装置におい
て、高周波電源を蒸着基材の乗るテーブルに供給するこ
とにより加速された荷電粒子(アルゴンイオンと電子)
は蒸着基材のターゲットと対向する面に対してほぼ垂直
に照射されることになる。これではターゲットと対向し
ない面にはほとんど荷電粒子は照射されず蒸着面のター
ゲットと対向する面としない面では膜質が大きく異なっ
てしまうことになる。これに対し、本発明ではバイアス
スパッタリングによる基材への荷電粒子の軌道はフレミ
ングの左手の法則に従って曲げられ、ターゲットと対向
しない面にも照射されることになり、ターゲットに対向
しない蒸着面の膜の緻密化が可能になる。
The most characteristic feature of the present invention is that the incident direction of charged particles is curved by a magnet arranged near the vapor deposition substrate. For example, when argon is used as a sputtering gas, charged particles (argon ions and electrons) accelerated by supplying a high frequency power source to a table on which a vapor deposition substrate is placed in an ordinary bias sputtering device.
Is irradiated almost perpendicularly to the surface of the vapor deposition substrate facing the target. In this case, the surface that does not face the target is hardly irradiated with the charged particles, and the film quality on the surface that does not face the target and the surface that does not face the target are significantly different. On the other hand, in the present invention, the trajectory of the charged particles to the substrate by the bias sputtering is bent according to Fleming's left-hand rule, and the surface not facing the target is also irradiated, and the film on the vapor deposition surface not facing the target. Can be refined.

【0008】本発明においては最も蒸着粒子が付着する
ターゲット対向面に入射する荷電粒子は垂直から大きく
傾いた特定の入射角を持つ。そのため、荷電粒子により
蒸着された膜の一部が再スパッタリングされやすく、こ
の再スパッタリングにより従来シャドウイングにより蒸
着量が少なかった面に蒸着粒子が供給できる。この再ス
パッタリング量は上述した荷電粒子の入射角にも依存す
る。この再スパッタリングは荷電粒子の軌道を湾曲させ
る磁石が発生する磁界強度と荷電粒子への加速電圧とを
制御することにより制御することができるが、基材形状
にかかわらず一定の蒸着膜厚となるように調整すること
が必要となる。また、段差のある基材のターゲットに対
向しない壁面には、上述した再スパッタリングによる蒸
着粒子とターゲット方向からの蒸着粒子が両方向から供
給されるため、上記壁面の蒸着膜は結晶成長が一方向に
偏らずにより緻密で均一な膜質を得ることが可能とな
る。
In the present invention, the charged particles incident on the target facing surface to which the vapor deposition particles are most attached have a specific incident angle largely inclined from the vertical. Therefore, a part of the film vapor-deposited by the charged particles is easily re-sputtered, and the re-sputtering can supply the vapor-deposited particles to the surface where the vapor deposition amount is small due to the conventional shadowing. This resputtering amount also depends on the incident angle of the charged particles described above. This resputtering can be controlled by controlling the magnetic field strength generated by the magnet that bends the trajectory of the charged particles and the accelerating voltage to the charged particles, but the deposition thickness is constant regardless of the substrate shape. Need to be adjusted. In addition, since the vapor deposition particles by the above-mentioned re-sputtering and the vapor deposition particles from the target direction are supplied from both directions to the wall surface of the base material having the step which does not face the target, the vapor deposition film on the wall surface has crystal growth in one direction. It is possible to obtain a dense and uniform film quality without being biased.

【0009】[0009]

【実施例】【Example】

(実施例1)図1に本発明に使用したスパッタリング装置
を示す。図1に記載した装置は、直流電源2が接続され
たターゲットと、蒸着基板9の乗る自転テーブル7と、
マッチング回路3を介して高周波電源4に接続された公
転テーブル6と、公転テーブル6に固定された永久磁石
8とが真空槽5内に設置されたものである。図1の装置
では永久磁石8の両磁極は公転テーブル6の半径方向の
磁場を蒸着基板9に与えるように配置している。また、
真空槽5は接地され。荷電粒子となるアルゴンガスの導
入口と排気口11を有している。
(Example 1) FIG. 1 shows a sputtering apparatus used in the present invention. The apparatus shown in FIG. 1 includes a target to which a DC power source 2 is connected, a rotation table 7 on which a vapor deposition substrate 9 is mounted,
The revolution table 6 connected to the high-frequency power source 4 via the matching circuit 3 and the permanent magnet 8 fixed to the revolution table 6 are installed in the vacuum chamber 5. In the apparatus of FIG. 1, both magnetic poles of the permanent magnet 8 are arranged so as to apply a magnetic field in the radial direction of the revolution table 6 to the vapor deposition substrate 9. Also,
The vacuum chamber 5 is grounded. It has an inlet port for argon gas that becomes charged particles and an exhaust port 11.

【0010】このような構成により、自転テーブル7上
に乗る蒸着基板9には公転テーブル1の半径方向の磁場
が与えられ、高周波電源4により導かれるアルゴンイオ
ンの軌道は、蒸着基板9の付近で曲げられることにな
る。また蒸着基板9は自転テーブル7の上にあるため、
アルゴンイオンの侵入方向は対向する面は常に変わるこ
とになり、蒸着基板9の側面全周にアルゴンイオンを照
射できる。蒸着基板として、10×10×5t(mm)の
ガラス基板を用い、ニッケルをターゲットとして表1に
示す条件でバイアススパッタリングを行った。表2に蒸
着基板ターゲット対向面の中央の膜厚に対する基板側面
中央の膜厚の比を測定した結果を示す。表2に示すよう
に、本発明の永久磁石を配置したバイアススパッタリン
グ法では、側面の膜厚をターゲット対向面の膜厚に近づ
けることができることがわかる。
With such a structure, the magnetic field in the radial direction of the revolution table 1 is applied to the vapor deposition substrate 9 on the rotation table 7, and the trajectory of the argon ions guided by the high frequency power source 4 is near the vapor deposition substrate 9. It will be bent. Since the vapor deposition substrate 9 is on the rotation table 7,
The invading direction of the argon ions is always changed on the facing surface, and the entire circumference of the side surface of the vapor deposition substrate 9 can be irradiated with the argon ions. Bias sputtering was performed under the conditions shown in Table 1 using nickel as a target and a glass substrate of 10 × 10 × 5 t (mm) as a vapor deposition substrate. Table 2 shows the results of measuring the ratio of the film thickness at the center of the side surface of the substrate to the film thickness at the center of the surface facing the deposition substrate target. As shown in Table 2, it is understood that in the bias sputtering method in which the permanent magnet of the present invention is arranged, the film thickness on the side surface can be made closer to the film thickness on the target facing surface.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】(実施例2)窒化アルミニウムの10×1
0×5t(mm)の焼結体基板を使用してTi,Niの順に
それぞれ0.1μm、1μmの厚さになるようにメタライ
ズ処理を試みた。本発明のバイアススパッタリングの効
果を見るために、Tiは永久磁石を配置しない通常のス
パッタリングとし、Niを図1に示す装置により本発明
のバイアススパッリング法を用いて形成した。表3にN
iのスパッタリング条件を示す。
(Embodiment 2) Aluminum nitride 10 × 1
Using a 0 × 5 t (mm) sintered body substrate, an attempt was made to perform metallization treatment in the order of Ti and Ni to have thicknesses of 0.1 μm and 1 μm, respectively. In order to see the effect of the bias sputtering of the present invention, Ti was ordinary sputtering without a permanent magnet, and Ni was formed by the bias spalling method of the present invention by the apparatus shown in FIG. N in Table 3
The sputtering conditions for i are shown below.

【0014】[0014]

【表3】 [Table 3]

【0015】図2に、窒化アルミニウム側面に形成され
たNi蒸着膜の断面状態のスケッチ図を示す。また図3
に永久磁石を配置しない比較例の同様の部分のスケッチ
図を示す。比較例の図3ではNiが一方向に曲がって結
晶成長しており、柱状晶の境界がはっきりと確認でき、
膜の密度が低いことがわかる。一方本発明の方法を用い
た図2ではNiは基板にほぼ垂直に成長しており、緻密
な膜となったことが確認できる。
FIG. 2 shows a sketch of the cross-sectional state of the Ni vapor deposition film formed on the side surface of aluminum nitride. See also FIG.
A sketch drawing of a similar portion of a comparative example in which no permanent magnet is arranged is shown in FIG. In FIG. 3 of the comparative example, Ni bends in one direction and crystal grows, and the boundaries of columnar crystals can be clearly confirmed.
It can be seen that the density of the film is low. On the other hand, in FIG. 2 using the method of the present invention, it can be confirmed that Ni has grown almost perpendicularly to the substrate and has become a dense film.

【0016】次に得られたNi膜上にAuをスパッタリ
ングにより0.1μmの厚さに成膜して、ハンダ接合用
の窒化アルミニウムのメタライズ基板とした。得られた
メタライズ基板にPb−10%Snのハンダを置き、3
10℃、水素雰囲気で加熱してハンダを側面まで濡れ広
がらせ、次に1〜30時間、310℃で大気中の加熱を
行いハンダのメタライズ膜への耐拡散性を評価する試料
とした。得られた試料の側面の上面から3mmの位置に接
着面が2mmφのコバール性ピンをPb−Sn共晶ハンダ
を用いて接合し、引張り試験を行った。この引張り試験
で得られたメタライズ膜の破断強度を図4に示す。また
比較例としてNiを永久磁石なしで蒸着した場合も同様
に評価した。
Next, Au was deposited on the obtained Ni film to a thickness of 0.1 μm by sputtering to obtain an aluminum nitride metallized substrate for soldering. Place Pb-10% Sn solder on the obtained metallized substrate and
The sample was evaluated by heating at 10 ° C. in a hydrogen atmosphere to spread the solder to the side surface and then heating at 310 ° C. for 1 to 30 hours in the atmosphere to evaluate the diffusion resistance of the solder to the metallized film. A Kovar pin having an adhesion surface of 2 mmφ was joined at a position 3 mm from the upper surface of the side surface of the obtained sample using Pb-Sn eutectic solder, and a tensile test was performed. The breaking strength of the metallized film obtained by this tensile test is shown in FIG. As a comparative example, the same evaluation was performed when Ni was vapor-deposited without a permanent magnet.

【0017】図4に示すように、本発明の方法で製造し
たメタライズ膜は、30時間の加熱を行っても、十分な
破断強度を示しているのに対し、比較例では30時間の
焼鈍により、著しい破断強度の低下が見られる。これは
Niの蒸着膜が本発明では緻密であり、メタライズ膜へ
のハンダの拡散が防止できたことを意味しており、本発
明の方法が特にシャドウイングの発生する基板側面の膜
質の改善に効果があったことを示している。
As shown in FIG. 4, the metallized film produced by the method of the present invention shows sufficient rupture strength even after being heated for 30 hours, whereas in the comparative example, it is annealed for 30 hours. A remarkable decrease in breaking strength is observed. This means that the vapor deposition film of Ni was dense in the present invention and was able to prevent the diffusion of solder to the metallized film, and the method of the present invention is particularly effective in improving the film quality on the side surface of the substrate where shadowing occurs. It shows that it was effective.

【0018】[0018]

【発明の効果】本発明によれば、従来のバイアススパッ
タリング法では不可能であったターゲットと対向しない
面のメタライズ膜の緻密と膜厚の均一化が達成できるた
め、特に段差や溝のある蒸着基材に対して有効なスパッ
タリング方法となる。
According to the present invention, since the metallized film on the surface not facing the target can be made dense and the film thickness can be made uniform, which is impossible with the conventional bias sputtering method, vapor deposition with steps or grooves is achieved. The sputtering method is effective for the substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の方法に用いる装置の概略を示す
図である。
FIG. 1 is a schematic view of an apparatus used in the method of the present invention.

【図2】本発明の方法で得られたNi蒸着膜を示すスケ
ッチである。
FIG. 2 is a sketch showing a Ni vapor deposition film obtained by the method of the present invention.

【図3】比較例の方法で得られたNi蒸着膜を示すスケ
ッチである。
FIG. 3 is a sketch showing a Ni vapor deposition film obtained by the method of the comparative example.

【図4】本発明と比較例によって得られたメタライズ膜
の破断強度と加熱時間の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a breaking strength and a heating time of metallized films obtained by the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 ターゲット、2 直流電源、3 マッチング回路、
4 高周波電源、5真空槽、6 公転テーブル、7 自
転テーブル、8 永久磁石、9 蒸着基板、10 Ar
ガスの導入口、11 排気口
1 target, 2 DC power supply, 3 matching circuit,
4 high-frequency power source, 5 vacuum chamber, 6 revolution table, 7 rotation table, 8 permanent magnet, 9 vapor deposition substrate, 10 Ar
Gas inlet, 11 exhaust

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スパッタリングターゲットからのスパッ
タ粒子を材料上に付着するとともに、荷電粒子を材料上
に入射させるバイアススパッタリング方法であって、前
記荷電粒子の材料への入射方向を磁石によって湾曲させ
ることを特徴とするバイアススパッタリング方法。
1. A bias sputtering method in which sputtered particles from a sputtering target are deposited on a material and charged particles are incident on the material, wherein the incident direction of the charged particles on the material is curved by a magnet. Characteristic bias sputtering method.
JP20651692A 1992-08-03 1992-08-03 Bias sputtering method Pending JPH0649637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20651692A JPH0649637A (en) 1992-08-03 1992-08-03 Bias sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20651692A JPH0649637A (en) 1992-08-03 1992-08-03 Bias sputtering method

Publications (1)

Publication Number Publication Date
JPH0649637A true JPH0649637A (en) 1994-02-22

Family

ID=16524662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20651692A Pending JPH0649637A (en) 1992-08-03 1992-08-03 Bias sputtering method

Country Status (1)

Country Link
JP (1) JPH0649637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911861A (en) * 1995-03-31 1999-06-15 Balzers Aktiengesellschaft Coating station

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911861A (en) * 1995-03-31 1999-06-15 Balzers Aktiengesellschaft Coating station
US6123814A (en) * 1995-03-31 2000-09-26 Balzers Aktiengesellschaft Coating station

Similar Documents

Publication Publication Date Title
US5439574A (en) Method for successive formation of thin films
US5405458A (en) Method of producing hard film of Ti-Si-N composite material
JPH06220627A (en) Film forming device
JP2009041040A (en) Vacuum vapor deposition method and vacuum vapor deposition apparatus
EP0861921A1 (en) Deposition of titanium nitride films
JP3033331B2 (en) Manufacturing method of thin film wiring
EP0247140B1 (en) Sputtering method for reducing hillocking in aluminum layers formed on substrates
JPH0649637A (en) Bias sputtering method
JP2001140073A (en) Back face cooling gas for self-sputtering
US5919342A (en) Method for depositing golden titanium nitride
Musil et al. Deposition of copper films by unbalanced dc magnetron sputtering
WO2002070776A1 (en) Deposition process
JP3727693B2 (en) TiN film manufacturing method
JP2000273629A (en) Formation of low resistance metallic thin film
CN113235060B (en) Preparation method of all-alpha-phase tantalum coating
JPH04305081A (en) Metallizing treatment device for ceramic material
JP3038288B2 (en) Thick film making equipment
RU2214476C2 (en) Method of forming coat from precious metals and their alloys
JPH01168857A (en) Formation of titanium nitride film
JPS637364A (en) Bias sputtering device
JPH04346651A (en) Metallizing method
Panitz et al. A comparison of the step coverage of aluminum coatings produced by two sputter magnetron systems and a dual-beam ion system
KR100328658B1 (en) Sputtering targets for thin films
JPH02259063A (en) Formation of metallic film
RU2010032C1 (en) Method of silicon base metal coating