JPH04305081A - Metallizing treatment device for ceramic material - Google Patents

Metallizing treatment device for ceramic material

Info

Publication number
JPH04305081A
JPH04305081A JP9641191A JP9641191A JPH04305081A JP H04305081 A JPH04305081 A JP H04305081A JP 9641191 A JP9641191 A JP 9641191A JP 9641191 A JP9641191 A JP 9641191A JP H04305081 A JPH04305081 A JP H04305081A
Authority
JP
Japan
Prior art keywords
metallized
target
sputtering
magnet
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9641191A
Other languages
Japanese (ja)
Inventor
Kunichika Kubota
邦親 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9641191A priority Critical patent/JPH04305081A/en
Publication of JPH04305081A publication Critical patent/JPH04305081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form the denser metallized film on a surface not facing a target with a bias sputtering device by disposing a magnet to curve the incident direction of charge particles near a material to be metallized. CONSTITUTION:The sputtering target 1 connected to a DC power source 2 is disposed in a vacuum chamber 5 and the ceramic material 9 to be metallized is so disposed as to nearly face this target 1 and a revolving table 6 on which the material 9 rises is connected to a high-frequency power source 4. Further, the permanent magnet 8 is disposed near the material 9 to be metallized by fixing the magnet to the revolving table 6. A sputtering gas is ionized and the material 9 is irradiated with the sputtering gaseous ions during the sputtering period. The orbit of the charge particles with which the material 9 is irradiated nearly perpendicularly is curved by the effect of the magnet 8. The denser metallized film is formed on the surface not facing the target 1 of the material 9 to be metallized having an intricate shape in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は段差や溝等のある複雑形
状のセラミックス材料のメタライズ処理に用いられるセ
ラミックス材料のメタライズ処理装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for metallizing ceramic materials, which is used for metallizing ceramic materials having complex shapes such as steps and grooves.

【0002】0002

【従来の技術】物理蒸着法に分類されるスパッタリング
法あるいはイオンプレーティング法は、磁気ヘッド、各
種基板等の電子デバイスの薄膜形成手段として、エレク
トロニクス産業の分野で多年にわたり使用されてきた。 これらの物理蒸着法は、厚さのほぼ均一な薄膜形成が可
能で、しかも密着力の高い薄膜形成が可能であるとして
、セラミックス材料のメタライズ膜の形成にも使用され
ている。このような利点のある物理蒸着法にも蒸着の対
象となる材料表面に段差等があると、ターゲット等の蒸
着源からみて影になる部分の蒸着量が減少したり、蒸着
できなかったりするいわゆるシャドウイング現象が発生
するという欠点がある。
2. Description of the Related Art Sputtering methods or ion plating methods, which are classified as physical vapor deposition methods, have been used in the electronics industry for many years as means for forming thin films for electronic devices such as magnetic heads and various substrates. These physical vapor deposition methods are also used to form metallized films of ceramic materials because they allow the formation of thin films with substantially uniform thickness and high adhesion. Even with physical vapor deposition, which has such advantages, if there are steps on the surface of the material to be vapor-deposited, the amount of vapor deposited in the shadowed area from the target or other vapor deposition source may decrease, or the vapor may not be able to be deposited. There is a drawback that a shadowing phenomenon occurs.

【0003】例えば、LSIのAl配線を物理蒸着手段
を用いて形成しようとする場合、LSI基板のコンタク
ト部が溝となっているため、シャドウイング現象が生ず
ると断線の原因となる。また、上述の物理蒸着手段では
、材料表面が蒸着源に対して傾いている場合も適当な膜
質が得られない場合があることが知られており、例えば
A.G.DIRKS  and  H.J.LEAMY
,  Thin  Solid  Films,47(
1977)p219には蒸着する基板表面の傾角が80
度になると、0度(すなわち蒸着源表面の法線に対して
垂直な基板表面とした場合)に比べて蒸着膜の密度が5
割以下になるという報告がなされている。これらの対策
として、従来(1)蒸着粒子を散乱させる:例えばスパ
ッタリング法ではスパッタガス圧を上げる。(2)成膜
中に、蒸発源もしくは蒸着対象となる材料を周期的に運
動させ、蒸着粒子が侵入してくる方向をたえず変化させ
ることにより、蒸着粒子の方向依存性を少なくする、と
いったシャドウイング現象を防止するための方法が用い
られていた。
For example, when attempting to form Al wiring for an LSI using physical vapor deposition means, the contact portion of the LSI substrate is a groove, and shadowing phenomenon may cause wire breakage. Furthermore, it is known that with the above-mentioned physical vapor deposition means, appropriate film quality may not be obtained even when the material surface is inclined with respect to the vapor deposition source. G. DIRKS and H. J. LEAMY
, Thin Solid Films, 47 (
1977) For p219, the angle of inclination of the substrate surface to be deposited is 80
When the temperature reaches 5°, the density of the deposited film becomes 5° compared to 0° (i.e., when the substrate surface is perpendicular to the normal to the surface of the evaporation source).
There have been reports that it is below 30%. Conventional countermeasures include (1) scattering of vapor deposited particles: for example, in the sputtering method, sputtering gas pressure is increased; (2) During film formation, the evaporation source or the material to be evaporated is moved periodically, and the direction in which the evaporation particles enter is constantly changed, thereby reducing the directional dependence of the evaporation particles. Methods have been used to prevent the ing phenomenon.

【0004】また、最近では基板を高周波電源に接続す
ることによって、スパッタガス、例えばArをイオン化
し、スパッタリング期間中にArイオンを基板に照射し
、メタライズ膜の緻密化を行なうバイアススパッタリン
グ装置が開発されている。
Recently, a bias sputtering device has been developed that connects the substrate to a high-frequency power source to ionize sputtering gas, such as Ar, and irradiates the substrate with Ar ions during the sputtering period to densify the metallized film. has been done.

【0005】[0005]

【発明が解決しようとする課題】セラミックス材料はそ
のままの表面では、はんだ等のろう材とのぬれ性が極め
て悪いため、他の材料(セラミックスあるいは金属材料
)と接合する場合には、接合面に相当する部分にメタラ
イズ膜を形成する必要がある。このようなメタライズ膜
の形成に対しても、シャドウイング現象を防止するため
、LSIなどの電子デバイスの薄膜形成と同じような前
述の(1)あるいは(2)の方法が用いられている。 セラミックス材料には、他の材料との接合において使用
するはんだ等がメタライズ膜内に拡散していき、金属間
化合物を形成してメタライズ膜の脆化を引き起こし、メ
タライズ膜の密着強度が極めて劣化する場合がある。こ
のようなはんだ等の拡散を防止するために、メタライズ
膜を緻密化しなければならない。また、セラミックス材
料は、通常焼結体として作成するため、焼結ままの表面
は、非常に粗いものであるため、上述したようなシャド
ウイング現象が発生しメタライズ膜の密度が低下しやす
い。そのためメタライズ処理の前に表面粗度を最大表面
粗さRmaxでサブミクロンのオーダに研磨することに
より、表面粗さの影響を極力抑える必要がある。しかし
、セラミックスの表面粗さを十分に小さくするのには限
界があるため、より緻密で強い接合強度の得られるメタ
ライズ膜の得られる装置の開発が望まれていた。このよ
うな要求に対して、前述したバイアススパッタリング装
置を適応すると非常に緻密なメタライズ膜が形成できる
ことが期待できる。しかし、バイアススパッタリング装
置は、セラミックスのターゲットと対向する一表面のみ
にメタライズ膜を作成する場合は非常に有効であるが、
例えば凸状物の上面および側面に同時にメタライズ膜を
形成する場合にはターゲットと対向しない側面は、緻密
化できないという問題があった。本発明の目的は、複雑
形状を有するセラミックスのメタライズする場合に、タ
ーゲットの対向しない面も緻密なメタライズ膜を得るこ
とができるセラミックス材料のメタライズ処理装置を提
供することである。
[Problem to be solved by the invention] Ceramic materials have extremely poor wettability with brazing materials such as solder on their surfaces, so when joining other materials (ceramics or metal materials), it is necessary to It is necessary to form a metallized film on the corresponding portion. In order to prevent the shadowing phenomenon, the above-mentioned method (1) or (2), which is similar to the method used to form thin films for electronic devices such as LSIs, is used to form such metallized films. For ceramic materials, the solder used to join other materials diffuses into the metallized film, forming intermetallic compounds that cause the metallized film to become brittle, and the adhesion strength of the metallized film to deteriorate significantly. There are cases. In order to prevent such diffusion of solder and the like, the metallized film must be made denser. Furthermore, since ceramic materials are usually produced as sintered bodies, the as-sintered surface is very rough, so the shadowing phenomenon described above tends to occur and the density of the metallized film tends to decrease. Therefore, it is necessary to suppress the influence of surface roughness as much as possible by polishing the surface roughness to a submicron order with a maximum surface roughness Rmax before metallization processing. However, since there is a limit to reducing the surface roughness of ceramics sufficiently, there has been a desire to develop an apparatus that can produce metallized films that are denser and have stronger bonding strength. If the above-mentioned bias sputtering apparatus is applied to such requirements, it is expected that a very dense metallized film can be formed. However, although bias sputtering equipment is very effective when creating a metallized film only on one surface facing the ceramic target,
For example, when a metallized film is simultaneously formed on the top and side surfaces of a convex object, there is a problem in that the side surfaces that do not face the target cannot be made denser. An object of the present invention is to provide a metallization processing apparatus for ceramic materials that can obtain a dense metallized film even on non-facing surfaces of a target when metallizing ceramics having a complicated shape.

【0006】[0006]

【課題を解決するための手段】本発明者は、セラミック
ス材料のターゲットと対向しない面にも、バイアススパ
ッタリングによる荷電粒子を照射可能にする装置を検討
し、本発明に到達した。すなわち、本発明は被メタライ
ズ材料の乗るテーブルを高周波電源に接続したバイアス
スパッタリング装置であって、直流電源に接続したスパ
ッタリングターゲットと略対向するように配置した被メ
タライズ材料と、該被メタライズ材料近傍に荷電粒子の
入射方向を湾曲させる磁石を配置したことを特徴とする
セラミックス材料のメタライズ処理装置である。
[Means for Solving the Problems] The present inventor has studied an apparatus that can irradiate charged particles by bias sputtering even to a surface of a ceramic material that does not face a target, and has arrived at the present invention. That is, the present invention is a bias sputtering apparatus in which a table on which a material to be metallized is placed is connected to a high frequency power source, and a sputtering device is provided in which a table on which a material to be metallized is placed is connected to a high frequency power source, and a material to be metallized is placed so as to be substantially opposed to a sputtering target connected to a DC power source, and a sputtering target is placed in the vicinity of the material to be metallized. This is a metallization processing apparatus for ceramic materials, characterized in that a magnet is arranged to curve the direction of incidence of charged particles.

【0007】本発明の最も特徴とするところは、被メタ
ライズ材料近傍に荷電粒子の入射方向を湾曲させる磁石
を配置したことである。例えばArをスパッタガスとし
た場合、本発明の磁石を設置しない場合は、高周波電源
を被メタライズ材料の乗るテーブルに供給することによ
り加速された荷電粒子(Arイオン)は被メタライズ材
料のターゲットと対向する面に対して、ほぼ垂直に照射
されることになる、これではターゲットと対向しない面
にはほとんど荷電粒子は照射されずターゲットに対向す
る面としない面で膜質が大きく異なってしまうことにな
る。これに対し、本発明の磁石を配置すればターゲット
と対向する面に対してほぼ垂直に照射される荷電粒子の
軌道はフレミングの左手の法則に従って曲げられ、ター
ゲットと対向しない面にも照射されることになり、ター
ゲットと対向しない面のメタライズ膜を緻密化できる。 なお、本発の装置において、磁石により湾曲された荷電
粒子が入射する面を、被メタライズ材料のターゲットと
対向しない面の全周とするためには、磁石自体を回転さ
せ荷電粒子の入射角を変えるか、あるいは被メタライズ
材料を回転させることが必要である。
The most distinctive feature of the present invention is that a magnet is placed near the material to be metalized to curve the direction of incidence of charged particles. For example, when Ar is used as the sputtering gas and the magnet of the present invention is not installed, charged particles (Ar ions) accelerated by supplying a high frequency power source to the table on which the material to be metallized are placed face the target of the material to be metallized. The charged particles will be irradiated almost perpendicularly to the surface facing the target, and the surface that does not face the target will hardly be irradiated with charged particles, resulting in a large difference in film quality between the surface that faces the target and the surface that does not. . On the other hand, if the magnet of the present invention is arranged, the trajectory of the charged particles that are irradiated almost perpendicularly to the surface facing the target will be bent according to Fleming's left-hand rule, and the trajectories of the charged particles will be irradiated to surfaces that do not face the target. Therefore, the metallized film on the surface not facing the target can be made denser. In addition, in the device of this invention, in order to make the surface curved by the magnet into which the charged particles are incident the entire circumference of the surface of the material to be metalized that does not face the target, the magnet itself must be rotated to adjust the incident angle of the charged particles. It is necessary to change or rotate the material to be metalized.

【0008】[0008]

【実施例】図1に本発明の装置の構成の一例を示す。図
1に記載した装置は、直流電源2が接続されたターゲッ
ト1と、被メタライズ基板9の乗る自転テーブル7と、
マッチング回路3を介して高周波電源4に接続された公
転テーブル6と、公転テーブル6に固定された永久磁石
8とが真空槽5内に設置されたものである。図1の装置
では、永久磁石8の両磁極は公転テーブル6の半径方向
の磁場を被メタライズ基板9に与えるように設置されて
いる。また、真空槽5は接地され、荷電粒子となるAr
ガスの導入口10と排気口11を有している。このよう
な構成により、自転テーブル7の上に乗る被メタライズ
基板9には公転テーブル1の半径方向の磁場が与えられ
、高周波電源4により導かれるArイオンの軌道は、被
メタライズ基板付近で曲げられることになる。また、被
メタライズ基板9は自転テーブル7上にあるため、Ar
イオンの進入方向に対向する面は常に変わることになり
、被メタライズ基板9の側面全周にArイオンを照射で
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of the configuration of an apparatus according to the present invention. The apparatus shown in FIG. 1 includes a target 1 to which a DC power supply 2 is connected, a rotating table 7 on which a substrate 9 to be metallized is placed,
A revolution table 6 connected to a high frequency power source 4 via a matching circuit 3 and a permanent magnet 8 fixed to the revolution table 6 are installed in a vacuum chamber 5. In the apparatus shown in FIG. 1, both magnetic poles of the permanent magnet 8 are installed so as to apply a magnetic field in the radial direction of the revolving table 6 to the substrate 9 to be metalized. Further, the vacuum chamber 5 is grounded, and Ar
It has a gas inlet 10 and an exhaust port 11. With this configuration, a magnetic field in the radial direction of the revolving table 1 is applied to the substrate 9 to be metalized, which rests on the rotating table 7, and the trajectory of Ar ions guided by the high frequency power source 4 is bent near the substrate to be metalized. It turns out. Furthermore, since the substrate 9 to be metalized is on the rotating table 7, Ar
The surface facing the direction in which the ions enter will always change, so that the entire circumference of the side surface of the substrate 9 to be metallized can be irradiated with Ar ions.

【0009】ここで、窒化アルミニウムの10×10×
5t(mm)の焼結体基板を使用してTi、Ni、Au
の3層を順にそれぞれ0.1μm、1μm、0.1μm
の厚さになるようにメタライズ処理を試みた。なお、メ
タライズ膜が緻密かどうかを判断するために、Ni層の
形成の場合にのみ図1の装置を使用し、Ti、Au層に
ついては高周波電源によるバイアスを印加せず、永久磁
石も設置しない通常のスパッタリングを行なった。表1
にNi層の成膜条件を示す。
Here, 10×10× of aluminum nitride
Ti, Ni, Au using a 5t (mm) sintered substrate
The three layers are 0.1 μm, 1 μm, and 0.1 μm in order, respectively.
I tried metallizing it to a thickness of . In addition, in order to judge whether the metallized film is dense or not, the apparatus shown in Figure 1 is used only when forming the Ni layer, and for the Ti and Au layers, no bias from a high frequency power source is applied and no permanent magnet is installed. Ordinary sputtering was performed. Table 1
2 shows the conditions for forming the Ni layer.

【0010】0010

【表1】[Table 1]

【0011】得られたメタライズ基板のPb−10%S
nのはんだを膜表面に置き、310℃、水素雰囲気で広
がらせ、次に1〜30時間、310℃で大気中の焼鈍を
行ないはんだの拡散性を評価する試料とした。得られた
材料の側面の上面から3mmの位置に接着面が2mmφ
のコバール製ピンをPb−Sn共晶はんだを用いて接合
し引張り試験を行なった。この引張り試験で得られたメ
タライズ膜の破断強度を図2に示す。また、比較例とし
て同一条件で、永久磁石を配置しないで同一のメタライ
ズを行なった場合も同図中に示した。図2で示されるよ
うに、本発明の装置で作成したメタライズ膜は30時間
の焼鈍処理を行なっても、十分な破断強度を有している
のに対し、比較例では30時間の焼鈍では破断強度が極
めて小さくなっている。これは、作成したNi膜が本発
明例では緻密であるのに対し、比較例ではポーラスな状
態であったため、はんだの拡散速度が速く、メタライズ
膜の脆化が進んだことを意味しており、本発明の装置の
優位性が確認できた。
Pb-10%S of the obtained metallized substrate
n solder was placed on the film surface, spread at 310°C in a hydrogen atmosphere, and then annealed in the air at 310°C for 1 to 30 hours to provide a sample for evaluating solder diffusivity. The adhesive surface is 2 mmφ at a position 3 mm from the top surface of the side surface of the obtained material.
Kovar pins were joined using Pb-Sn eutectic solder and a tensile test was conducted. The breaking strength of the metallized film obtained in this tensile test is shown in FIG. Further, as a comparative example, a case where the same metallization was performed under the same conditions without arranging a permanent magnet is also shown in the figure. As shown in Figure 2, the metallized film created using the apparatus of the present invention has sufficient breaking strength even after 30 hours of annealing, whereas the comparative example did not break after 30 hours of annealing. The strength is extremely low. This means that the produced Ni film was dense in the inventive example, but porous in the comparative example, so the solder diffusion rate was faster and the metallized film became more brittle. , the superiority of the device of the present invention was confirmed.

【0012】0012

【発明の効果】本発明によれば、従来のバイアススパッ
タ装置では、不可能であったターゲットと対向しない面
のメタライズ膜の緻密化が可能となり、はんだの拡散に
よるメタライズ膜の脆化の防止が可能になった。
[Effects of the Invention] According to the present invention, it is possible to densify the metallized film on the surface not facing the target, which was impossible with conventional bias sputtering equipment, and to prevent the metallized film from becoming brittle due to solder diffusion. It's now possible.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明の装置の一実施例を示す構成図で
ある。
FIG. 1 is a block diagram showing an embodiment of the apparatus of the present invention.

【図2】本発明例と比較例により得えられたメタライズ
膜の破断強度を比較した図である。
FIG. 2 is a diagram comparing the breaking strengths of metallized films obtained in inventive examples and comparative examples.

【符号の説明】[Explanation of symbols]

1  ターゲット 2  直流電源 3  マッチング回路 4  高周波電源 5  真空槽 6  公転テーブル 7  自転テーブル 8  永久磁石 9  被メタライズ基板 10  Arガスの導入口 11  排気口 1 Target 2 DC power supply 3 Matching circuit 4 High frequency power supply 5 Vacuum chamber 6. Revolution table 7. Rotating table 8 Permanent magnet 9 Substrate to be metalized 10 Ar gas inlet 11 Exhaust port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  被メタライズ材料の乗るテーブルを高
周波電源に接続したバイアススパッタリング装置であっ
て、直流電源に接続したスパッタリングターゲットと略
対向するように配置した被メタライズ材料と、該被メタ
ライズ材料近傍に荷電粒子の入射方向を湾曲させる磁石
を配置したことを特徴とするセラミックス材料のメタラ
イズ処理装置。
1. A bias sputtering apparatus in which a table on which a material to be metallized is placed is connected to a high frequency power source, the material to be metallized being placed substantially opposite to a sputtering target connected to a DC power source, and a table in the vicinity of the material to be metallized being placed on the sputtering target. A metallization processing apparatus for ceramic materials, characterized in that a magnet is arranged to curve the direction of incidence of charged particles.
JP9641191A 1991-04-02 1991-04-02 Metallizing treatment device for ceramic material Pending JPH04305081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9641191A JPH04305081A (en) 1991-04-02 1991-04-02 Metallizing treatment device for ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9641191A JPH04305081A (en) 1991-04-02 1991-04-02 Metallizing treatment device for ceramic material

Publications (1)

Publication Number Publication Date
JPH04305081A true JPH04305081A (en) 1992-10-28

Family

ID=14164231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9641191A Pending JPH04305081A (en) 1991-04-02 1991-04-02 Metallizing treatment device for ceramic material

Country Status (1)

Country Link
JP (1) JPH04305081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154196A1 (en) * 2008-06-17 2009-12-23 株式会社シンクロン Bias sputtering apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154196A1 (en) * 2008-06-17 2009-12-23 株式会社シンクロン Bias sputtering apparatus
JP4503702B2 (en) * 2008-06-17 2010-07-14 株式会社シンクロン Bias sputtering equipment
JPWO2009154196A1 (en) * 2008-06-17 2011-12-01 株式会社シンクロン Bias sputtering equipment

Similar Documents

Publication Publication Date Title
JP3231900B2 (en) Film forming equipment
KR100631275B1 (en) Sputtering target producing few particles or backing plate and sputtering method producing few particles
KR100515906B1 (en) Sputtering target producing few particles
JP4672834B2 (en) Method for joining sputtering target to receiving plate
US6241857B1 (en) Method of depositing film and sputtering apparatus
JPH02288213A (en) Thin film terminal of low inductance ceramic capacitor and its manufacture
US5217589A (en) Method of adherent metal coating for aluminum nitride surfaces
US5419822A (en) Method for applying a thin adherent layer
JPH0229634B2 (en)
KR100616765B1 (en) Diffusion bonded sputter target assembly and method of making same
JPH04305081A (en) Metallizing treatment device for ceramic material
JP3176089B2 (en) Manufacturing method of ceramic circuit board
JP3573218B2 (en) Thin film manufacturing method
JPS60224778A (en) Ceramic coated hard parts
JP3038287B2 (en) Thin film production equipment
JPH0649637A (en) Bias sputtering method
JPH0499173A (en) Sputtering system
JPH02156066A (en) Method for cleaning base material
JPH02164784A (en) Production of ceramic circuit board
JPS6187866A (en) Method for vapor-depositing aluminum
JPS637364A (en) Bias sputtering device
JP4918191B2 (en) Deposition method
JPS6324060A (en) Target of sputtering device
JPH04346651A (en) Metallizing method
JPH06207268A (en) Sputtering target and its production