JPH064900B2 - Corrosion resistance High strength Ni-based alloy - Google Patents

Corrosion resistance High strength Ni-based alloy

Info

Publication number
JPH064900B2
JPH064900B2 JP59267769A JP26776984A JPH064900B2 JP H064900 B2 JPH064900 B2 JP H064900B2 JP 59267769 A JP59267769 A JP 59267769A JP 26776984 A JP26776984 A JP 26776984A JP H064900 B2 JPH064900 B2 JP H064900B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy
less
high strength
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59267769A
Other languages
Japanese (ja)
Other versions
JPS61147834A (en
Inventor
力蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59267769A priority Critical patent/JPH064900B2/en
Publication of JPS61147834A publication Critical patent/JPS61147834A/en
Publication of JPH064900B2 publication Critical patent/JPH064900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は硫酸、塩酸、フッ酸等の非酸化性の酸に対する
良好な耐食性を有する高強度Ni基合金に関する。
TECHNICAL FIELD The present invention relates to a high-strength Ni-based alloy having good corrosion resistance to non-oxidizing acids such as sulfuric acid, hydrochloric acid, and hydrofluoric acid.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

硫酸、塩酸、フッ酸などの非酸化性の酸に対して良好な
耐食性を有する合金としては、アロイ625やハステロイ
Cなどの固溶強化型Ni基合金が知られている。しかしこ
れらの合金はいずれも強度が十分でなく、その引張強さ
は通常の熱処理状態では100Kgf/mm2以下である。
Solid solution strengthened Ni-based alloys such as Alloy 625 and Hastelloy C are known as alloys having good corrosion resistance to non-oxidizing acids such as sulfuric acid, hydrochloric acid and hydrofluoric acid. However, none of these alloys has sufficient strength, and the tensile strength thereof is 100 Kgf / mm 2 or less under ordinary heat treatment conditions.

一方、アロイ718などの析出強化型のNi基合金の中には
引張強さが110Kgf/mm2を越える高強度合金が多数存在す
るが、これらはいずれも酸に対する耐食用に開発された
ものでないため、とくに硫酸、塩酸、フッ酸などの非酸
化性の酸に対する耐食性が十分でない。また高強度耐食
材料としては17-4PHなどの析出硬化型ステンレス鋼があ
るが、これらは硝酸などの酸化性の酸に対しては十分な
耐食性を有するものの、硫酸、塩酸、フッ酸などの非酸
化性の酸に対してはほとんど耐食性がない。従って、樹
脂やゴム等の成形装置部品、電気メッキ用部品、半導体
製造装置部品などの用途に対して、従来合金は寿命が短
いという欠点があった。
On the other hand, among precipitation-strengthened Ni-based alloys such as Alloy 718, there are many high-strength alloys with a tensile strength exceeding 110 Kgf / mm 2 , but none of these were developed for corrosion resistance to acids. Therefore, the corrosion resistance to non-oxidizing acids such as sulfuric acid, hydrochloric acid and hydrofluoric acid is not sufficient. Precipitation hardening type stainless steels such as 17-4PH are also used as high strength corrosion resistant materials, but although these have sufficient corrosion resistance to oxidizing acids such as nitric acid, they do not contain sulfuric acid, hydrochloric acid, hydrofluoric acid, etc. It has almost no corrosion resistance to oxidizing acids. Therefore, the conventional alloy has a shortcoming that its life is short for applications such as molding equipment parts such as resin and rubber, electroplating parts, and semiconductor manufacturing equipment parts.

本発明の目的は硫酸、塩酸、フッ酸などの非酸化性の酸
に対する良好な耐食性を有する高強度Ni基合金を提供す
ることである。
An object of the present invention is to provide a high strength Ni-based alloy having good corrosion resistance to non-oxidizing acids such as sulfuric acid, hydrochloric acid and hydrofluoric acid.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のNi基合金は、重量で4〜16%のCr、9〜20%の
Mo、0.2〜1.0%のAl、1.0%を越え4%以下のTi、10%
以下のFe及び0.1%以下のCと、6%以下のNb及び12%
以下のTaの1種又は2種とを含み、Ti+1/2Nb+1/4Taが2
〜5%であり、残部は不純物以外実質的にNiよりなる。
The Ni-based alloy of the present invention contains 4 to 16% by weight of Cr and 9 to 20% by weight.
Mo, 0.2-1.0% Al, Ti more than 1.0% and less than 4%, 10%
Fe below and C below 0.1%, Nb below 6% and 12%
1 or 2 of the following Ta is included, and Ti + 1 / 2Nb + 1 / 4Ta is 2
.About.5%, and the balance is substantially Ni except impurities.

Crは耐食性を高めるのに必要な元素である。最低4%な
いと有効な耐食効果が得られないが、16%を越えると有
害な金属間化合物を生成し、合金の延性を低める。従っ
て、Crは4〜16%である。好ましいCrの範囲は7〜14%
である。
Cr is an element necessary to enhance corrosion resistance. If it is at least 4%, an effective corrosion resistance cannot be obtained, but if it exceeds 16%, harmful intermetallic compounds are formed and the ductility of the alloy is lowered. Therefore, Cr is 4 to 16%. The preferred Cr range is 7 to 14%
Is.

Moは非酸化性の酸に対する耐食性を高めるのに不可欠な
元素であり、最低9%は必要であるが20%を越えると有
害な金属間化合物を生成しかえって耐食性を低下させる
と同時に合金の延性を低め、また熱間加工性を劣化させ
る。従って、Moは9〜20%である。好ましい範囲は10〜
17%である。
Mo is an indispensable element for enhancing the corrosion resistance to non-oxidizing acid, and at least 9% is necessary, but if it exceeds 20%, harmful intermetallic compounds are produced, which lowers the corrosion resistance and at the same time the ductility of the alloy. Lowers the hot workability. Therefore, Mo is 9 to 20%. The preferred range is 10 to
17%.

Alはγ′相あるいはγ″相を安定に析出させるために不
可欠な元素であり、最低0.2%は必要であるが、1.0%を
越えると熱間加工性を悪くする。従って、Alは0.2〜1.0
%である。好ましい範囲は0.3〜1.0%、特に0.4〜0.6%
である。
Al is an essential element for stably precipitating the γ'phase or the γ "phase, and at least 0.2% is necessary, but if it exceeds 1.0%, the hot workability deteriorates. 1.0
%. The preferred range is 0.3-1.0%, especially 0.4-0.6%
Is.

TiはNi3(Al,Ti)で表わされるγ′相を生成し、析出強化
するのに不可欠な元素であり、1.0%を越えることが必
要であるが、4%を越えると熱間加工性が劣化するの
で、1.0%を越え4%以下に限定する。好ましい範囲
は1.0%を越え3%以下、特に1.0%を越え2%以
下である。
Ti is an element indispensable for strengthening the precipitation by forming the γ'phase represented by Ni 3 (Al, Ti). It is necessary to exceed 1.0%, but if it exceeds 4%, hot workability Is deteriorated, so it is limited to more than 1.0% and 4% or less. A preferred range is more than 1.0% and 3% or less, and particularly more than 1.0% and 2% or less.

Feは熱間加工性を高める作用があるので、若干量は有用
であるが、過度に多くなると耐食性および強度を劣化さ
せるので10%以下に限定する。好ましくは8%以下であ
る。
Fe has a function of enhancing hot workability, so a small amount is useful, but if it is excessively large, corrosion resistance and strength are deteriorated, so the content is limited to 10% or less. It is preferably 8% or less.

CはTi、Mo、Taなどと結びついて安定なMC型炭化物を生成
し、固溶化処理に際してオーステナイト結晶粒の過度の
粗大化を防止する役割りを果すので若干量は必要である
が、Cが0.1%を越えると炭化物を過度に生成し、熱間
加工性を害するので、Cは0.1%以下に限定する。好ま
しくは0.01〜0.05%である。
C combines with Ti, Mo, Ta, etc. to form stable MC-type carbides and plays a role of preventing excessive coarsening of austenite crystal grains during solution treatment, so a small amount of C is necessary. If it exceeds 0.1%, carbides are excessively formed and the hot workability is impaired, so C is limited to 0.1% or less. It is preferably 0.01 to 0.05%.

NbまたはTaはNi3(Al、Nb、Ta)で表わされるγ″相を生
成する。γ″相はγ′相と同様析出強化作用があるの
で、一部のγ′相をγ″相で置換することができる。同
一析出量あたりの析出強化効果はγ″の方がγ′よりむ
しろ大きいので、若干量のγ″が存在することが望まし
いが、γ″はγ′より延性低下作用が大きいので、すべ
てのγ′をγ″で置換することは延性を極端に低下して
好ましくない。またγ″を生成するのに必要なNbあるい
はTaのいずれも過度に添加量が多くなると熱間加工性を
著しく劣化させるので、NbおよびTaはそれぞれ6%およ
び12%以下に限定する。好ましくはNbは5%以下、Taは
8%以下である。
Nb or Ta forms a γ ″ phase represented by Ni 3 (Al, Nb, Ta). Since the γ ″ phase has a precipitation strengthening action similar to the γ ′ phase, a part of the γ ′ phase is converted to the γ ″ phase. Since γ ″ has a larger precipitation strengthening effect per the same precipitation amount than γ ′, it is desirable that a small amount of γ ″ be present, but γ ″ has a ductility lowering effect than γ ′. Since it is large, it is not preferable to replace all γ ′ with γ ″, because ductility is extremely reduced, and if Nb or Ta necessary to form γ ″ is excessively added, the hot work Nb and Ta are limited to 6% and 12% or less, respectively, because they significantly deteriorate the workability. Preferably, Nb is 5% or less and Ta is 8% or less.

Ti,Nb及びTaはいずれもNi3(Al、Ti、Nb、Ta)型の析出強化
相を生成する元素であり、相互に互換性があるが、析出
強化相の量が少なすぎると十分な強度が得られず、また
多すぎると延性を低下し、熱間加工性を劣化させる。従
って、これらの元素の総量は同一元素当量で換算した場
合ある一定の範囲になければならない。NbおよびTaの原
子量はTiのそれに対し、それぞれほぼ2倍及び4倍であ
るので、Ti当量をTi+1/2Nb+1/4Taで表わせば、本発明
合金の場合、この量が2〜5%の範囲にあることが必要
である。好ましい範囲は2.5〜4%である。
Ti, Nb, and Ta are elements that generate Ni 3 (Al, Ti, Nb, Ta) type precipitation strengthening phases, and they are compatible with each other, but if the amount of precipitation strengthening phase is too small, it is sufficient. If the strength is not obtained and the amount is too large, the ductility is lowered and the hot workability is deteriorated. Therefore, the total amount of these elements must be within a certain range when converted with the same element equivalent. Since the atomic weights of Nb and Ta are approximately twice and four times that of Ti, respectively, if the Ti equivalent is expressed as Ti + 1 / 2Nb + 1 / 4Ta, then in the case of the alloy of the present invention, this amount is in the range of 2-5%. It is necessary to be. The preferred range is 2.5-4%.

Niは本発明合金を構成する基本元素であり、γ′及び
γ″相を生成し、またオーステナイトマトリックスを安
定化する作用がある。
Ni is a basic element that constitutes the alloy of the present invention, and has the functions of forming γ ′ and γ ″ phases and stabilizing the austenite matrix.

本発明合金に通常含まれる不純物元素としては、Si、M
n、P、S、Mg、Ca、O、N等がある。これらはそれぞ
れ下記の範囲であれば、合金の特性を本質的にそこなう
ことはない。
The impurity elements usually contained in the alloy of the present invention include Si and M.
n, P, S, Mg, Ca, O, N, etc. Each of these does not substantially impair the properties of the alloy within the following ranges.

Si 0.5%以下 Mn 1.0%以下 P 0.05%以下 S 0.05%以下 Mg 0.05%以下 Ca 0.03%以下 O 0.01%以下 N 0.02%以下 本発明合金は950〜1150℃で固溶化処理後600〜800℃で
時効処理を施すことによってその高強度特性が付与され
る。
Si 0.5% or less Mn 1.0% or less P 0.05% or less S 0.05% or less Mg 0.05% or less Ca 0.03% or less O 0.01% or less N 0.02% or less The alloy of the present invention is solution treated at 950 to 1150 ° C and 600 to 800 ° C. The high strength property is imparted by performing the aging treatment.

〔実施例〕〔Example〕

第1表に示す組成の本発明合金及び従来合金を製造し、
第2表に示す条件で熱処理を施した。第1表のうちNO.1
0とNO.11はそれぞれ固溶強化型Ni基合金であるアロイ62
5及びハステロイCであり、NO.12は析出強化型Ni基合金
のアロイ718であり、NO.13は析出硬化型ステンレス鋼の
17-4PHである。
Inventive alloys and conventional alloys having the compositions shown in Table 1 were produced,
The heat treatment was performed under the conditions shown in Table 2. No. 1 in Table 1
0 and NO.11 are alloy 62, which is a solid solution strengthened Ni-based alloy, respectively.
5 and Hastelloy C, NO.12 is precipitation strengthened Ni-based alloy Alloy 718, and NO.13 is precipitation hardened stainless steel.
It is 17-4PH.

各合金について、それぞれ10%硫酸の沸騰水溶液、5%
塩酸の沸騰水溶液及び25%フッ酸の室温水溶液中におけ
る腐食速度を測定した。さらに、室温における機械的性
質として0.2%耐力、引張強さ、伸び、絞り及び硬さを
測定した。結果を第3表に示す。
For each alloy, boiling water solution of 10% sulfuric acid, 5%
Corrosion rates were measured in boiling hydrochloric acid and 25% hydrofluoric acid at room temperature. Furthermore, 0.2% proof stress, tensile strength, elongation, drawing and hardness were measured as mechanical properties at room temperature. The results are shown in Table 3.

第3表から本発明合金のH2SO4、HCl及びHFなどの非酸化
性の酸に対する耐食性はアロイ625やハステロイCとほ
ぼ同等レベルであり、従来の析出強化型Ni基合金のアロ
イ718に比べれば格段に優れていることがわかる。ま
た、17-4PHのような析出硬化型ステンレス鋼は非酸化性
の酸に対してほとんど耐食性をもたないことがわかる。
From Table 3, the corrosion resistance of the alloy of the present invention to non-oxidizing acids such as H 2 SO 4 , HCl and HF is almost the same level as Alloy 625 and Hastelloy C, and it is the same as that of the conventional precipitation strengthened Ni-based alloy Alloy 718. By comparison, it can be seen that it is significantly superior. It is also understood that precipitation hardening type stainless steel such as 17-4PH has almost no corrosion resistance to non-oxidizing acid.

一方本発明合金の強度はアロイ625やハステロイCより
格段に高いことも第3表からわかる。
On the other hand, Table 3 also shows that the strength of the alloy of the present invention is significantly higher than that of Alloy 625 and Hastelloy C.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明合金は硫酸、塩酸、フッ酸な
どの非酸化性の酸に対する良好な耐食性と高強度を兼ね
そなえている。従って、各種電気メッキ用コンダクター
ロール、塩素やフッ素を含むプラスチックの射出成形用
金型、スクリューなど、非酸化性の酸に対する耐食性と
高強度(高硬度)の両方が要求される部品に有利に使用
することができる。
As described above, the alloy of the present invention has both good corrosion resistance and high strength against non-oxidizing acids such as sulfuric acid, hydrochloric acid and hydrofluoric acid. Therefore, it is advantageously used for parts that require both corrosion resistance and high strength (high hardness) against non-oxidizing acid, such as conductor rolls for various electroplating, metal molds for injection molding of plastics containing chlorine and fluorine, screws, etc. can do.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量で4〜16%のCr、9〜20%のMo、0.2〜
1.0%のAl、1.0%を越え4%以下のTi、10%以下のFe及び0.1
%以下のCと、6%以下のNb及び12%以下のTaの1種又は2
種とを含み、Ti+1/2Nb+1/4Taが2〜5%であり、残部は不
純物以外実質的にNiよりなり、非酸化性の酸に対して良
好な耐食性を有する高強度Ni基合金。
1. By weight, 4-16% Cr, 9-20% Mo, 0.2-
1.0% Al, more than 1.0% and less than 4% Ti, less than 10% Fe and 0.1
% Or less C, 6% or less Nb and 12% or less Ta, 1 or 2
Including a seed, Ti + 1 / 2Nb + 1 / 4Ta is 2 to 5%, and the balance is substantially Ni except impurities, and is a high-strength Ni group having good corrosion resistance to a non-oxidizing acid. alloy.
JP59267769A 1984-12-19 1984-12-19 Corrosion resistance High strength Ni-based alloy Expired - Lifetime JPH064900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59267769A JPH064900B2 (en) 1984-12-19 1984-12-19 Corrosion resistance High strength Ni-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267769A JPH064900B2 (en) 1984-12-19 1984-12-19 Corrosion resistance High strength Ni-based alloy

Publications (2)

Publication Number Publication Date
JPS61147834A JPS61147834A (en) 1986-07-05
JPH064900B2 true JPH064900B2 (en) 1994-01-19

Family

ID=17449329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267769A Expired - Lifetime JPH064900B2 (en) 1984-12-19 1984-12-19 Corrosion resistance High strength Ni-based alloy

Country Status (1)

Country Link
JP (1) JPH064900B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044493A1 (en) 1997-03-27 1998-10-08 Matsushita Electric Industrial Co., Ltd. Recording and reproducing method for optical information recording medium and optical information recording medium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731117A (en) * 1986-11-04 1988-03-15 Crucible Materials Corporation Nickel-base powder metallurgy alloy
JPS6473047A (en) * 1987-09-14 1989-03-17 Kubota Ltd Electrifying roll alloy for electroplating
JPH01219134A (en) * 1988-02-26 1989-09-01 Kubota Ltd Alloy for electric conductive roll in electroplating equipment
JP3781402B2 (en) * 1999-03-03 2006-05-31 三菱重工業株式会社 Low thermal expansion Ni-base superalloy
US7160400B2 (en) 1999-03-03 2007-01-09 Daido Tokushuko Kabushiki Kaisha Low thermal expansion Ni-base superalloy
US6860948B1 (en) 2003-09-05 2005-03-01 Haynes International, Inc. Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
KR20030003017A (en) * 2001-06-28 2003-01-09 하이네스인터내셔널인코포레이티드 TWO STEP AGING TREATMENT FOR Ni-Cr-Mo ALLOYS
KR20030003016A (en) * 2001-06-28 2003-01-09 하이네스인터내셔널인코포레이티드 AGING TREATMENT FOR Ni-Cr-Mo ALLOYS
JP6041345B2 (en) * 2013-01-29 2016-12-07 日立金属Mmcスーパーアロイ株式会社 Ni-base alloy excellent in corrosion resistance to fluoride molten salt and device component made of Ni-base alloy
WO2015083655A1 (en) * 2013-12-05 2015-06-11 株式会社テイエルブイ Float, and steam trap
DE102020106433A1 (en) * 2019-03-18 2020-09-24 Vdm Metals International Gmbh Nickel alloy with good corrosion resistance and high tensile strength as well as a process for the production of semi-finished products

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857501B2 (en) * 1980-09-29 1983-12-20 三菱製鋼株式会社 Current roll for electroplating
JPS6199650A (en) * 1984-10-22 1986-05-17 Kubota Ltd Alloy for electrically conductive roll
JPS6199653A (en) * 1984-10-22 1986-05-17 Kubota Ltd Electrically conductive roll

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044493A1 (en) 1997-03-27 1998-10-08 Matsushita Electric Industrial Co., Ltd. Recording and reproducing method for optical information recording medium and optical information recording medium

Also Published As

Publication number Publication date
JPS61147834A (en) 1986-07-05

Similar Documents

Publication Publication Date Title
EP0262673B1 (en) Corrosion resistant high strength nickel-base alloy
JP3049767B2 (en) Ti alloy with excellent heat resistance
EP0132055B1 (en) Precipitation-hardening nickel-base alloy and method of producing same
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JPH064900B2 (en) Corrosion resistance High strength Ni-based alloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP2533481B2 (en) Non-magnetic high strength stainless steel and method for producing the same
JP3546421B2 (en) High-strength, high corrosion-resistant nitrogen-containing austenitic stainless steel
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JPH0798983B2 (en) Nitrogen reinforced Fe-Ni-Cr alloy
JP3304001B2 (en) Austenitic stainless steel excellent in pitting corrosion resistance and method for producing the same
JP3169977B2 (en) ▲ high ▼ strength non-magnetic stainless steel
JP2668113B2 (en) Method for producing high-strength non-magnetic stainless steel material with excellent workability
JP3265610B2 (en) Nickel-base heat-resistant alloy with excellent workability
US3677744A (en) Age hardening stainless steel
US5116570A (en) Stainless maraging steel having high strength, high toughness and high corrosion resistance and it's manufacturing process
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JPH08157987A (en) High strength and high ductility titanium alloy
US2803539A (en) Fe-cr-ni alloys
JP2628702B2 (en) Spheroidal graphite cast iron for austempering
JP2934089B2 (en) Manufacturing method of maraging steel
JP3230269B2 (en) Nickel-base heat-resistant alloy with excellent workability
JP3499275B2 (en) Precipitation hardening stainless steel
JPH06306456A (en) Production of high strength austenitic steel parts
JPH06336658A (en) High strength and high toughness ni-co steel