JPH0648073B2 - Polyester fiber reinforced water supply hose - Google Patents

Polyester fiber reinforced water supply hose

Info

Publication number
JPH0648073B2
JPH0648073B2 JP61001895A JP189586A JPH0648073B2 JP H0648073 B2 JPH0648073 B2 JP H0648073B2 JP 61001895 A JP61001895 A JP 61001895A JP 189586 A JP189586 A JP 189586A JP H0648073 B2 JPH0648073 B2 JP H0648073B2
Authority
JP
Japan
Prior art keywords
polyester fiber
water supply
supply hose
hose
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61001895A
Other languages
Japanese (ja)
Other versions
JPS62159882A (en
Inventor
四郎 熊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP61001895A priority Critical patent/JPH0648073B2/en
Publication of JPS62159882A publication Critical patent/JPS62159882A/en
Publication of JPH0648073B2 publication Critical patent/JPH0648073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリエステル繊維を補強材として使用した送
水ホースに関する。
TECHNICAL FIELD The present invention relates to a water supply hose using a polyester fiber as a reinforcing material.

(従来の技術) 従来から、ゴム、ポリ塩化ビニールなどからなる送水ホ
ースの補強材としては、安価なレーヨンが用いられてい
た。
(Prior Art) Conventionally, inexpensive rayon has been used as a reinforcing material for a water supply hose made of rubber, polyvinyl chloride, or the like.

(発明が解決しようとする問題点) このように、レーヨンを補強材として使用した送水ホー
スは、耐久性が劣り、特に東南アジアの高温多湿地帯で
使用する場合は、その使用寿命が著しく短かくなるとい
う問題があった。
(Problems to be solved by the invention) As described above, a water supply hose using rayon as a reinforcing material has poor durability, and its service life becomes extremely short particularly when used in a hot and humid area of Southeast Asia. There was a problem.

本発明の目的はかかる従来の問題点を解消し、耐久性、
特に湿熱耐久性に優れ、しかも安価な送水ホースを提供
することにある。
The object of the present invention is to solve the above conventional problems, durability,
In particular, it is to provide a water supply hose which has excellent wet heat durability and is inexpensive.

(問題点を解決するための手段) 本発明は、エチレンテレフタレートを主たる繰返単位と
した極限粘度が0.9以上のポリエステルよりなり、出発
原糸として結晶性未延伸糸を使用して得た延伸糸であっ
て、初期モデュラスが90g/de以上、耐湿熱係数が0.6以
上であるポリエステル繊維を補強材として使用したこと
を特徴とするポリエステル繊維補強送水ホースである。
(Means for Solving Problems) The present invention is a drawn yarn obtained by using a crystalline undrawn yarn as a starting raw yarn, which is made of polyester having ethylene terephthalate as a main repeating unit and an intrinsic viscosity of 0.9 or more. The polyester fiber reinforced water supply hose is characterized in that a polyester fiber having an initial modulus of 90 g / de or more and a moisture and heat resistance coefficient of 0.6 or more is used as a reinforcing material.

本発明で用いられるポリエステル繊維を構成するポリマ
ーは、分子鎖中にエチレンテレフタレート繰返し単位を
90モル%以上、好ましくは95モル%以上含むポリエステ
ルである。かかるポリエステルとしてはポリエチレンテ
レフタレートが好適であるが、10モル%未満、好ましく
は5モル%未満の割合で他の共重合成分を含んでも差し
つかえない。このような共重合成分としては例えばイソ
フタル酸、ナフタレンジカルボン酸、アジピン酸、オキ
シ安息香酸、ジエチレングリコール、プロピレングリコ
ール、トリメリット酸、ベンタエリスリトール等があげ
られる。又これらのポリエステルには安定剤、着色剤等
の添加剤を含んでも差しつかえない。
The polymer constituting the polyester fiber used in the present invention has an ethylene terephthalate repeating unit in the molecular chain.
A polyester containing 90 mol% or more, preferably 95 mol% or more. Polyethylene terephthalate is preferable as such a polyester, but it is acceptable to include other copolymerization components in a proportion of less than 10 mol%, preferably less than 5 mol%. Examples of such a copolymerization component include isophthalic acid, naphthalenedicarboxylic acid, adipic acid, oxybenzoic acid, diethylene glycol, propylene glycol, trimellitic acid, and bentaerythritol. Further, these polyesters may contain additives such as stabilizers and colorants.

本発明で用いられるポリエステル繊維は、25℃O−クロ
ロフェノール溶液から求めた極限粘度が0.90以上である
ことが必要である。極限粘度が0.90未満では高強度なポ
リエステル繊維が得られず、十分なホース強力を維持す
ることができない。極限粘度としては、0.9〜1.3が好ま
しい。
The polyester fiber used in the present invention needs to have an intrinsic viscosity of 0.90 or more determined from a 25 ° C. O-chlorophenol solution. If the intrinsic viscosity is less than 0.90, high-strength polyester fiber cannot be obtained and sufficient hose strength cannot be maintained. The intrinsic viscosity is preferably 0.9 to 1.3.

また、本発明で用いられるポリエステル繊維は、初期モ
デュラスが90g/de以上であることが必要である。初期モ
デュラスが90g/de未満では、ホースの寸法安定性が不良
となる。
The polyester fiber used in the present invention must have an initial modulus of 90 g / de or more. If the initial modulus is less than 90 g / de, the hose will have poor dimensional stability.

更に、本発明で用いられるポリエステル繊維は、耐湿熱
係数が0.6以上であることが必要である。耐湿熱係数が
0.6未満では、ホースの耐久性が劣ったものとなってし
まう。ここで、耐湿熱係数とは、ポリエステル繊維を湿
熱140℃で24時間加熱処理し、その加熱処理前の強度を
、加熱処理後の強度をSとしたとき、S/S
で表わされるものである。従来から送水ホースの補強材
に用いられているレーヨンの耐湿熱係数は0.5前後と低
い値を示す。
Furthermore, the polyester fiber used in the present invention is required to have a moisture heat resistance coefficient of 0.6 or more. Moisture and heat resistance coefficient
If it is less than 0.6, the hose will have poor durability. Here, the moist heat resistance coefficient is S 1 / S 0 when the polyester fiber is heat-treated at 140 ° C. for 24 hours and the strength before the heat treatment is S 0 and the strength after the heat treatment is S 1.
Is represented by. The moisture heat resistance coefficient of rayon, which has been conventionally used as a reinforcing material for water supply hoses, is as low as around 0.5.

本発明で用いられるポリエステル繊維は例えば以下の方
法で得られる。
The polyester fiber used in the present invention is obtained, for example, by the following method.

エチレンテレフタレートを主たる繰返単位とする極限粘
度が0.95〜1.5のポリエステル又は極限粘度が0.7〜0.9
のポリエステルに重合促進剤を反応させて常法により溶
融輸送し、紡糸口金より、延伸後の繊度が1〜20de、全
デニール500〜2000deになる如く糸条に吐出し、吐出後
直ちに急冷するか、融点以下結晶化開始温度までの温度
に保温するか、又は、融点以上の温度の加熱雰囲気中
に、ある時間さらして遅延冷却を行う。その後、糸条を
冷却固化させるが、その際以下の条件のもとで冷却固化
させることが有用である。
Polyester with ethylene terephthalate as the main repeating unit and an intrinsic viscosity of 0.95 to 1.5 or an intrinsic viscosity of 0.7 to 0.9
Polymerization accelerator is reacted with polyester of No. 1 and melt-transported by an ordinary method, and then discharged from the spinneret to a yarn with a fineness of 1 to 20 de after stretching and a total denier of 500 to 2000 de, and immediately cooled immediately after discharging. The temperature is kept below the melting point up to the crystallization start temperature, or exposed to a heating atmosphere having a temperature above the melting point for a certain period of time to perform delayed cooling. After that, the yarn is cooled and solidified. At this time, it is useful to cool and solidify under the following conditions.

〔Xは紡糸口金面から冷却風(室温)の吹出し面までの
距離で450mm以下、yは冷却風の吹出し長さで100〜500m
m、Qは冷却風の吹出し量で2〜6Nm/分〕 次いで、上記の如く冷却固化させた後、油剤を付与後20
00m/分以上の速度で引取る。油剤付与は例えばオイリ
ングローラー方式、スプレー方式など、随意の方式で可
能である。また、油剤は、必要に応じて任意の繊維用油
剤を適用することが可能である。この際、ゴム、ポリ塩
化ビニール等に対する接着性を付与するために、表面処
理剤を付与することが有用である。
[X is the distance from the spinneret surface to the cooling air (room temperature) blowing surface of 450 mm or less, and y is the blowing length of the cooling air of 100 to 500 m.
m and Q are the amount of cooling air blown out from 2 to 6 Nm 3 / min] Then, after cooling and solidifying as described above, after applying the oil agent, 20
Collect at a speed of 00m / min or more. The oil agent can be applied by any method such as an oiling roller method or a spray method. As the oil agent, any fiber oil agent can be applied as necessary. At this time, it is useful to add a surface treatment agent in order to impart adhesiveness to rubber, polyvinyl chloride and the like.

上述の条件を随時に選択することにより、極限粘度が0.
90以上で切断伸度が150%以下の結晶性未延伸繊維であ
って、結晶化度Xxと複屈折率△nとが Xx=2.4×102×Δn+4 〔ここで、XxはX線広角回折による結晶化度、Δnは
複屈折率で0.06以上〕 の関係を満足し、複屈折率が0.06以上の未延伸繊維が得
られる。
By selecting the above conditions from time to time, the intrinsic viscosity will be 0.
A crystalline unstretched fiber having a breaking elongation of 90% or more and a breaking elongation of 150% or less, the crystallinity Xx and the birefringence Δn are Xx = 2.4 × 10 2 × Δn + 4 [where Xx is X-ray wide angle diffraction And the crystallinity of Δn is 0.06 or more in birefringence], and an unstretched fiber having a birefringence of 0.06 or more can be obtained.

このような未延伸繊維は、また、紡糸口金から吐出後引
取までの吐出繊維のドラフト率を300〜7000とし、紡糸
口金のオリフィス径を0.55〜2.5mmとし、かつ引取速度
を2000〜6000m/分とすることによっても得ることがで
きる。ここで、ドラフト率はポリマーの吐出線速度(オ
リフィス出口速度)に対する繊維の引取速度の比であ
る。
Such unstretched fibers also have a draft ratio of the discharged fibers from the spinneret to after discharge of 300 to 7,000, an orifice diameter of the spinneret of 0.55 to 2.5 mm, and a take-up speed of 2000 to 6000 m / min. Can also be obtained. Here, the draft rate is the ratio of the fiber take-up speed to the polymer discharge linear velocity (orifice outlet velocity).

本発明においては、上記の如き速度で引き取った上記特
性を有する未延伸繊維を、紡糸に続いて連続して延伸
(直延)してもよく、また、一旦捲き取った後、別工程
で延伸(別延)してもよい。特に、延伸時の延伸歪みや
熱処理歪みを少くする点では、該別延による延伸方法が
好ましい。即ち、未延伸繊維をTg+15〜Tg+50℃
(ここでTgは該繊維のガラス転移温度)で少くとも0.
5秒予熱後全延伸倍率の75%以下の倍率で第1段延伸し
て未延伸繊維の複屈折率の1.2〜3.3倍の複屈折率とす
る。次いで1段延伸糸条を更に多段熱処理する。この
際、多段延伸後繊維の融解温度−50℃から融解温度−11
0℃の範囲で0.4〜1.5秒間保持しながら0〜20%の緊張
熱処理を行なうのが好ましい。
In the present invention, the unstretched fiber having the above characteristics, which has been drawn at the above speed, may be continuously stretched (directly stretched) after spinning, or may be wound once and then stretched in a separate step. (Separate postponement). In particular, the stretching method by the separate stretching is preferable from the viewpoint of reducing stretching strain and heat treatment strain during stretching. That is, the unstretched fiber is Tg + 15 to Tg + 50 ° C.
(Where Tg is the glass transition temperature of the fiber) and is at least 0.
After preheating for 5 seconds, the first stage is drawn at a draw ratio of 75% or less of the total draw ratio to obtain a birefringence of 1.2 to 3.3 times the birefringence of the undrawn fiber. Next, the single-stage drawn yarn is further heat-treated in multiple stages. At this time, the melting temperature of the fiber after multi-stage drawing was -50 ° C to the melting temperature-11
It is preferable to perform a tension heat treatment of 0 to 20% while maintaining the temperature in the range of 0 ° C for 0.4 to 1.5 seconds.

このようにして得たポリエステル繊維は、そのままある
いは撚糸して製編織した後、のまま又は熱処理して常法
に従い樹脂ホース又はゴムホース中に配設される。
The polyester fiber obtained in this manner is placed in a resin hose or a rubber hose as it is or after being twisted and knitted and woven, and then as it is or after heat treatment according to a conventional method.

(実施例) 以下、実施例により本発明を説明する。(Examples) Hereinafter, the present invention will be described with reference to Examples.

なお、実施例中の部は全て重量部を示す。All parts in the examples are parts by weight.

実施例 ジメチルテレフタレート97部、エチレングリコール69
部、酢酸カルシウム1水塩0.034部及び三酸化アンチモ
ン0.025部をオートクレープに仕込み、窒素をゆるやか
に通じながら180〜230℃でエステル交換の結果生成する
メタノールを除去したのち、HPOの50%水溶液荷
を0.05部加えて加熱温度を280℃まで上昇させると共に
徐々に減圧に移行し、約1時間50分重合反応を続けて固
有粘度0.80、未端カルボキシル基量28当量/106グラム
ポリマーの重量体を得た。
Example 97 parts dimethyl terephthalate, 69 ethylene glycol
Parts, 0.034 parts of calcium acetate monohydrate and 0.025 parts of antimony trioxide were charged into an autoclave, and methanol produced as a result of transesterification was removed at 180 to 230 ° C while gently passing nitrogen through, and then 50% of H 3 PO 4 was added. % 0.05% aqueous solution was added to increase the heating temperature to 280 ° C and gradually reduced pressure was applied, and the polymerization reaction was continued for about 1 hour and 50 minutes, and the intrinsic viscosity was 0.80 and the amount of unterminated carboxyl group was 28 equivalent / 10 6 g polymer. Was obtained.

この重合体チップ100部に2,2′−ビス(2−オキサ
ゾリン)(CE)を第1表に示す量ドライブレンドした
後、約300℃で溶融輸送し、孔径0.60mm、孔数250個を有
する紡糸口金より吐出後、吐出糸条を第1表記載の冷条
件に保持し、その後25℃の冷却風を300mmに亘って、4.0
Nm3/分で吹きつけながら冷却固化せしめた後オイリン
グローラーで油剤を付与後、第1表記載の引取速度で捲
取った。得られた未延伸繊維の特性を第1表に示した。
After 100 parts of this polymer chip was dry-blended with 2,2'-bis (2-oxazoline) (CE) in an amount shown in Table 1, it was melt-transported at about 300 ° C to obtain a pore diameter of 0.60 mm and a number of 250 pores. After being discharged from the spinneret, the discharge yarn was maintained under the cold conditions shown in Table 1, and then a cooling air of 25 ° C was applied over 300 mm for 4.0 mm.
After cooling and solidifying while spraying at Nm 3 / min, an oiling agent was applied by an oiling roller, and then wound at the take-up speed shown in Table 1. The properties of the unstretched fibers obtained are shown in Table 1.

この未延伸繊維を85℃に加熱されたロールに供給し、取
引ロールとの間で第1表記載の倍率(DR)で第1段
延伸後325℃に加熱された気体浴を介して表記載の倍率
(DR)で第2段延伸した。その後130℃の加熱ロー
ラ、330℃の気体浴を使用して表記載の倍率(DR
で緊張熱処理した。得られた延伸糸の性能を第2表に示
した。
This unstretched fiber was supplied to a roll heated to 85 ° C., and the unstretched fiber was stretched at a draw ratio (DR 1 ) shown in Table 1 with a trading roll and then exposed through a gas bath heated to 325 ° C. The second stage drawing was performed at the indicated draw ratio (DR 2 ). Then, using a heating roller at 130 ° C and a gas bath at 330 ° C, the magnification (DR 3 ) shown in the table
It was heat treated for tension. The performance of the obtained drawn yarn is shown in Table 2.

次に、これらの延伸糸に5T/10cmの撚りをかけてコー
ドとし、RFL処理を施した後、245℃で2分間熱処理
した。この処理コード1本をスパイラル状に編組した繊
維補強層をゴム中に埋め込み、未加硫ゴムホースとし
た。次いで、該未加流ゴムホースを150℃で30分間加硫
し、内径100mm、外径105mmの送水ホースを得た。
Next, these drawn yarns were twisted at 5 T / 10 cm to form cords, subjected to RFL treatment, and then heat-treated at 245 ° C. for 2 minutes. An unvulcanized rubber hose was obtained by embedding a fiber reinforcing layer in which one piece of this treated cord was braided in a spiral shape in rubber. Then, the unblended rubber hose was vulcanized at 150 ° C. for 30 minutes to obtain a water supply hose having an inner diameter of 100 mm and an outer diameter of 105 mm.

この送水ホースの破裂強さ、寸法安定性及び湿熱耐久性
を測定した。その結果を第2表に併記した。
The burst strength, dimensional stability and wet heat durability of this water supply hose were measured. The results are also shown in Table 2.

尚、送水ホースの破裂強さ、寸法安定性、湿熱耐久性
は、前記の如く作成したホース30cmに、圧力5kg/cm2
温度150℃の湿熱蒸気を通じながら、30日間保持した
後、次の方法で評価した。
In addition, the burst strength, dimensional stability and wet heat durability of the water supply hose are 30 cm of the hose prepared as described above, pressure of 5 kg / cm 2 ,
After being kept for 30 days while passing through a steam with a temperature of 150 ° C., the evaluation was carried out by the following method.

破裂強さ :ホース表面の亀裂の有無で判定した。Bursting strength: judged by the presence or absence of cracks on the surface of the hose.

3ケ以下:〇亀裂4 ケ以上:× 寸法安定性:処理前後のホースの寸法変化を測定した。 3 or less: ○ 4 or more cracks: × Dimensional stability: The dimensional change of the hose before and after the treatment was measured.

寸法変化3%未満:◎、3〜5%:〇、 5%超:× 湿熱耐久性:ホースを分解して温熱処理前後のコードの 強力を測定し、強力維持率を求めた。 Dimensional change less than 3%: ◎, 3 to 5%: ○, more than 5%: × Wet heat durability: The hose was disassembled and the strength of the cord before and after the heat treatment was measured to obtain the strength retention rate.

強力維持率80%超:◎、60〜80%:〇、 60%未満:× 以上の結果から明らかなように、送水ホースに使用する
補強ポリエステル繊維の極限粘度が0.90未満の場合(実
験No.1)は、ホースの破裂強度が低下し、初期モデュ
ラスが90g/de未満の場合(実験No.3)は、ホースの寸
法安定性が悪くなる。また、該ポリエステル繊維の耐湿
熱係数が0.6未満の場合(実験No.5)はホースの湿熱耐
久性が悪化する。これに対し、本発明の送水ホース(実
験No.2、4、6)は優れた強力、寸法安定性、湿熱耐
久性を有している。
Strength retention rate over 80%: ◎, 60-80%: ○, less than 60%: × As is clear from the above results, when the intrinsic viscosity of the reinforced polyester fiber used in the water supply hose is less than 0.90 (Experiment No. In 1), the burst strength of the hose is reduced, and when the initial modulus is less than 90 g / de (Experiment No. 3), the hose has poor dimensional stability. Further, when the moisture heat resistance coefficient of the polyester fiber is less than 0.6 (Experiment No. 5), the wet heat durability of the hose deteriorates. On the other hand, the water supply hose of the present invention (Experiment Nos. 2, 4, and 6) has excellent strength, dimensional stability, and wet heat durability.

(発明の効果) 本発明によれば、強力、寸法安定性、湿熱耐久性に優れ
た送水ホースを提供することができる。
(Effects of the Invention) According to the present invention, it is possible to provide a water supply hose having excellent strength, dimensional stability, and wet heat durability.

また、補強材として、安価なポリエステル繊維を使用し
ているので、コストパフォーマンスに優れた送水ホース
を提供することができる。
Moreover, since inexpensive polyester fiber is used as the reinforcing material, it is possible to provide a water supply hose having excellent cost performance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エチレンテレフタレートを主たる繰返単位
とした極限粘度が0.9以上のポリエステルよりなり、出
発原糸として結晶化度Xxと複屈折率△nとが Xx=2.4×102×△n+4 を満足し、該複屈折率△nが0.06以上、且つ、切断伸度
が150%以下の結晶性未延伸糸を延伸して得た延伸糸で
あって、初期モデュラスが90g/de以上、耐湿熱係数が0.
6以上であるポリエステル繊維を補強材として使用した
ことを特徴とするポリエステル繊維補強送水ホース。
1. A polyester which has ethylene terephthalate as a main repeating unit and has an intrinsic viscosity of 0.9 or more, and has a crystallinity Xx and a birefringence Δn as Xx = 2.4 × 10 2 × Δn + 4 as a starting yarn. A drawn yarn obtained by drawing a crystalline undrawn yarn having a birefringence Δn of 0.06 or more and a breaking elongation of 150% or less, which has an initial modulus of 90 g / de or more and a moisture heat resistance. Coefficient is 0.
A polyester fiber reinforced water supply hose characterized by using a polyester fiber of 6 or more as a reinforcing material.
JP61001895A 1986-01-07 1986-01-07 Polyester fiber reinforced water supply hose Expired - Lifetime JPH0648073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61001895A JPH0648073B2 (en) 1986-01-07 1986-01-07 Polyester fiber reinforced water supply hose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61001895A JPH0648073B2 (en) 1986-01-07 1986-01-07 Polyester fiber reinforced water supply hose

Publications (2)

Publication Number Publication Date
JPS62159882A JPS62159882A (en) 1987-07-15
JPH0648073B2 true JPH0648073B2 (en) 1994-06-22

Family

ID=11514317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61001895A Expired - Lifetime JPH0648073B2 (en) 1986-01-07 1986-01-07 Polyester fiber reinforced water supply hose

Country Status (1)

Country Link
JP (1) JPH0648073B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011277B2 (en) * 1976-03-22 1985-03-25 東レ株式会社 laminated tube
JPS5874985A (en) * 1981-10-29 1983-05-06 東レ株式会社 Transport pipe for alcoholic liquid

Also Published As

Publication number Publication date
JPS62159882A (en) 1987-07-15

Similar Documents

Publication Publication Date Title
EP0169415B1 (en) Polyester fiber
JPS6141320A (en) Polyester fiber
JPS6119812A (en) Polyester fiber
JPS62156312A (en) Polyester fiber
JPH064704B2 (en) Polyester fiber for rubber hose reinforcement
JPS5927404B2 (en) polyester fiber
JPS6269819A (en) Polyester fiber
JPH0648073B2 (en) Polyester fiber reinforced water supply hose
JPH0323644B2 (en)
JPS62162017A (en) Polyester fiber for rubber hose reinforcement
JPH06108311A (en) Core-sheath type conjugate fiber and its production
JP2776003B2 (en) Method for producing polyester fiber
JPH03152215A (en) High-strength and highly durable conjugate fiber
JP2989365B2 (en) Core-sheath type polyester composite fiber
JPH0274610A (en) Conjugate fiber having high tenacity and excellent durability
JPS61289115A (en) Polyester fiber
JP2003213526A (en) Conjugate polyester fiber for stretchable woven or knit fabric
JPH05321065A (en) Tightening yarn for meat
JPH0197211A (en) Composite fiber having high strength
JPH0274611A (en) Conjugate fiber having excellent durability
JP2885814B2 (en) Polyester canvas
JPH0274612A (en) Conjugate fiber having high tenacity
JPS6258511A (en) Electrically insulating material
JPH0262612B2 (en)
JPH02154010A (en) Fiber for sling and sling

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term