JPH0645689A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH0645689A
JPH0645689A JP19727892A JP19727892A JPH0645689A JP H0645689 A JPH0645689 A JP H0645689A JP 19727892 A JP19727892 A JP 19727892A JP 19727892 A JP19727892 A JP 19727892A JP H0645689 A JPH0645689 A JP H0645689A
Authority
JP
Japan
Prior art keywords
layer
face
window layer
active layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19727892A
Other languages
Japanese (ja)
Inventor
Akihiro Matsumoto
晃広 松本
Kazuaki Sasaki
和明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19727892A priority Critical patent/JPH0645689A/en
Publication of JPH0645689A publication Critical patent/JPH0645689A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enhance a barrier of a conduction band or a valence band from an active layer to a window layer, to suppress leakage of carrier from the active layer to the window layer and to prevent deterioration of an end face of a resonator by doping it with impurities, and enhancing carrier concentration of the window layer formed at the end face of the resonator in which a light is irradiated. CONSTITUTION:A p-type AlXGa1-XAs clad layer 11, a p-type AlXGa1-XAs active layer 12, an n-type AlXGa1-XAs clad layer 13 and an n-type GaAs contact layer 14 are sequentially laminated on a p-type GaAs substrate 10 by an organic metal vapor growing method. In this case, a stripe structure for confirming a current and a light is formed in an element by a photolithography method or a chemical etching method. An end face of the structure is formed at an end face 15 of a resonator by a cleavage method to become a laser light irradiating end face, and an AlXGa1-XAs window layer 16 is formed at the face 15 by an MOCVD method. Zn is doped in the layer 16 as p-type impurity to enhance carrier concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い信頼性を有する、
高出力の半導体レーザ素子に関するものである。
The present invention has a high reliability,
The present invention relates to a high output semiconductor laser device.

【0002】[0002]

【従来の技術】従来、光ディスク装置やレーザビームプ
リンター装置などの情報処理装置に半導体レーザ素子か
ら発せられる集光性および指向性に優れたレーザ光が用
いられている。最近では、情報処理装置における処理情
報量を増大・高速化するために、半導体レーザ素子から
発振されるレーザ光を高出力化すると共に、半導体レー
ザ素子の高い信頼性が要求されている。
2. Description of the Related Art Conventionally, a laser beam emitted from a semiconductor laser element having excellent light-converging property and directivity has been used for an information processing device such as an optical disk device or a laser beam printer device. Recently, in order to increase the amount of information processed by an information processing apparatus and increase the speed of the information processing apparatus, a laser beam emitted from a semiconductor laser element is required to have a high output and high reliability of the semiconductor laser element is required.

【0003】半導体レーザ素子の光が出射される端面で
の光吸収を防止して、端面の劣化を防ぐことにより信頼
性を高めた高出力半導体レーザ素子が検討されている。
出願人は、特願平3−236645号において、半導体
レーザ素子の光が出射される端面に、活性層よりも禁制
帯幅の大きな半導体からなる窓層を形成することによっ
て光が出射される端面での光吸収を防止でき、この窓層
が薄膜であることによって窓層と端面の半導体層との格
子歪みを緩和できる、高い信頼性を有する高出出力半導
体レーザ素子を出願している。図5は、上記半導体レー
ザ素子の要部の縦断面図である。この半導体レーザ素子
は、A1GaAs系材料を用いた半導体レーザ素子であ
り、GaAs基板50、Al0.45Ga0.55Asクラッド層
51、Al0.15Ga0.85As活性層52、Al0.45Ga0.55
Asクラッド層53、GaAsコンタクト層54が順次積層
され、電流閉じ込めおよび光閉じ込めのためのストライ
プ構造を半導体レーザ素子内部に備えている。光が出射
される共振器の端面55には、そのAl混晶比が活性層52
よりも大きなAl0.5Ga0.5As半導体からなる窓層56
が形成されている。従って、この窓層56は、活性層52よ
りも禁制帯幅が大きくなり、光を吸収しない。また、窓
層56の厚みが0.2μmと薄いため、共振器の端面55と窓
層56との格子歪みを緩和でき、共振器の端面55と窓層56
との間には良好な界面が形成されているため、非発光再
結合が起こりにくい。
A high-power semiconductor laser device having improved reliability by preventing light absorption at the end face from which light of the semiconductor laser device is emitted and preventing deterioration of the end face has been studied.
The applicant has proposed in Japanese Patent Application No. 3-236645 that an end face from which a light is emitted by forming a window layer made of a semiconductor having a forbidden band width larger than that of an active layer on the end face from which a light is emitted from a semiconductor laser device. A high-output semiconductor laser device having high reliability, which can prevent light absorption in the semiconductor layer and can alleviate lattice distortion between the window layer and the semiconductor layer on the end face because the window layer is a thin film, has been filed. FIG. 5 is a vertical cross-sectional view of the main part of the semiconductor laser device. This semiconductor laser device is a semiconductor laser device using an A1GaAs-based material, and includes a GaAs substrate 50 and an Al 0.45 Ga 0.55 As clad layer.
51, Al 0.15 Ga 0.85 As active layer 52, Al 0.45 Ga 0.55
An As clad layer 53 and a GaAs contact layer 54 are sequentially laminated, and a stripe structure for current confinement and light confinement is provided inside the semiconductor laser device. On the end face 55 of the resonator from which light is emitted, the Al mixed crystal ratio is equal to that of the active layer 52.
Window layer 56 made of a larger Al 0.5 Ga 0.5 As semiconductor
Are formed. Therefore, the window layer 56 has a wider band gap than the active layer 52 and does not absorb light. Moreover, since the thickness of the window layer 56 is as thin as 0.2 μm, the lattice distortion between the resonator end face 55 and the window layer 56 can be relaxed, and the resonator end face 55 and the window layer 56 can be relaxed.
Since a good interface is formed between and, non-radiative recombination is unlikely to occur.

【0004】[0004]

【発明が解決しようとする課題】上記半導体レーザ素子
においては、光が出射される共振器の端面55に形成され
た窓層56のキャリア濃度は限定されていない。
In the above semiconductor laser device, the carrier concentration of the window layer 56 formed on the end face 55 of the resonator from which light is emitted is not limited.

【0005】しかし、上記窓層56のキャリア濃度が低い
場合には、半導体レーザ素子特性に以下に示すような問
題が生ずる。例えば、活性層52としてキャリア濃度が1
×1018cm-3であるp型半導体層と、窓層56としてキャリ
ア濃度が5×1016cm-3であるp型半導体層を用いた場合
を以下に示す。図6は、活性層52と窓層56とが接合され
る前のエネルギーバンド構造を示す図であり、図7は活
性層52と窓層56とが接合された後のエネルギーバンド構
造を示す図である。ここで、EF(a)は活性層52のフェ
ルミ準位、EF(w)は窓層56のフェルミ準位、△Ecは
活性層52と窓層56との間の伝導帯のエネルギー差、△E
vは価電子帯のエネルギー差を表す。図7に示すよう
に、活性層52と窓層56とが積層されると、伝導帯におけ
る活性層52から窓層56への障壁Ebcは近似的に下記式
(1)で表される。(米津著“光通信素子光学”参照) Ebc= △Ec+(EF(a)−EF(w))・・・(1) 窓層56のキャリア濃度が低い場合には、窓層56のフェル
ミ準位EF(a)がエネルギーバンドの中央近くに位置し
て、活性層52のフェルミ準位EF(w)に近付くために、
上記式(1)の第2項の値が小さくなり、そのために障
壁Ebcの値が小さくなる。よって、半導体レーザ素子に
電流を流して、活性層52にクラッド層51、53からキャリ
アを注入し、レーザ発振が起こる状態では、活性層に注
入された電子70が窓層56へリークする。窓層56表面には
酸化による表面準位71が形成されており、窓層56にリー
クした電子70は表面準位71でホールと非発光再結合す
る。その再結合により局部的に発熱が起こり、共振器の
端面55付近の禁制体幅が縮小して光吸収が増加し、その
光吸収により発生した電子がホールとさらに非発光結合
するため、端面55の温度はさらに上昇する。この繰り返
しにより共振器の端面55が溶融して劣化する。
However, when the carrier concentration of the window layer 56 is low, the following problems occur in the characteristics of the semiconductor laser device. For example, the active layer 52 has a carrier concentration of 1
A case where a p-type semiconductor layer having a density of × 10 18 cm -3 and a p-type semiconductor layer having a carrier concentration of 5 × 10 16 cm -3 is used as the window layer 56 will be described below. FIG. 6 is a diagram showing an energy band structure before the active layer 52 and the window layer 56 are joined, and FIG. 7 is a diagram showing an energy band structure after the active layer 52 and the window layer 56 are joined. Is. Here, E F (a) is the Fermi level of the active layer 52, E F (w) is the Fermi level of the window layer 56, and ΔEc is the energy difference of the conduction band between the active layer 52 and the window layer 56. , △ E
v represents the energy difference in the valence band. As shown in FIG. 7, when the active layer 52 and the window layer 56 are stacked, the barrier Ebc from the active layer 52 to the window layer 56 in the conduction band is approximately represented by the following formula (1). (Refer to “Optical Communication Device Optics” by Yonezu) Ebc = ΔEc + (E F (a) −E F (w)) (1) When the carrier concentration of the window layer 56 is low, Since the Fermi level E F (a) is located near the center of the energy band and approaches the Fermi level E F (w) of the active layer 52,
The value of the second term of the above equation (1) becomes small, and therefore the value of the barrier Ebc becomes small. Therefore, when a current is passed through the semiconductor laser element to inject carriers into the active layer 52 from the clad layers 51 and 53, and the laser oscillation occurs, the electrons 70 injected into the active layer leak to the window layer 56. A surface level 71 is formed on the surface of the window layer 56 by oxidation, and the electrons 70 leaked to the window layer 56 are non-radiatively recombined with holes at the surface level 71. The recombination causes local heat generation, the width of the forbidden body near the end face 55 of the resonator is reduced, and the light absorption is increased, and the electrons generated by the light absorption are further non-radiatively coupled with the holes. Temperature rises further. By repeating this, the end face 55 of the resonator is melted and deteriorated.

【0006】また、窓層56としてキャリア濃度が5×10
16cm-3であるn型の半導体層を用いた場合には、活性層
52にキャリアを注入し、レーザ発振が起こっている状態
では、活性層52から窓層56への価電子帯における障壁E
bvは、近似的に下記式(2)で表される。
The window layer 56 has a carrier concentration of 5 × 10 5.
When an n-type semiconductor layer of 16 cm -3 is used, the active layer
When carriers are injected into 52 and laser oscillation is occurring, the barrier E from the active layer 52 to the window layer 56 in the valence band
bv is approximately represented by the following equation (2).

【0007】 Ebv= △Ev+(EF(w)−EF(a))−Vj・・・(2) ここで、Vjは活性層52と窓層56との間の接続にバイア
スされた電位を示す。窓層56のキャリア濃度が低い場合
には、上記と同様に上記式(2)の第2項の値が小さく
なるために、障壁Ebvが小さくなり、活性層56に注入さ
れたホールが窓層52へリークする。この場合において
も、上記の場合と同様に窓層56表面で非発光再結合が生
じ、それにより端面55の劣化を誘発する。
[0007] Ebv = △ Ev + (E F (w) -E F (a)) - Vj ··· (2) where, Vj is biased in the connection between the active layer 52 and the window layer 56 potential Indicates. When the carrier concentration of the window layer 56 is low, the value of the second term of the above formula (2) becomes small similarly to the above, so that the barrier Ebv becomes small and the holes injected into the active layer 56 become Leak to 52. Also in this case, as in the above case, non-radiative recombination occurs on the surface of the window layer 56, thereby inducing deterioration of the end face 55.

【0008】また、活性層52をn型、及びノンドープの
半導体層とした場合においても、活性層52にキャリアを
注入し、レーザ発振が起こる状態では、上記の場合と同
様に窓層56へのキャリアのリークが発生するために、端
面55の劣化が生じる。
Even when the active layer 52 is an n-type and non-doped semiconductor layer, in the state where carriers are injected into the active layer 52 and laser oscillation occurs, the window layer 56 is exposed to the same as in the above case. Due to carrier leakage, the end surface 55 is deteriorated.

【0009】本発明は上記問題を解決するものであり、
その目的は、高い信頼性を有する高出力半導体レーザを
提供することにある。
The present invention solves the above problems,
The purpose is to provide a high-power semiconductor laser with high reliability.

【0010】[0010]

【課題を解決するための手段】本発明の半導体レーザ素
子は、一対のクラッド層に挟まれた活性層を有する共振
器と、該共振器の活性層内で増幅された光が出射される
端面に形成され、該活性層よりも禁制帯幅の大きな半導
体からなり、不純物をドーピングしてキャリア濃度が高
められた窓層を有しており、そのことにより上記目的が
達成される。
A semiconductor laser device of the present invention comprises a resonator having an active layer sandwiched between a pair of clad layers, and an end face from which light amplified in the active layer of the resonator is emitted. And a window layer formed of a semiconductor having a bandgap larger than that of the active layer and having an increased carrier concentration by doping impurities, thereby achieving the above object.

【0011】好ましくは、上記窓層のキャリア濃度は、
1×1017cm-3以上である。
Preferably, the carrier concentration of the window layer is
It is 1 × 10 17 cm -3 or more.

【0012】[0012]

【作用】本発明の半導体レーザ素子は、光が出射される
共振器の端面に形成された窓層のキャリア濃度が高めら
れている。このことにより、活性層から窓層への伝導帯
または価電子帯の障壁が高くなり、活性層から窓層への
キャリアのリークが抑制される。よって、共振器の端面
が劣化しにくくなる。
In the semiconductor laser device of the present invention, the carrier concentration of the window layer formed on the end face of the resonator from which light is emitted is increased. As a result, the barrier of the conduction band or valence band from the active layer to the window layer becomes high, and the leakage of carriers from the active layer to the window layer is suppressed. Therefore, the end face of the resonator is less likely to deteriorate.

【0013】[0013]

【実施例】以下に本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0014】(実施例1)図1は、本発明の半導体レー
ザ素子を示す図である。この半導体レーザ素子は、p型
GaAs基板10上に、p型AlxGa1-xAsクラッド層
11、p型AlxGa1 -xAs活性層12、n型AlxGa1-x
Asクラッド層13、n型GaAsコンタクト層14が有機
金属気相成長法(MOCVD法)で順次積層されてい
る。このとき、電流閉じ込めおよび光閉じ込め用のスト
ライプ構造がホトリソグラフィ法または化学エッチング
法などにより素子内部に形成されている。このストライ
プ構造の端面は劈開法により共振器の端面15とされてい
る。共振器の端面15は、レーザ光の出射端面となり、そ
の端面15には、MOCVD法によりAlxGa1-xAs窓
層16が形成されている。窓層16にはZnがp型不純物と
してドーピングされ、キャリア濃度が高められている。
(Embodiment 1) FIG. 1 is a diagram showing a semiconductor laser device of the present invention. This semiconductor laser device comprises a p-type GaAs substrate 10 and a p-type Al x Ga 1-x As clad layer.
11, p-type Al x Ga 1 -x As active layer 12, n-type Al x Ga 1 -x
An As clad layer 13 and an n-type GaAs contact layer 14 are sequentially laminated by a metal organic chemical vapor deposition method (MOCVD method). At this time, a stripe structure for current confinement and light confinement is formed inside the element by a photolithography method or a chemical etching method. The end face of this stripe structure is made into the end face 15 of the resonator by the cleavage method. An end face 15 of the resonator serves as a laser light emitting end face, and an Al x Ga 1 -x As window layer 16 is formed on the end face 15 by MOCVD. The window layer 16 is doped with Zn as a p-type impurity to increase the carrier concentration.

【0015】図2は、活性層12と窓層16とが接合される
前のエネルギーバンド構造であり、図3は、窓層12と活
性層16とが接合されて、フェルミ準位が一致した時のエ
ネルギーバンド構造である。
FIG. 2 shows an energy band structure before the active layer 12 and the window layer 16 are joined, and FIG. 3 shows the Fermi level in which the window layer 12 and the active layer 16 are joined. This is the energy band structure of time.

【0016】活性層12から窓層16への伝導帯における電
子の障壁Ebcは下記式(1)で近似的に示される。
The electron barrier Ebc in the conduction band from the active layer 12 to the window layer 16 is approximately represented by the following equation (1).

【0017】 Ebc= △Ec+(EF(a)−EF(w))・・・(1) 窓層16は、p型の不純物がドーピングされてキャリア濃
度が高められている。よって、窓層16のフェルミ準位は
価電子帯に近付き、上記式(1)の第2項の値が大きく
なる。従って、上記式(1)に示した活性層12から窓層
16への伝導帯の電子の障壁Ebcは大きくなる。そのため
に、半導体レーザ素子に電流を流して、活性層12にキャ
リアを注入し、レーザ発振している状態では、活性層12
から窓層16への電子30のリークが減少できる。従って、
窓層16の表面準位31での電子30とホールとの非発光再結
合は生じない。よって、端面15での劣化が抑制できる。
[0017] Ebc = △ Ec + (E F (a) -E F (w)) ··· (1) window layer 16, an impurity is doped carrier concentration of the p-type is enhanced. Therefore, the Fermi level of the window layer 16 approaches the valence band, and the value of the second term of the above formula (1) becomes large. Therefore, from the active layer 12 shown in the above formula (1) to the window layer
The electron barrier Ebc of the conduction band to 16 becomes larger. Therefore, a current is passed through the semiconductor laser element to inject carriers into the active layer 12, and the active layer 12 is oscillated under the condition of laser oscillation.
The leakage of the electrons 30 from the window layer 16 to the window layer 16 can be reduced. Therefore,
Non-radiative recombination of electrons 30 and holes at the surface level 31 of the window layer 16 does not occur. Therefore, deterioration of the end surface 15 can be suppressed.

【0018】図4に半導体レーザ素子の最大光出力と窓
層16のキャリア濃度の関係を示す。特に、窓層16のキャ
リア濃度が1×1017cm-3以上の場合に、端面15の劣化が
抑制されて最大光出力は向上する。また、端面15の劣化
が抑制されることにより、高出力動作時の信頼性が向上
される。
FIG. 4 shows the relationship between the maximum light output of the semiconductor laser device and the carrier concentration of the window layer 16. In particular, when the carrier concentration of the window layer 16 is 1 × 10 17 cm −3 or more, the deterioration of the end face 15 is suppressed and the maximum light output is improved. Further, since the deterioration of the end surface 15 is suppressed, the reliability at the time of high output operation is improved.

【0019】この実施例の半導体層の詳細を以下に示
す。
Details of the semiconductor layer of this embodiment are shown below.

【0020】 p型GaAs基板10:厚み100μm p型AlxGa1-xAsクラッド層11:Al0.45Ga0.55
As、厚み1.5μm p型AlxGa1-xAs活性層12:Al0.15Ga0.85
s、厚み0.06μm n型AlxGa1-xAsクラッド層13:Al0.45Ga0.55
As、厚み1.5μm n型GaAsコンタクト層14:厚み1.5μm p型AlxGa1-xAs窓層16:Al0.5Ga0.5As、厚
み0.2μm、キャリア濃度1×1018cm-3 この実施例では、600mWの高出力の光発振が得られ、
また、共振器の端面の劣化は見られなかった。
P-type GaAs substrate 10: thickness 100 μm p-type Al x Ga 1-x As clad layer 11: Al 0.45 Ga 0.55
As, thickness 1.5 μm p-type Al x Ga 1-x As active layer 12: Al 0.15 Ga 0.85 A
s, thickness 0.06 μm n-type Al x Ga 1-x As clad layer 13: Al 0.45 Ga 0.55
As, thickness 1.5 μm n-type GaAs contact layer 14: thickness 1.5 μm p-type Al x Ga 1-x As window layer 16: Al 0.5 Ga 0.5 As, thickness 0.2 μm, carrier concentration 1 × 10 18 cm -3 Then, high-power optical oscillation of 600 mW was obtained,
No deterioration of the end face of the resonator was observed.

【0021】(実施例2)窓層16に不純物としてn型不
純物であるSeをドーピングして、窓層16の電子のキャ
リア濃度を1×1018cm-3とした以外は実施例1と同様に
して半導体レーザ素子を作製した。
Example 2 Same as Example 1 except that the window layer 16 was doped with Se, which is an n-type impurity, as an impurity so that the carrier concentration of electrons in the window layer 16 was 1 × 10 18 cm −3. Then, a semiconductor laser device was manufactured.

【0022】この半導体レーザ素子に電流を流して、活
性層12にキャリアを注入し、レーザ発振が起こる状態で
は、活性層12から窓層16への価電子帯における障壁は下
記式(2)で近似的に示される。
In the state where a current is passed through this semiconductor laser device to inject carriers into the active layer 12 and laser oscillation occurs, the barrier in the valence band from the active layer 12 to the window layer 16 is expressed by the following formula (2). Approximately shown.

【0023】 Ebv= △Ev+(EF(w)−EF(a))−Vj・・・(2) 窓層16は、n型の不純物がドーピングされてキャリア濃
度が高められている。よって、窓層16のフェルミ準位は
伝導帯に近付き、上記式(2)の第2項の値が大きくな
る。従って、上記式(2)に示した活性層12から窓層16
への価電子帯の障壁Ebvは大きくなり、活性層12から窓
層16へのホールのリークが減少できる。それに伴って、
端面15での劣化も抑制できる。
[0023] Ebv = △ Ev + (E F (w) -E F (a)) - Vj ··· (2) window layer 16, n-type impurity is doped with a carrier concentration is enhanced. Therefore, the Fermi level of the window layer 16 approaches the conduction band, and the value of the second term of the above equation (2) becomes large. Therefore, from the active layer 12 to the window layer 16 shown in the above formula (2).
The barrier Ebv of the valence band to the window is increased, and the leakage of holes from the active layer 12 to the window layer 16 can be reduced. Along with that,
Deterioration at the end surface 15 can also be suppressed.

【0024】この場合も、レーザの最大光出力とキャリ
ア濃度の関係は図4と同様であり、特に、窓層16のキャ
リア濃度が1×1017cm-3以上の場合には、半導体レーザ
素子の最大光出力は向上し、信頼性も向上する。
Also in this case, the relationship between the maximum optical output of the laser and the carrier concentration is the same as that shown in FIG. 4, and particularly when the carrier concentration of the window layer 16 is 1 × 10 17 cm -3 or more, the semiconductor laser device is used. The maximum light output of is improved and the reliability is also improved.

【0025】この実施例では、600mWの高出力の光発
振が得られ、また、共振器の端面の劣化は見られなかっ
た。
In this example, high-power optical oscillation of 600 mW was obtained, and deterioration of the end face of the resonator was not observed.

【0026】なお、上記実施例では、p型の活性層を用
いたが、それ以外のn型、及びノンドープの活性層を用
いても同様の効果がある。また、窓層16にドーピングす
る不純物としてZn、Seを用いたが、それ以外の、例
えば、Mg、Be、Si、Te等を用いても同様の効果
がある。窓層16の厚みは、共振器の端面15と窓層16との
格子歪みを緩和できるように、1.0μm以下であるのが
好ましい。
Although the p-type active layer is used in the above embodiment, similar effects can be obtained by using other n-type and non-doped active layers. Further, although Zn and Se are used as the impurities for doping the window layer 16, the same effect can be obtained by using other materials such as Mg, Be, Si and Te. The thickness of the window layer 16 is preferably 1.0 μm or less so that the lattice distortion between the end face 15 of the resonator and the window layer 16 can be relaxed.

【0027】窓層16の成長方法としては、MOCVD法
を用いたが、それ以外の分子線エピタキシー法(MBE
法)、有機金属分子線エピタキシー法(MOMBE
法)、原子層成長法(ALE法)等の気相成長法を用い
ることもできる。また、共振器の端面の形成方法とし
て、劈開法以外にドライエッチング法、化学エッチング
法などを用いてもよい。
The MOCVD method was used as the method for growing the window layer 16, but other molecular beam epitaxy method (MBE method) was used.
Method), metalorganic molecular beam epitaxy method (MOMBE
Method), an atomic layer growth method (ALE method) and the like. In addition to the cleavage method, a dry etching method, a chemical etching method, or the like may be used as a method for forming the end face of the resonator.

【0028】上記実施例では、AlGaAs系の半導体
レーザ素子について示したが、それ以外の、例えば、I
nGaAlP系の半導体レーザ素子にも適用できる。ま
た、簡単のため、ダブルヘテロ構造の半導体レーザ素子
について示したが、活性層の片側にガイド層を設けたL
OC(Large Optical Cavity)型、両側にガイド層を設
けたSCH(Separated Confinement Heterostructur
e)型、さらには、ガイド層の屈折率が徐々に変化した
GRIN(Graded Index)−SCH型などの他の構造に
も適用できる。
In the above embodiment, the AlGaAs semiconductor laser device is shown.
It can also be applied to an nGaAlP-based semiconductor laser device. Also, for the sake of simplicity, the semiconductor laser device having a double hetero structure is shown. However, an L having a guide layer provided on one side of the active layer is used.
OC (Large Optical Cavity) type, SCH (Separated Confinement Heterostructur) with guide layers on both sides
It can be applied to other structures such as the e) type, and further, GRIN (Graded Index) -SCH type in which the refractive index of the guide layer is gradually changed.

【0029】[0029]

【発明の効果】以上のように、本発明の半導体レーザ素
子は、窓層に不純物をドーピングして該窓層のキャリア
濃度を高めることにより、伝導帯または価電子帯の障壁
を高くして、活性層から窓層へのキャリアのリークを抑
制することができる。従って、光が出射される共振器の
端面付近の活性層の光吸収を防止して端面の劣化を抑制
することができ、高出力レーザの最大光出力を向上さ
せ、信頼性を向上させることができる。
As described above, in the semiconductor laser device of the present invention, the barrier of the conduction band or the valence band is increased by doping the window layer with impurities to increase the carrier concentration of the window layer, Carrier leakage from the active layer to the window layer can be suppressed. Therefore, it is possible to prevent light absorption of the active layer near the end face of the resonator from which light is emitted and suppress deterioration of the end face, improve the maximum optical output of the high-power laser, and improve reliability. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の半導体レーザ素子の要部縦断
面図である。
FIG. 1 is a longitudinal sectional view of a main part of a semiconductor laser device according to an embodiment of the present invention.

【図2】本発明の実施例の半導体レーザ素子のp型窓層
と活性層とが接合される前のエネルギーバンド構造図で
ある。
FIG. 2 is an energy band structure diagram before a p-type window layer and an active layer of a semiconductor laser device of an example of the present invention are joined.

【図3】本発明の実施例の半導体レーザ素子のp型窓層
と活性層とが接合された後のエネルギーバンド構造図で
ある。
FIG. 3 is an energy band structure diagram after the p-type window layer and the active layer of the semiconductor laser device of the example of the present invention are joined.

【図4】半導体レーザ素子の最大光出力と、窓層のキャ
リア濃度との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the maximum optical output of the semiconductor laser device and the carrier concentration of the window layer.

【図5】従来の半導体レーザ素子の要部縦断面図であ
る。
FIG. 5 is a longitudinal sectional view of a main part of a conventional semiconductor laser device.

【図6】従来の半導体レーザ素子のp型窓層と活性層と
が積層される前のエネルギーバンド構造図である。
FIG. 6 is an energy band structure diagram before a p-type window layer and an active layer of a conventional semiconductor laser device are stacked.

【図7】従来の半導体レーザ素子のp型窓層と活性層と
が積層された後のエネルギーバンド構造図である。
FIG. 7 is an energy band structure diagram after a p-type window layer and an active layer of a conventional semiconductor laser device are stacked.

【符号の説明】[Explanation of symbols]

12 活性層 15 共振器の端面 16 窓層 12 Active layer 15 Resonator end face 16 Window layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一対のクラッド層に挟まれた活性層を有
する共振器と、 該共振器の活性層内で増幅された光が出射される端面に
形成され、該活性層よりも禁制帯幅の大きな半導体から
なり、不純物をドーピングしてキャリア濃度が高められ
た窓層と、 を有する半導体レーザ素子。
1. A resonator having an active layer sandwiched between a pair of clad layers and an end face from which amplified light is emitted in the active layer of the resonator, the forbidden band width being larger than that of the active layer. A semiconductor laser device having a window layer made of a large semiconductor having a high carrier concentration by doping impurities.
【請求項2】 前記窓層のキャリア濃度が1×1017cm-3
以上である請求項1に記載の半導体レーザ素子。
2. The carrier concentration of the window layer is 1 × 10 17 cm -3
The semiconductor laser device according to claim 1, which is as described above.
JP19727892A 1992-07-23 1992-07-23 Semiconductor laser element Pending JPH0645689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19727892A JPH0645689A (en) 1992-07-23 1992-07-23 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19727892A JPH0645689A (en) 1992-07-23 1992-07-23 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH0645689A true JPH0645689A (en) 1994-02-18

Family

ID=16371807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19727892A Pending JPH0645689A (en) 1992-07-23 1992-07-23 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH0645689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879335A (en) * 1986-09-30 1989-11-07 Toyo Ink Mfg. Co., Ltd. Black liquid colorant and polyester fibers dope-dyed therewith
EP0742617A1 (en) * 1995-05-08 1996-11-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser and method of manufacturing the semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879335A (en) * 1986-09-30 1989-11-07 Toyo Ink Mfg. Co., Ltd. Black liquid colorant and polyester fibers dope-dyed therewith
EP0742617A1 (en) * 1995-05-08 1996-11-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser and method of manufacturing the semiconductor laser
US5677922A (en) * 1995-05-08 1997-10-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser with crystalline window layer

Similar Documents

Publication Publication Date Title
US4809287A (en) Double-heterostructure semiconductor with mesa stripe waveguide
JP3129779B2 (en) Semiconductor laser device
US6677618B1 (en) Compound semiconductor light emitting device
JP3585817B2 (en) Laser diode and manufacturing method thereof
JPH07162086A (en) Manufacture of semiconductor laser
JPH08195529A (en) Semiconductor laser epitaxial crystalline laminate and semiconductor laser
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
JPH05175594A (en) Semiconductor laser device
US6697404B1 (en) Laser diode operable in 1.3μm or 1.5μm wavelength band with improved efficiency
US7215691B2 (en) Semiconductor laser device and method for fabricating the same
JP2930031B2 (en) Semiconductor laser
US5933442A (en) Semiconductor laser
US4759025A (en) Window structure semiconductor laser
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
JPH0645689A (en) Semiconductor laser element
JP2758598B2 (en) Semiconductor laser
JP3403915B2 (en) Semiconductor laser
JP2865160B2 (en) Manufacturing method of semiconductor laser
JPH10107369A (en) Semiconductor laser device
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JP5493377B2 (en) Semiconductor device and manufacturing method thereof
JPH0467353B2 (en)
JP2780625B2 (en) Manufacturing method of semiconductor laser
JPH08125280A (en) Semiconductor laser and manufacture thereof
JP3044604B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990315